Benjamin Shane Underwood
Associate Head for Undergraduate Programs
Fitts-Woolard Hall 3315A
Bio
Dr. Shane Underwood is a Professor, University Faculty Scholar, and Associate Head for Undergraduate Programs in the Department of Civil, Construction, and Environmental Engineering. Prior to this appointment he was an Assistant Professor in the School of Sustainable Engineering and the Built Environment within the Ira A. Fulton Schools of Engineering at Arizona State University. He received his doctorate degree in Civil Engineering from North Carolina State University December of 2011. Dr. Underwood teaches courses on pavement engineering and infrastructure materials and has received multiple awards for teaching and service.
Education
Ph.D. Civil Engineering North Carolina State University 2011
M.S. Civil Engineering North Carolina State University 2006
B.S. Civil Engineering North Carolina State University 2003
Area(s) of Expertise
Dr. Underwood's research and education program focuses on materials and their interaction with society and the natural and built environments. This program pursues research, education, and service activities that evaluate, inform, and shape the science of these interactions, particularly how material decisions influence the use, function, and impact of civil infrastructure. As he and his students pursue these questions both broadly (by expanding the scope or significance of impact assessment) and deeply (by building the methods and models to better explain the physical behaviors that occur) new findings are integrated into his teaching. He and his students pursue this research in two ways. First, they use experimental mechanics and constitutive models to evaluate and understand the behavior of infrastructure materials, principally asphalt concrete. This knowledge is then exploited to better engineer the materials and/or structures to achieve sustainability and resiliency. Second, they use emerging perspectives and analytical tools to assess the role of social constructs in governing the impact of technological advances on infrastructure. Specific attention is given to pavements and with a focus on resilience due to a recognition that pavement engineering and indeed engineering of infrastructure in the built environment is facing great uncertainty.
Publications
- Development of a virtual mean texture depth estimation method for asphalt concrete using 3D surface scans , INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING (2025)
- Evaluation of Dense-Graded Asphalt Surfaces Texture Indexes Isotropy and 2D-3D Equivalency , JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS (2025)
- Surface wave based characterisation of inverted and conventional asphalt pavements , INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING (2025)
- A framework to identify fatigue failure of asphalt binders under multiple aging levels using linear amplitude and time sweep testing , International Journal of Pavement Engineering (2024)
- A state-of-the-art review of asphalt mixture fracture models to address pavement reflective cracking , Construction and Building Materials (2024)
- Asphalt Pavement Reflective Cracking Model to Better Address Rehabilitation: Phase I Report , (2024)
- Asphalt binder characterization using waveform-based viscoelastic measures and time-temperature superposition principle under large strains , CONSTRUCTION AND BUILDING MATERIALS (2024)
- Assessment of Conventional and Engineered Surface Asphalt Mixtures Through Empirical and Fundamental Performance Tests , Transportation Research Record: Journal of the Transportation Research Board (2024)
- Characterization of binder, mastic, and FAM film thickness within asphalt concrete mixtures , Construction and Building Materials (2024)
- Current Pavement Preservation Techniques in the United States , 21st Highway and Airport Pavement Engineering, Asphalt Technology, and Infrastructure Conference (2024)
Grants
Infrastructure resilience has become an important topic for North Carolina. Recent hurricanes and other extreme events have caused more than $450 million in direct damage to the State���s transportation infrastructure and innumerable indirect damage from losses in mobility, additional travel times needed while repairs were made, and other impacts. Though the North Carolina DOT (NCDOT) has been conducting studies to understand vulnerability and risk to its assets, most of these have focused on hydraulic structures and/or pavements that were located on top of, or adjacent to, hydraulic structures. In light of these issues, the proposed research plan will seek to achieve five objectives. 1) Provide a better understanding of the failure pathways and factors contributing to pavement failures during past events. 2) Identify the gaps and critical data linkages that hinder the use of existing NCDOT information to support resilience-based planning with respect to pavements. 3) Develop a framework for identifying and prioritizing road segments as part of resilience-based improvement plans/programs. 4) Develop a design feature selection and repair strategy decision tree that considers specific features, planned needs, sustainability considerations, and possible extreme event stressors at a given pavement site. 5) Identify data gaps and critical data linkages that hinder the use of existing NCDOT information to support this effort and provide recommendations to improve data collection and information to support resiliency efforts. The primary outcome of the proposed research will be a design feature selection and repair strategy decision tree that considers specific features, planned needs, sustainability considerations, and possible stressors at a given pavement site.��Another product will be identification of critical data linkages that hinder the use of existing NCDOT information to support this effort and recommendations to improve data collection and information to support resilience efforts. This research will provide NCDOT personnel with the tools necessary to take a proactive approach to inform pavement resilience project identification and prioritization based upon the as-built and current condition of roadway segments. It will also identify the design and repair options that could be used to improve the pavement performance during and after extreme events such as hurricanes. This research will also improve specifications that are used for design or repair so that pavements are better able to withstand extreme event damage and/or recover more quickly and/or the damage that does occur has a more limited impact on safety and mobility.
The objective of this task order is the continued advancement of the performance specification continuum for BMD+ and mechanistic pavement design. Advancement of efforts will be accomplished by the following tasks: 1. Development of Level 1 BMD+ methods and threshold values for Level 2 BMD index parameters (Sapp and RSI) 2. Performance testing for transfer functions to support BMD+ and advanced pavement design 3. Comparison of BMD and BMD+ testing for mixture performance comparisons and analysis 4. Advance in a collaborative approach for FlexPAVE pavement design methods 5. BMD+ training and parallel field construction projects 6. Interim stakeholders status meeting 7. Create a system of tools including guidelines and sample specifications for agencies to transition from their traditional standard specifications to BMD+ specifications using performance tests and advanced mechanistic pavement design
The vast majority of asphalt mixtures produced in North Carolina contain recycled materials, including Reclaimed Asphalt Pavement (RAP) and/or Recycled Asphalt Shingles (RAS). This research project seeks to identify how asphalt plant processing and stockpiling variables affect the consistency of RAP and RAS materials with time in a given stockpile and across different plants in North Carolina. Furthermore, the project will assess how changes in recycled material properties affects asphalt mixture performance is needed to understand the practical implications of variability. Collectively, the results of this research will inform improved measures within the NCDOT specifications to mitigate variability of recycled material sources and, in turn, improve the reliability of asphalt mixture performance.
Vehicle collisions and increases in collisions rates during wet conditions are one of the major safety concerns for the NCDOT. Collision rates increase when the surface is wet because skid resistance reduces under these conditions. In recent years the NCDOT has conducted different research efforts to characterize the friction and texture characteristics of North Carolina mixes. Most recently, NCDOT RP 2020-11 quantified the impact of new asphalt overlays on friction and texture values and RP 2022-05 has been evaluating preliminary friction and texture performance models. Both projects have evaluated the effect of mixture compositional factors on the short- and long-term performance of both friction and texture. Friction and texture observations collected in both projects suggest that NCDOT dense-graded mixes have initial low texture values because of the fine gradations that are used in the current mix design specifications. Low macrotexture may contribute to reduced skid resistance values in the field. Revising the existing asphalt mixture categories to solve these problems may result in many practical issues due to contractor practices, familiarity with mixture designs, and unintended consequences to durability. On the other hand, a preliminary evaluation of the surface mixture guidelines in South Carolina and Virginia shows important differences with the NCDOT current practice. Both state DOTs use coarser gradations for dense-graded surface mixtures and have SMA mixes as an option to use in roads with high traffic volumes and high friction demand. Therefore, a research study is needed to identify alternative structural mixture designs that can be specified to ensure adequate friction and texture in North Carolina. The primary outcome of the proposed research will include new or improved asphalt mix design specifications updated to include new mixture categories that could be selected by NCDOT pavement designers in situations that warrant higher surface texture and/or friction. Given the existence of specifications for such mixes in other states, it is likely that the recommendations can have immediate impact. These outcomes can be used by the Traffic Safety and Materials and Test Units of the North Carolina DOT, the products of this research will provide immediate indications as to whether pavement mixture design specifications in adjacent states result in asphalt surface mixtures with improved macrotexture and friction.
Current procedures for asphalt mixture design in North Carolina require contractors to conform to volumetric requirements on the air void content, voids in mineral aggregate, and other parameters at a fixed, traffic- and layer-specific compaction effort. The presumption in this case is that the mixtures produced under the same guidelines will have similar properties. However, recent findings by NCSU suggests that this presumption may be inaccurate and may have substantial implications in the design, performance, and management of roadways. This research study will address this issue by: i) identifying the most appropriate durability related testing protocol for incorporation into mix design and quality assurance/control operations; ii) establishing initial threshold limits for the test identified; iii) developing a draft balanced mix design (BMD) procedure for North Carolina, and iv) developing a draft protocol for integrating the identified performance tests into quality assurance and quality control operations. The primary outcome of the proposed research will be a test method and procedure that the NCDOT can deploy in asphalt mixture design and production to ensure that the mixtures delivered in the state have an acceptable level of performance.
In 2018, an initial effort was undertaken by Virginia Transportation Research Council (VTRC) to provide benchmark indications of performance for a number of ����������������typical / everyday��������������� asphalt surface mixtures produced and sampled in 2015 in anticipation of this new approach. Three fast, simple, practical, but empirical performance tests addressing different modes of distresses were selected for use as part of the BMD method. The selected tests were Cantabro test, the Indirect Tensile cracking test (IDT-CT), and the Asphalt Pavement Analyzer (APA) rut test for assessing durability, cracking and rutting potentials of asphalt mixtures, respectively. VDOT has been so far extensively building upon its BMD initiative based on Approach I, the empirical tests (for rutting and cracking) and associated thresholds have never been verified through the use of Approach II. This study would provide an opportunity to: ��������������� Establish links between laboratory performance-related asphalt mixtures empirical and fundamental properties (on one hand) and M-E structural pavement design (on the other hand). This is a vital step to a practical integration of mixture design and structural design. ��������������� Verify (or refine) the performance thresholds on the basis of mechanistic approach, rather than empirical approach. ��������������� Establish and verify initial traffic-based performance thresholds for the empirical tests tied /correlated to the fundamental tests and mechanistic analyses. In order to fulfill the objectives of this research study, the following six primary tasks are proposed. First, the existing literature on similar efforts by other state agencies will be summarized and reported. Then, the research team will conduct a laboratory experimental program with three major parts: material selection (18 different mixtures), performance testing on reheated mixtures, and performance testing on extracted and recovered binder. NCSU researchers will assist in all three tasks, but take the primary lead in the performance testing on asphalt mixtures and binders. Third, the laboratory measured engineering and performance properties will be coupled in a full mechanistic analysis framework. This is a vital step to quantify and effectively evaluate the impact of using BMD asphalt surface mixture on the overall performance of pavements. This will include the use of AASHTOWare��������� Pavement ME and FlexPaveTM. The mechanistic-based simulations will be executed using real existing and most commonly encountered pavement structures in Virginia (referred to herein as pseud-hypothetical pavement structures). NCSU researchers will lead the analysis of this task and carry out the requisite simulations. Fourth, links and correlations between BMD and mechanistic-based fundamental tests. In Task 5, NCSU researchers will VDOT personnel at the VTRC (or other approved site in Virginia) to perform AASHTO TP 132 (dynamic modulus), AASHTO TP 133 (cyclic fatigue) and AASHTO TP 134 (stress sweep rutting). In Task 6, a final report will be developed. VTRC personnel will lead this effort, but NCSU researchers will support the task.
The Federal Highway Administration (FHWA) has developed mechanistically based performance comparison models to evaluate the cracking and rutting performance of asphalt pavement mixtures. These models form the basis of an asphalt performance comparison development effort and are being implemented into a FlexPAVETM software program for analyzing pavements and predicting distress. In this research study, NCSU will assess current asphalt pavement cracking models that can be applied to reflective cracking and further research, develop, calibrate, train, and validate a mechanistically based asphalt pavement reflective cracking model that is consistent with existing FlexPAVETM methodology and performance tests; incorporate it into the FlexPAVETM software and the FlexMATTM and FlexMIXTM data analysis tools, and assess and incorporate run time improvements to the model, software, and analysis tools.
Vehicle collisions and increases in collisions rates during wet conditions are one of the major safety concerns for the NCDOT. Collision rates increase when the surface is wet because skid resistance reduces under these conditions. The precise amount of loss is dependent on many factors, but the consensus among experts is that pavement friction and macrotexture are important factors that affect the skid resistance and changes in this resistance under wet conditions. This research will achieve three objectives; 1) characterize friction and texture performance models, 2) develop friction and texture performance thresholds, and 3) identify asphalt mixture compositional factors (gradation, asphalt content, presence of modified versus non-modified asphalt, etc.) that affect the as-constructed macrotexture and friction. The primary outcome of the proposed research will be an initial set of performance models that can be used to assess immediate and potentially long-term friction/macrotexture issues. The research will also produce a set of threshold limits for friction/macrotexture where investigatory and intervention steps need to be taken to control for safety. Finally, the research will produce information on the mixture design factors that contribute to higher or lower friction/macrotexture. These outcomes can be used by the Traffic Safety and Materials and Test Units of the North Carolina DOT to predict and manage friction and texture performance on roadways and to understand when measurements represent a potential hazard exists. It will also be used to help identify asphalt mixtures with potential friction and macrotexture issues and develop better guidelines, specifications, and operational controls (if necessary) for recently overlaid pavements. This could lead to reduced collision rates on these pavements. Thus, this research will result in overall improved procedures for flexible pavement overlay operations.
The objective of this research is to develop guidance to integrate the performance predictive capabilities of the PASSFlexTM software and its suite of tools (FlexPAVETM version 2.0, FlexMATTM, and FlexMIXTM) within a statistically sound QA system in a PRS framework. The research shall address: (a) the use of the cyclic fatigue Sapp and SSR allowable traffic for rutting (ATR) index test parameters, index thresholds, and acceptance limits in support of performance engineered mixture design (PEMD) approaches and to facilitate further implementation of the tests and performance predictions, (b) material selection and mixture design changes that can impact the test results (cyclic fatigue, SSR, and their index parameters) and trends associated with owner agency specified performance thresholds, and (c) the major elements of a QA system (per TRB E-Circular 235, Glossary of Transportation Construction Quality Assurance Terms (http://onlinepubs.trb.org/onlinepubs/circulars/ec235.pdf) and associated buyer/seller and payment risks.
In this research study, NCSU will design, conduct, and provide recommendations relating to a two-phase ruggedness and interlaboratory study on a test method that has been identified as critical to asphalt pavement performance and design practice. AASHTO TP 132 (2019) Standard Method of Test for Determining the Dynamic Modulus for Asphalt Mixtures Using Small Specimens in the Asphalt Mixture Performance Tester (AMPT) has been developed, refined, and recently published as an AASHTO provisional standard; a statistically sound refinement procedure is needed to facilitate widespread adoption and implementation. Not only can this standard be used to obtain inputs to the AASHTO PavementME pavement structural analysis software, the standard is being used in ongoing FHWA efforts as part of a performance-related specification framework which seeks to increase pavement life through fundamental testing and predictive relationships. AASHTO TP 132 is of interest because of its fundamental nature, determination via the AMPT standardized equipment, and its ability to model and predict material performance over a wide range of loading and climate conditions a pavement may experience; resulting in better performing, safe, quiet, durable, long lasting asphalt roadways. Additionally, a draft practice for preparing small-scale specimens has been developed and published as AASHTO PP 99 (2019) Standard Method of Practice for Preparation of Small Cylindrical Performance Test Specimens Using the Superpave Gyratory Compactor (SGC) and Field Cores. This draft practice is of significant interest to the asphalt materials community due to anticipated materials, time, and cost savings associated with preparing and evaluating smaller performance test. NCSU will carry out the following tasks. Task 1 ������������������ Develop final research plans and project schedule ������������������ The proposed plan will be revised based on feedback from the FHWA. Task 2 ������������������ Kickoff meeting ������������������ NCSU will meet with the project panel to review the statement of work and work plans. Task 3 ������������������ Perform work plan and document efforts ������������������ NCSU will carry out the approved work plan by following the appropriate ASTM standard test methods to develop a rugged test method. Task 4 ������������������ Ruggedness study presentations and webinar ������������������ NCSU will present the findings to targeted stakeholders. Task 5 ������������������ Publication ready final deliverables ������������������ the AASHTO standards will be revised into a final form. Task 6 ������������������ Revise work ILS work plan ������������������ NCSU will revise the original work plan from Task 1 based on findings from Tasks 3-5 for conducting the ILS study. Task 7 ������������������ Perform work plan and document efforts ������������������ NCSU will coordinate the ILS according to the approved work plan. This will include identifying participants, sending materials, and analyzing their results statistically. Task 8 ������������������ ILS study presentation and webinar ������������������ NCSU will present their findings to targeted stakeholders. Task 9 ������������������ Publication ready final deliverables ������������������ the AASHTO standards revised in Task 5 will be modified to include repeatability and reproducibility statements.
Infrastructure resilience has become an important topic for North Carolina. Recent hurricanes and other extreme events have caused more than $450 million in damage to the States������������������s transportation infrastructure. In addition to the cost of the infrastructure, the NCDOT spent considerable resources to redesign and repair many elements after each event. A review of the NCDOT records following Hurricane Florence indicates that more than 3,000 disruptions resulted from that event alone. Some of these locations were identical to those damaged during Hurricane Matthew but, the amount of damage was different between the two events, suggesting that DOT strategies were effective. However, detailed quantification of the performance differences have not been completed and thus NCDOT engineers must rely on qualitative and anecdotal evidence as to the effectiveness of various strategies. Though many agencies have studied the topic of infrastructure resilience to extreme events, the literature suggests that the generalizability of their findings is limited because of the contextual sensitivity of the available strategies. In this case, data on the effectiveness of design and repair strategies within the context of North Carolina is required. Thus, research is needed to identify and evaluate the specific elements of the new infrastructure that positively contributed to the improved performance during Hurricane Florence and those that did not positively contribute. With respect to this need, the proposed research plan will achieve four objectives; 1) evaluate the design process for roadway infrastructure that was repaired following Hurricanes Matthew and Florence, 2) identify the specific elements of the new infrastructure that positively contributed to improved performance during Hurricane Florence, and 3) develop recommendations on design elements that improve the resilience of NCDOT roadways. These objectives will be met with five tasks. 1. The relevant literature on resilient infrastructure and practices for ensuring transportation infrastructure resilience to extreme events will be reviewed and documented. 2. Locations where roadway infrastructure failed during Hurricanes Matthew and Florence will be identified, mapped, and compared. 3. The performance of different maintenance, repair, and reconstruction strategies deployed in the aftermath of Hurricane Matthew will be evaluated and quantitatively assessed. 4. A series of detailed case studies will be performed to identify the design factors and repair/maintenance decisions that led to better performance during Hurricane Florence. 5. A final report summarizing the methodology, results, and recommendations will be prepared The primary outcome of the proposed research will be data on the effectiveness of design strategies used to repair infrastructure following hurricanes specifically and extreme events in general. This knowledge can be helpful to improve the design and repair methodologies to be more robust and resilient against future extreme events. The research will also produce a set of guidelines and recommendations for hydraulic design, repair, and reconstruction that may improve the resiliency of roadway design in North Carolina. The guidelines that results from this research will allow NCDOT engineers to deploy design strategies that are proven to be cost effective in the long run. For example, the primary focus of engineers after the event is restoring mobility. For some cases, once this mobility is restored it may be cost effective to redesign or reconstruct a more robust design so that future events do also cause disruptions. This work will provide evidence as to when and how such major repairs can be effective. The proposed work is significant because it will provide quantified evidence as to the efficacy of existing strategies to provide this long-term effectiveness. Ultimately, the deployment of these strategies can reduce agency costs while also improving roadway resilience to extreme events.
The use of high Recycled Binder Replacement Percentages (RBRs%) in asphalt surface mixtures is increasing. The asphalt binders in recycled materials are generally hardened and embrittled from oxidization and may not fully mobilize and blend with virgin materials. Consequently, high recycled content mixtures may be prone to cracking if appropriate measures to consider this effect are not taken during the mixture design process. The objectives of the proposed research project are to: (1) modify the NCDOT������������������s procedures for the design of surface mixtures containing RAP and RAS to improve performance and (2) modify the NCDOT������������������s specifications to improve the consistency within and across RAP and RAS stockpiles within North Carolina. 1. To achieve these objectives, an operational review will be conducted to identify how contractors process, stockpile, characterize and use RAP and RAS under the current NCDOT guidelines. In addition, relationships between asphalt content and performance will be developed for recycled mixtures sourced from North Carolina. These relationships will be used to identify the maximum virgin binder content allowable and to maximize cracking performance without having the rutting performance fall below a critical performance threshold for each mixture. The collective results will be used to identify appropriate revisions to the NCDOT������������������s current recycled mixture design procedure to ensure reliable performance. The research results will lead improved specifications that will facilitate the design of better-performing surface mixtures containing recycled materials. These specifications will improve the durability of NCDOT pavements and consequently decrease life-cycle costs.
In this research study, NCSU will conduct experiments and analysis to improve the AASHTO TP 133 protocol by incorporating more scientifically based temperature selection guide and providing guidance on the maximum air void content for specimens that are subjected to this standard test method. In addition, NCSU will update the FlexPAVETM software to incorporate seasonal effects into the base layer and the user guides for improved usability. This research supports ongoing FHWA efforts as part of a performance-related specification framework which seeks to increase pavement life through fundamental testing and predictive relationships. Recent developments in these performance tests, adoption of standards, FlexMATTM, FlexMIXTM, and FlexPAVETM provide highway agencies and asphalt paving community with a unique opportunity to use performance tests and mechanistic models for asphalt PEMD, asphalt pavement design, and performance related specifications to integrate these different phases in pavement construction using the same test methods and mechanistic principles. These tools help link material characteristics from testing with mechanistic models to predict performance; and ultimately identify how to best design, construct, and accept a pavement. NCSU will carry out the following tasks. Task 1 ������������������ Develop final research plans and project schedule ������������������ The proposed plan will be revised based on feedback from the FHWA. Task 2 ������������������ Kickoff meeting ������������������ NCSU will meet with the project panel to review the statement of work and work plans. Task 3 ������������������ Perform work plan and document efforts ������������������ NCSU will carry out the approved work plan by following the appropriate ASTM standard test methods to develop a rugged test method. Task 4 ������������������ Draft Final Revised FlexPAVETM Software, Installation, and User Guides ������������������ NCSU will update the user interface, installation guide, and user guide for the FlexPAVETM software. Task 5 ������������������Presentation and webinar ������������������ NCSU will present their findings to targeted stakeholders. Task 6 ������������������ Publication ready final deliverables ������������������ the reports will be revised and finalized and AASHTO standards will be revised into a final form.
In 2007, the Virginia Department of Transportation (VDOT) introduced specifications to allow higher percentages of reclaimed asphalt pavement (RAP) (i.e., up to 30%) in hot-mix asphalt (HMA) surface mixtures without adjustment of the virgin binder grade. The increased use of RAP was expected to result in a lower cost of produced asphalt mixtures given the continuous rising cost of oil and thus asphalt binders and fuel needed to produce asphalt pavements. By 2013, VDOT had begun to consider the feasibility of allowing the use of surface mixtures containing up to 45% of RAP material. Several trial sections were constructed containing mixtures with 20%, 30%, 40%, and 45% RAP for evaluation (Nair et al., 2019). In general, those trials found that mixtures containing up to 45% RAP could be designed, produced, and constructed if proper procedures are followed. In 2019, the research team at Virginia Transportation Research Council (VTRC) initiated another study to evaluate field trials of high RAP asphalt mixtures (i.e., more than 40%) designed following the Balanced Mix Design (BMD) special provision for VDOT������������������s surface mixtures. The primary concern with such mixtures has been that the use of high percentage of RAP will overly stiffen mixtures; making them more brittle and prone to premature cracking. The use of high percentage of RAP can lead to numerous construction and performance issues including, but not limited to, compactibility and workability in cool weather, low-temperature cracking with accumulation of thermally induced stresses, fatigue cracking and micro damage accumulation leading to crack initiation and propagation with repeated loading, reflection cracking with repeated loading and daily / seasonal thermal stresses, and raveling with subsequent aging or moisture damage. The challenges arising from the use of high RAP content mixtures can be addressed through the use of softer binders or additives such as recycling agents (RAs). These additives were utilized in HMA in the early period of widespread recycling in the 1970s and 1980s for the purpose of realizing three types of benefits: environmental, economic, and engineering. The use of RAs holds promise as long as there is a proper understanding of how effectively they restore binder rheology and how that effectiveness evolves with aging of mixtures in the laboratory, making them proper additives to be incorporated in mixtures to be placed in field. Hence, there is a need for an engineered framework to evaluate RAs in terms of their stiffness and cracking resistance when incorporated into the binder blends of corresponding mixtures. Currently, there are no unique and / or detailed handy guides or specifications that outline a framework to evaluate acceptability of RAs in the state of Virginia. Therefore, this study aims to identify and / or develop a testing protocol to evaluate the effectiveness of RAs in alleviating the brittleness of high RAP asphalt mixtures. In addition, a performance-based parameter(s) with its threshold limits / criteria will be identified or developed to accept or reject a certain product (i.e., recycling agents). Both objectives will facilitate responsible use of innovative materials as part of Virginia������������������s Balanced Mix Design (BMD) initiative. In this study, NCSU researchers will conduct experiments on asphalt binder, asphalt from reclaimed asphalt pavement (RAP), rejuvenator agents, mortars, and asphalt mixture.
North Carolina current allows two basic types of pavement design on NCDOT roadways; 1) those whose structural capacity comes primarily from asphalt concrete (flexible pavements) and 2) those whose structural capacity comes primarily from portland cement concrete (rigid pavements). These designs have been used successfully in many applications throughout the State; however, they utilize a large amount of relatively expensive and difficult to produce materials (asphalt concrete and portland cement concrete). A third technique, inverted pavement design that requires less of these materials and is purported to provide equivalent or superior performance is not currently allowed with the NCDOT specifications. Inverted pavements consist of a 2 - 3.5-inch asphalt concrete surface, supported by a 6 ������������������ 10-inch layer of unbound aggregate base and then by 8 - 12 inches of a cement treated subbase. Literature and experience have shown that these pavements can be designed and used in many applications at a substantial cost savings. However, there are many unknowns when directly adopting design specifications from elsewhere as local materials, practices, and experience may not be fully accounted for. Thus, there exists a need to gain state specific experience in the engineering and performance of these structure before their adoption can be considered.
General circulation models for the global climate (generally referred to as climate change models),have predicted wide ranging changes over the next several decades. Some of these changes relate to roadways and pavement infrastructure. Researchers and government entities have identified temperatures (extreme and mean levels of change) and precipitation as primary drivers for these impacts. In the proposed work, NCSU will work with the Arizona Department of Transportation to develop long-term climate model data in connection with future heat and precipitation to the year 2100 and beyond. The specific emphasis of the proposed work is on impacts to pavements.
We propose to perform experimentation and analysis to develop AASHTO design compatible structural layer coefficients for mechanically fiber reinforced asphalt concrete (M-FRAC). These studies would be coordinated with a new project from the North Carolina Department of Transportation (NCDOT), which aims to recalibrate the structural layer coefficients for their materials. Other studies have been conducted to calibrate these coefficients, but none have been coordinated with a state transportation agency������������������s own, larger calibration effort. Thus, we believe that the proposed effort, in addition to being somewhat more comprehensive than the previous work, would also carry greater credibility to other state and local highway agencies. The estimated cost for this study would be between $53,014 and $45,003 depending on the contracting mechanism, and the work would be carried out between August, 2019 and May, 2020.
Vehicle collisions and increases in collisions rates during wet conditions are one of the major safety concerns for the NCDOT. Wet collision rates increase because skid resistance reduces under wet conditions. The precise amount of loss is dependent on many factors, but the consensus among experts is that pavement friction and macrotexture are important factors that affect the skid resistance and changes in this resistance under wet conditions. Although the NCDOT actively addresses skid resistance issues as they are identified, a recent study involving a small subset of North Carolina roadways has suggested that wet crash rates may increase after pavements are overlaid. That study concluded that NCDOT needed to consider characterization of both friction and macrotexture as part of its pavement friction measurement and management plan. While the current studies have successfully identified the potential for issues in recently overlaid projects, they did not identify whether these effects are temporary, and if so, how long they may last. In addition, past studies have not been able to identify any specific causative effects that may increase or decrease the impact of overlays on skid resistance. Since the primary change after an overlay is placed is the driving surface, there is a need to better understand how the asphalt mixture composition may affect the overall skid resistance of the roadway under wet conditions.
AASHTO TP 107 enables the practical, mechanistic performance characterization of asphalt concrete using cyclic fatigue testing in the Asphalt Mixture Performance Tester (AMPT). AASHTO TP 107 was initially developed for the use of 100-mm diameter specimens, which yield a single test specimen per gyratory sample. Recently, a modified version of AASHTO TP 107 was proposed for the testing of 38-mm diameter small specimens that improves the efficiency of specimen fabrication and enables the testing of field cores extracted from as-built pavement layers. The objective of the proposed research is to improve AASHTO TP 107 by conducting ruggedness and interlaboratory studies using both small and large specimens. The ruggedness evaluation will identify controllable experimental factors that significantly affect the test results and to establish limits for their control. The interlaboratory study will lead to precision statements that define the repeatability and reproducibility of small and large cyclic fatigue the test results.
The North Carolina Department of Transportation (NCDOT) uses the AASHTO Guide for Design of Pavement Structures 1993 to determine the minimum pavement stiffness that ensures pavement longevity. During design, this stiffness is first determined using an iterative design process, charts, or software. Then, the engineer selects materials and layer thicknesses that provide the required stiffness by summing the contributions of individual layers. The contribution from any given layer is calculated by the product of that layer������������������s thickness and a structural layer coefficient that captures the overall quality and structural benefit of the material. In the NCDOT procedure, the structural layer coefficient for asphalt concrete (AC) is 0.44 (surface and intermediate mixtures) or 0.30 (base mixtures), while other material types are lower, e.g., the structural layer coefficient for unbound aggregate base materials is 0.14. While the NCDOT has had success with these structural layer coefficient values, they are based on a test road constructed and evaluated in one climate zone and with one set of materials. Modern material selection and design have resulted in substantial changes in AC and aggregate base since this time. These improvements have likely resulted in different structural contributions from these materials, which means the structural layer coefficients should be reviewed and possibly changed. Proper characterization of these layer coefficients could result in substantial cost savings to the NCDOT by reducing the required pavement thickness and/or leading to pavements that require less frequent rehabilitation and reconstruction.