Mohammed Gabr
Civil Engineering and Construction Distinguished Professor
Alumni Association Distinguished Graduate Professor
Alumni Distinguished Undergraduate Professor
Fitts-Woolard Hall 3227
Bio
Mohammed (Mo) Gabr is Distinguished Professor of Civil Engineering and Construction at North Carolina State University specializing in Geotechnical/Geoenvironmental Engineering. His recent research interests include assessment and development of sustainable and Innovative soil improvement techniques including the use of geosynthetics and chemical and biological amendments approaches; development of performance limit states and damage assessment of earth structures under extreme storms, and resilient foundation systems supporting marine renewable energy infrastructures.
Dr. Gabr earned his Ph.D. at North Carolina State University in December 1987. He was then awarded a postdoctoral fellowship by the Royal Norwegian Council for Scientific and Industrial Research and spent 1988 at the Norwegian Geotechnical Institute (NGI). Upon returning to the US, he worked as a Project Engineer for Woodward-Clyde Consultants until August 1991; at that time, he joined West Virginia University (WVU). He has been Assistant and then Associate Professor (1995) at West Virginia University from 8/91 to 12/97 and Associate then Full Professor at North Carolina State University from 1/98 to present. Dr. Gabr spent the summers of 1992 and 1993 as a Research Faculty at the Army Corps of Engineers Waterways Experiment Station in Vicksburg, Mississippi. He spent the Fall 2012 semester at the Imperial College, London, as a Visiting Professorial Academic. Dr. Gabr served as the Acting Director of the North Carolina Renewable Ocean Energy Program (NCROEP) from July 2015-July 2019. The program is administrated through the University of North Carolina Coastal Studies Institute (CSI). In such capacity, he worked with colleagues from the CSI and several Universities across the state of North Carolina to plan and advance research and technology supporting the generation of renewable ocean energy in cost-competitive and environmentally benign manner. Over 30 years of his academic career so far, Dr. Gabr has served as chair, co-chair, and advisor of 45 Ph.D. (with five current students yet to earn their degree) and 70 Masters students. Supported by more than $14 million in grants and contracts, Gabr continues to work with his students and colleagues on research areas that transcend Geotechnical, Environmental, Structural, and Coastal Engineering.
Dr. Gabr received the Edmund Friedman Professional Recognition award by the American Society of Civil Engineers (ASCE). He was selected as the 1993 West Virginia Young Engineer of the Year by ASCE. He received the 1993-94 Outstanding College Researcher award and 1995-96 Outstanding College Teacher award from the College of Engineering and Mineral Resources (CEMR) at WVU. He received the 1994-95 J.C. Burnichal Teaching award and the 1994-95 Outstanding Advisor award from the Department of Civil and Environmental Engineering at WVU. He was selected as a North Carolina State University Outstanding Teacher, received an Alumni Outstanding Teacher award, and was elected to the academy of Outstanding Teachers at the University in 2008. He was named “Alumni Distinguished Undergraduate Professor” in 2009 and is named as “Alumni Association Distinguished Graduate Professor” in 2019; these titles are retained while appointed as a member of the NC State faculty. He is the College of Engineering Recipient of the 2011 Board of Governors Award for Excellence in Teaching. Dr. Gabr also received the 2015 Outstanding Teaching Award from the American Society of Engineering Education (ASEE), Southeast Section.
Dr. Gabr is the former Chair of the Transportation Research Board of the national academies committee on Physicochemical Properties of Soils (1997-2003), and the ASCE Geo-Institute national committee on Geosynthetics (2000-2008.) Dr. Gabr served as an editorial board member (EBM) of the ASCE Journal of Geotechnical and Geoenvironmental Engineering (2001-2006) and as Editor of the Environmental Geotechnics Section of Geotechnical News (1998-2004). He served as an EBM of ASTM Geotechnical Testing Journal (1999-2015) and as Editor of the ASCE Journal of Geotechnical and Geoenvironmental Engineering (2007-2015). He served as the Editor-in-Chief of the ASCE Journal of Geotechnical and Geoenvironmental Engineering (2015-2019) and currently serves as Editor-at-Large for the journal. Dr. Gabr was elected as a Fellow of the American Society of Civil Engineers in 2000 and was inducted as a Diplomate of the Geo-Institute Academy of Geo-Professionals in 2015te and is Board-Certified Geotechnical Engineer (BCGE) by the Academy. He is a registered professional engineer in five States.
Teaching
Dr. Gabr considers teaching to be his passion. He endeavors to create a comfortable learning environment, clearly define learning objectives and expectations, and focus on teaching basics and innovations for lifelong learning. He regularly teaches CE 342, CE 435, CE 443, CE 549, CE 584, CE 741, and CE 747. He pursues cutting-edge innovative concepts in response to emerging challenges in Civil Engineering education. To this end, he has secured funding with his colleagues from the National Science Foundation (NSF) for two projects on development of innovative teaching approaches. The first project aimed at adaptation of information technology for incorporation of internet-enabled Civil Engineering laboratory experiments in geotechnical courses. The second aims at incorporating sensors and instrumentation for monitoring engineering infrastructure in the civil engineering undergraduate curriculum. Dr. Gabr has been teaching since 1991 and has served on several committees and professional organizations where achieving excellence in education is a primary focus.
Education
Ph.D. Civil Engineering North Carolina State University 1987
M.S. Civil Engineering Clarkson University 1984
B.S. Civil Engineering Cairo University 1980
Area(s) of Expertise
Dr. Gabr's research programs are the results of work by his colleagues and graduate students and experience accumulated through interaction and Dr. Gabr's performs research in collaboration with his students and colleagues and has significantly contributed to the field of geotechnical engineering, encompassing a wide range of topics such as soil reinforcement, scour, levee stability, foundation support systems, soil flushing, and waste characterization. His work includes innovative approaches, practical applications, and collaborations with various institutions and industries. In the area of soil reinforcement, Dr. Gabr has developed novel methods for analyzing and designing reinforced soil systems. His research has focused on understanding the behavior of reinforced soils under different loading conditions, including cyclic loading and explosions. In the field of levee stability, Dr. Gabr has introduced the concept of Strain-Based Limit States for protective earth structures. This approach allows for a more comprehensive assessment of the risk of levee failure and has been applied to various levee systems. Dr. Gabr's research on scour has led to the development of the in-situ erosion evaluation device (ISEEP), which provides a rapid assessment of the scour potential of soils around hydraulic structures. This device can be used in coastal and riverine environments as an expedient means after storms to assess the extent of soil scour around foundation systems.
Dr. Gabr's research on foundation support systems has focused on the analysis and design of drilled shafts and piles. He has developed methods for analyzing laterally loaded drilled shafts on slopes, and in weathered rock materials, He has conducted research on the anchoring and mooring of marine renewable ocean energy devices and is currently working on the development of an innovative foundation element (referred to as ROPA.)
Publications
- Bayesian modeling and mechanical simulations for fragility curve estimation of the mooring system of marine hydrokinetic devices , APPLIED OCEAN RESEARCH (2024)
- Celebrating the 150th Anniversary of the Journal of Geotechnical and Geoenvironmental Engineering , JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING (2024)
- Development of a reactive transport model for microbial induced calcium carbonate precipitation in unsaturated conditions , CANADIAN GEOTECHNICAL JOURNAL (2024)
- Interpretable machine learning scheme for predicting bridge pier scour depth , Computers and Geotechnics (2024)
- Synergistic Hybrid Marine Renewable Energy Harvest System , ENERGIES (2024)
- Analysis of Wave-Driven Progressive Buildup of Excess Pore Water Pressure in Sands Supporting Marine Hydrokinetic Devices , Day 1 Mon, May 01, 2023 (2023)
- Development of a Reactive Transport Model for Microbial Induced Calcium Carbonate Precipitation in Unsaturated Conditions , Canadian Geotechnical Journal (2023)
- Efficacy of Permeable Reactive Barriers in Mitigating Tetrachloroethene Ingress into Highway Drainage Concrete Pipe in Saturated Media , JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE (2023)
- Elucidating factors governing MICP biogeochemical processes at macro-scale: A reactive transport model development , Computers and Geotechnics (2023)
- Evaluation of wave-induced instability of nearly saturated sandy slopes under partially undrained condition: A case study of landslide in Fraser River delta front , COMPUTERS AND GEOTECHNICS (2023)
Grants
A large number of culvert pipes are installed every year in North Carolina. In the current research project (RP2022-02: Integration of Repair and Remediation Methods into Pipe Material Selection Approach), a Pipe Assessment and Selection Software (PASS) was developed. PASS accounts for the service life of a wide range of pipe materials (reinforced concrete, galvanized steel, aluminized steel, cast iron, mild steel, aluminum alloy, and polymeric pipes) based on their exposure conditions, and it has been enhanced to account for loading and structural requirements. Additional features of PASS include accounting for the effect of backfill replacement as well as repair and mitigation strategies such as the use of flowable fills and membrane lining of the trench on the service life of pipes. PASS also includes a method to account for the effect of substandard coating for galvanized and aluminized steel pipes on their service life and recommends discount rates based on estimated reduction in the service life. The estimation of the service life of pipe materials in PASS is based on exposure conditions that are assessed using a GIS database linked with jobsite latitude and longitude coordinates to obtain information on soil conditions (including those from nearby quarries.) Alternatively, field measurements of soil resistivity and chloride content can be input directly into PASS. Overall, PASS has evolved into a comprehensive framework for pipe selection. We propose herein to integrate the following items into PASS: (i) Currently, PASS does not account for the selection of gaskets, especially in contaminated soils where the presence of Volatile Organic Compounds (VOCs) such as benzene, PCE, and TCE can significantly degrade gasket durability. (ii) While PASS includes the effects of mitigation strategies such as flowable fill and lining the trench with membranes or clay liners, it does not have a robust process to account for the durability of such measures and the presence of damage in them; this may lead to an overestimation of service life since perfect (damage free) liners and membranes are assumed, but are not realistically achieved in the field. (iii) PASS does not account for aging effects of polymeric pipes; that is the current service life estimation of polymeric pipes (e.g., HDPE and PVC) is a constant number and does not include interaction with the environment (i.e., moisture and contaminants) nor the effects of creep.
Measurement-while-drilling (MWD) technology is used to collect and record drilling parameters with depth during subsurface site investigations. The MWD sensors are attached to the drilling rigs and a data acquisition system collects the measurements from the sensors and transmits the data to the surface in real time. The proposed scope aims to outfit a North Carolina Department of Transportation (NCDOT) drill rig with MWD sensors and develop protocol and data reduction methods to support NCDOT geotechnical exploration and site characterization programs. The research project will yield key deliverables including a comprehensive list of necessary sensors for collecting drilling parameters, the identification and integration of MWD sensors into one of NCDOT's drill rig, detailed documentation of the installation process, and field and laboratory data collected in association with the monitored MWD data.
Traditional practice of bridge local scour estimation relies upon the use of analytical models such as the one specified in Hydraulic Engineering Circulars, HEC-18 and HEC 20 (Arneson et al., 2012). Models such as HEC-18 were however developed based on data collected mainly from flume testing on sand. The data used for HEC-18 model development were mainly for narrow pier erosion in sand (scour depth/pier width>1.4) per Benedict and Knight (2017). Yet the model is applied in practice to intermediate and wide pier cases as well. In addition, the materials classified as ���soils��� include sand, and/or silt, and/or clay with a grain size distribution that can yield a bed soil behavior that may not be captured by a single parameter, such as D50. Approaches such as the HEC-18 model also lump the flow channel and bridge hydraulic and geometrical parameters with the bed erosion resistance parameters in one equation. While such an approach is simple to use, there is consensus in literature that it yields overly conservative scour estimates. On a fundamental level, the magnitude of erosion and scour can be assessed through knowledge of the flow-induced shear stress, the soil���s erodibility parameters, which include the critical shear stress (��c), co- efficient of erodibility (��'), and m, which is ���an exponent defining the functional variation of the soil erosion rate with the flow-induced shear stress.��� This approach is fundamentally implemented in the FHWA Hy- draulic Toolbox and adopted by the NextScour Program. In parallel, geotechnical site investigation by the North Carolina DOT commonly involves the performance of SPT, and the retrieval of soil samples for characterization of physical and engineering properties. As such, there is an opportunity to obtain the site- specific erodibility (��c, ��', and m) through linking such parameters with the geotechnical data for a rational assessment of site-specific scour magnitude, accounting for variability of channel-bed soil layers with depth.
The integrity and reliability of flood-control earthen dams and levees are essential components to homeland safety. The failure of such systems due to natural or man-made hazards may have monumental repercussions, sometimes with dramatic and unanticipated consequences on human life and the country������������������s economy. The levees network in the Sacramento-San Joaquin Delta support exceptionally rich agricultural area (over a $500 million annual crop value). Currently, the risk of levee failure in this area from potential flooding or draught threatens the lives of individuals living behind the levees, but also, the water quality in this water-transfer system. Preliminary risk assessment demonstrated a 40% chance that at least 30 islands within the Delta area would be flooded by simultaneous levee failures in a major earthquake in the next 25 years. The teamwork proposed herein will extend the remote sensing monitoring by InSAR and Joint Scatterer interferometry (JSInSAR) to monitor levees deformation with a resolution on the order of a few millimeters. The research team ay NCSU will participate by integrating the use of measurement data and modeling techniques, using the concept of performance limit states, to effectively achieve a performance based health assessment of the delta levees network.
The objective of the proposed scope is to investigate the potential design and deployment, on experimental basis, the remotely operated anchorage installation of micropiles in subsea environment. The focus of work herein includes analysis of construction installation parameters and their effect on anchoring capacity performance, modeling of group interaction and characterization of micropiles group capacity.
In a recent research project a pipe material selection software was developed. This software enables estimation of the service life of pipes made from different materials based on their anticipated exposure conditions. The linked GIS database is used to automatically compute the anticipated exposure condition corresponding with GPS coordinates input by the user for a given project. The culvert pipe materials commonly used by NCDOT have been included in the software: reinforced concrete, galvanized steel, aluminized steel, cast iron, mild steel, aluminum alloy, and polymeric pipes. Based on conversations with NCDOT, additional scope for the software is desired and identified as follows: i. The developed software selection guide only considers material type and exposure condition in the selection process. It is desirable to integrate NCDOT������������������s structural requirements into the selection process such that NCDOT engineers can use a single software to select pipe materials based on both durability and structural requirements. ii. The current software does not provide an estimate of how service life can be extended by repair and rehabilitation. It is desirable to upgrade the software to account for the additional service life expected from various rehabilitation measures, and to develop a comparative analysis of possible repair methods in terms of expected impact on service life. iii. The current software does not account for the effects of approaches to mitigate adverse subsurface exposure on the service life of installed pipes. Addressing the effects of mitigation is desirable since in many projects, backfill soil is different from native soil. The work proposed herein aims to update the current software to include: (i) An upgraded pipe selection guide software that integrates structural requirements, repair and rehabilitation methods, and mitigation strategies into a unified pipe selection guide, and (ii) provisions accounting for the effects of various repair and rehabilitation methods on the service life of the pipe materials.
The North Carolina Department of Transportation (NCDOT) routinely performs assessment of scour potential at bridge foundations. The availability of representative approaches for estimating first order scour magnitude is needed as such information is used for the design of new bridges, designating bridges as ����������������scour- critical,��������������� and for deciding on the need for implementing scour countermeasures. As stated by Mr. Jerry Snead, the applicability and potential modification of USGS Scour Envelope Curves, developed for the state of South Carolina, to North Carolina soils is the focus of the research proposed herein. Such investigation is needed to assess the robustness of the first order scour estimates and to provide reliable quality control measure to ensure the reasonableness of bridge scour magnitudes estimated by other means.
The North Carolina Department of Transportation (NCDOT) routinely performs road improvement projects where a portion of the right-of-way might be contaminated. Based on the field evaluations carried out by NCDOT, at times subsurface utilities including water and/or drainage pipes are present, or need to be installed, in environments where soil and groundwater contamination exists. The currently funded project (RP 2017-08 with end date on July 31, 2019), is focused on the laboratory evaluation of contaminant migration through concrete pipes, as well as evaluation of the effect of contaminants on the mechanical performance of PVC pipe and three gasket materials (Neoprene, Buna-N, and Viton) when exposed to contaminated water. In addition, modeling of hardening methods and evaluating their efficacy is conducted as a part of the ongoing project.
A large number culvert pipes are installed every year in North Carolina. While the loading and structural requirements for these pipes are considered during the selection process, the exposure condition of these culverts receives less attention. Many pipe choices exist including reinforced concrete, galvanized steel, aluminum, aluminized, and various types of plastic. Choosing the right pipe for the right installation is a non-trivial task that carries significant financial impact. Factors such as structural capacity, environmental durability, anticipated life-span, required pipe size, site conditions, and available construction expertise are all important when selecting a pipe. Existing NCDOT selection tables provide some limited guidance, but often result in highly-conservative selections being made, particularly from the perspective of matching pipe materials to site environmental conditions. Selection of the wrong pipe material (or an overly-conservative pipe material) can result in significant excess cost. If materials degrade too quickly, costly re-work is required, and additional costs and risks may be incurred due to reduced performance of the degraded pipe. If high-cost and high-performance materials are selected in areas where they are not needed, then initial construction costs can increase dramatically. For example, in many situations, aluminized corrugated steel pipe can likely provide the same useful service life as corrugated aluminum pipe at a dramatically reduced cost. Aluminum pipe may be justified in regions with salt-water exposure, however, it is likely an over-conservative choice for regions where contact with salt will be incidental. Accounts from NCDOT personnel have indicated widespread use of aluminum pipe in regions where it is likely not needed (i.e., regions with limited salt exposure).
The North Carolina Department of Transportation (NCDOT) routinely performs road improvement projects where a portion of the right-of-way might be contaminated. Potential sources of contamination include underground storage tanks in the vicinity of the road improvement site, old unlined landfills, or abandoned industrial and agricultural operations with practices leading to soil and/or groundwater contamination. It has been reported by NCDOT in RNS#7406 that in several situations, subsurface utilities including drainage pipes are present in environments where soil and groundwater contamination exists. The effect of the contamination on the integrity and durability of the subsurface drainage pipes and gaskets is largely unknown but such integrity is a function of the type of contamination and the physicochemical properties of pipe, gasket, and other materials forming a given subsurface utility. In addition to the variety of contaminants and concentrations that prevail at these sites, a wide variation in soil geological formation and hydrogeological conditions exist across the state. While in general the groundwater table is expected to be high in the North Carolina (NC) Coastal Plain Physicographic region, it is expected to be deep in the Mountains. On the other hand, it is more likely that groundwater will feed surface water springs and streams in the NC Mountains. Therefore, a "typical" contaminated site is difficult to define. Accordingly, the adverse effect of subsurface contamination on drainage pipes and the efficacy of hardening measures are usually developed on a site-specific basis. Objectives of this project are to (i) catalog the prevalent types of contaminants and their concentrations at sites where subsurface utilities are installed, (ii) document the typical materials used in subsurface utilities and drainage systems in NC, (iii) quantify the effect of contaminants on the long-term durability of commonly used hardened and unhardened materials that are used in construction of subsurface utilities, (iv) quantify the rate and extent of migration of common contaminants through concrete utilities, (v) recommend effective hardening methods for different materials, and (vi) provide documentation and better understanding of the effect of subsurface utility installation on the contamination of groundwater and surface water through simulation of several typical scenarios. These objectives will be achieved through a multidisciplinary effort of the research team as outlined in the project plan. Objective (i) will be achieved through examination of available data from the NC Department of Environmental Quality (DEQ). If necessary, limited sampling of groundwater and surface water will be conducted in consultation with NCDOT in areas where subsurface utilities have been installed and contamination is known to exist or expected to occur. Objectives (ii), (iii), and (iv) will be accomplished through literature review and accelerated coupon testing in our laboratory. Objective (v) will be achieved by analyzing test results and literature data. Objective (vi) will be accomplished through numerical simulations.
Groups
Honors and Awards
- ASCE Life Member-2024
- Alumni Association Distinguished Graduate Professor, North Carolina State University
- Outstanding Teacher Award, American Society of Engineering Education-Southeastern Region
- Diplomate, Academy of Geo-Professionals, American Society of Civil Engineers (ASCE)
- College of Engineering Recipient- Board of Governors Award for Excellence in Teaching
- Alumni Distinguished Undergraduate Professor
- Alumni Outstanding Teacher Award, North Carolina State University
- Member, Academy of Outstanding Teachers, North Carolina State University
- Outstanding Teacher Award, North Carolina State University
- Kimely-Horn Faculty Award
- Fellow, American Society of Civil Engineers (ASCE)
- Edmund Friedman Professional Recognition Award, American Society of Civil Engineers
- Excellence in Teaching Award, Dept. of Civil Engineering, West Virginia University
- Outstanding Teacher Award, College of Engineering, West Virginia University
- Outstanding Faculty Advisor, ASCE Student Chapter, West Virginia University
- Outstanding Researcher Award, College of Engineering, West Virginia University
- West Virginia Young Engineer of the Year , American Society of Civil Engineers (ASCE)
- Eminent Engineer, Tau Beta PI - National Engineering Honor Society
- First Place, Student Technical Paper Contest, 3rd US Conf. on Earthquake Engineering
- Outstanding Teaching Assistant, North Carolina State University