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ABSTRACT 
 
In the past decade, the use of probabilistic risk analysis techniques to quantitatively address 
variability and uncertainty in risks increased in popularity as recommended by the 1994 National 
Research Council that wrote Science and Judgment in Risk Assessment.  Under the 1996 Food 
Quality Protection Act, for example, the U.S. EPA supported the development of tools that 
produce distributions of risk demonstrating the variability and/or uncertainty in the results.  This 
paradigm shift away from the use of point estimates creates new challenges for risk managers, 
who now struggle with decisions about how to use distributions in decision-making.  The 
challenges for risk communication, however, have only been minimally explored.  This 
presentation uses the case studies of variability in the risks of dying on the ground from a 
crashing airplane and from the deployment of motor vehicle airbags to demonstrate how better 
characterization of variability and uncertainty in the risk assessment lead to better risk 
communication.  Analogies to food safety and environmental risks are also discussed.  This 
presentation demonstrates that probabilistic risk assessment impacts both risk management and 
risk communication, and highlights remaining research issues associated with using improved 
sensitivity and uncertainty analyses in risk assessment. 
 
Key Words:  variability, uncertainty, risk communication, risk management, probabilistic risk 
assessment 
 
1.0  INTRODUCTION 
 
Risk analysis continues to evolve and mature as a field, with dramatic changes impacting the 
three elements of risk assessment, risk management, and risk communication.  The Reactor 
Safety Study in the mid-1970s (1,2) and related studies in the late 1970s and early 1980s (3-5) 
began a shift toward improved treatment of variability and uncertainty in risk assessment as 
reviewed by Rechard (6).  Since the late 1980s, calls for increased consideration of variability 
and uncertainty in risk assessments combined with significant advancements in computational 
speed and capability motivated a greater shift toward the use of probabilistic risk assessments (7-
14).  Sensitivity analysis is one type of uncertainty analysis that may be used to consider the 
impacts of uncertainty.  Traditional sensitivity analysis is conducted by changing one uncertain 
input at a time and showing how the results of a model change over the range of possible values 
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of that one input.  However, two-way sensitivity analysis is also common (e.g., varying two 
inputs at the same time and plotting the results in a two-dimensional space), and as an analyst 
moves toward a larger number of inputs allowed to vary (and dimensions required to present the 
results), the sensitivity analysis essentially transitions into a probabilistic uncertainty analysis 
(typically using Monte Carlo simulation methods).  Numerous references discuss sensitivity 
analysis and uncertainty analysis concepts (e.g., 15-23). 
 
The importance of explicitly including consideration of variability and uncertainty in risk 
assessments arises directly from their ramifications in risk management (24,25).  While the 
concepts of variability and uncertainty may be easily confused, they remain distinct concepts 
defined within a decision-making context (25).  Variability refers to real and identifiable 
differences between individuals within a population addressed by the risk assessment.  For 
example, variability might refer to differences between individual Americans or individual ships 
within a fleet or individual facilities that all produce the same commodity or individual crops or 
batches of a food.  True variability does not disappear with better measurement.  The existence 
of variability in the population implies that a single action or strategy may not emerge as optimal 
for each of the individuals, and consequently any decision made will go too far for some and not 
far enough for others.   
 
Uncertainty differs significantly from variability.  Uncertainty arises from our lack of perfect 
knowledge, and it may be related to the model used to characterize the risk, the parameters used 
to provide values for the model, or both.  In some cases, we can reduce uncertainty by obtaining 
better information, but this may not always be possible.  Uncertainty implies that we might make 
a non-optimal choice because we may expect one outcome but something quite different might 
actually occur.   
 
In the past decade, the use of probabilistic risk analysis techniques to quantitatively address 
variability and uncertainty in risks increased in popularity as recommended by the 1994 National 
Research Council (NRC) that wrote Science and Judgment in Risk Assessment (24).  The NRC 
emphasized the different ramifications of variability and uncertainty in risk by stating that: 
“Uncertainty forces decision makers to judge how probable it is that risks will be overestimated 
or underestimated for every member of the exposed population, whereas variability forces them 
to cope with the certainty that different individuals will be subjected to risks both above and 
below any reference point one chooses” (Ref. 24, p. 237).  The NRC also challenged the U.S. 
EPA to “…develop the ability to conduct iterative risk assessments that would allow 
improvements to be made in the estimates until (1) the risk is below the applicable decision-
making level, (2) further improvements in the scientific knowledge would not significantly 
change the risk estimate, or (3) … the stakes are not high enough to warrant further analysis” 
(Ref. 24, p. 14).  The NRC report’s emphasis on the importance of better uncertainty analyses 
emerged at a time when an increasing number of risk analysts discussed the use of Monte Carlo 
techniques to propagate uncertainties in risks and made distinctions between variability and 
uncertainty in risk.  However, as noted by Finkel (26), who suggested that ”…[practitioners of 
quantitative uncertainty analysis] have risked making ourselves akin to mousetrap salesmen who 
beleaguer the consumer with engineering details before he even understands that if the gadget 
works, the result will be a house free of mice,” the analysts appeared to be primarily talking 
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amongst themselves and failing to adequately communicate the benefits of better analyses to risk 
managers and the public. 
 
In 1996, the Food Quality Protection Act (FQPA) led to sweeping changes in the assessment and 
management of food, microbial, and pesticide risks and to expectations that analysts would 
assess aggregate and cumulative risks that they did not know how to estimate, and which they 
are still trying to figure out how to estimate today, nearly five years later.  Nonetheless, the 
FQPA opened the door for increased use of probabilistic risk assessment methods, and the U.S. 
EPA supported the development of tools that produce distributions of risk demonstrating the 
variability and/or uncertainty in pesticide-related risk assessment results and issued guidelines 
related to the use of these tools.  While the effort remains far from complete, considerable 
analytical progress has been made, including the important recognition that time matters in the 
context of assessing risks and assuming lifetime average numbers for model inputs could lead to 
misleading results. 
 
The production of probabilistic risk assessment results that represented a paradigm shift away 
from the use of point estimates created new challenges for risk managers.  Instead of comparing 
single point estimates to “bright lines” of risk, risk managers must now struggle with decisions 
about how to use distributions in the decision-making process (25).   Clearly recognizing 
variability in a population leads to questions about who to protect and how much, questions that 
look a lot different in nature than the question that they replaced: “Is this risk above the bright 
line or not?”  While appreciation of the artificial nature of the “bright line” criterion and the 
dramatic oversimplification of the risk assessment required to derive a point estimate might 
provide some reassurance of the importance of using a probabilistic analysis to characterize the 
variability and uncertainty in the risks, it does not make the job of picking criteria to determine 
the “acceptability” of risk any easier.  Following much debate, the U.S. EPA decided to make the 
99.9th percentile individual its “threshold of regulatory concern” when assessing acute dietary 
exposure to a pesticide residue (with the expectation that a sensitivity analysis will be conducted, 
as appropriate, to properly gauge the “reasonableness of the upper-end percentile estimates”), but 
it did not select a percentile goal for chronic exposures due to limitations in the existing food 
consumption data (27).   
 
While risk managers are now beginning to grapple with the challenge of dealing with 
probabilistic risk assessment results, the challenges for risk communication have only been 
minimally appreciated or explored.  This paper extends two probabilistic risk assessment case 
studies to explore what happens when the results meet risk management and risk communication.  
The first case study explores the risks of dying on the ground from a crashing airplane, which 
Goldstein et al. (28) proposed as a good risk communication tool and Thompson et al. (29) 
recently reanalyzed using probabilistic methods.  The second case study focuses on the 
deployment of motor vehicle airbags, which Graham et al. (30) assessed in the context of a cost-
effectiveness analysis and which Thompson et al. (31) explored to identify the analytical errors 
that occurred in early estimate of the benefits of airbags and Thompson et al. (32) extended to 
consider the implications for cost-effectiveness analysis.  These examples demonstrate how 
better characterization of variability and uncertainty in the risk assessment may lead not only to 
better risk management, but also to better risk communication.  Following the case studies, the 
discussion explores some analogies to food safety and environmental risks and highlights 



 4

remaining research issues associated with using improved sensitivity and uncertainty analyses in 
risk assessment for better risk management and risk communication. 
 
 
2.0  LEARNING FROM THE PAST 
 
2.1  The Risk to Groundlings from Crashing Airplanes 
 
In 1992, Goldstein et al. (28) first estimated the risk of an American “groundling” dying due to 
crashing airplanes.  Using a very simple model, they estimated the risk using a point estimate 
approach to find an average annual risk of 6 x 10-8, and by multiplying this by 70 they estimated 
a lifetime risk of 4.2 x 10-6.  Goldstein et al. (28) emphasized that this risk might be very useful 
in the context of risk communication because: (i) it is a manmade risk (ii) arising from economic 
activities (iii) from which the victims derive no benefit and (iv) exposure to which the victims 
cannot control.  While some of these criteria may be arguable (e.g., people living near airports 
can voluntarily move or they may derive some economic benefits from lower rents or housing 
prices or less car travel required to get to the airport if they fly frequently), these factors probably 
do make this risk generally one that is a good one for comparison to other technological risks 
with similar factors.  Since this point estimate of lifetime risk exceeded the very commonly used 
“bright line” risk management threshold of 1 x 10-6, Goldstein et al. (28) suggested it might be a 
useful risk communication tool, and in fact it has been used (33-35).  Unfortunately, however, 
the analysis did not consider variability or uncertainty in the risk estimates or any sensitivity 
analysis.   
 
Thompson et al. (29) recently reanalyzed the risks to groundlings from airplanes using more 
recent data from the National Transportation Safety Board and also explicitly characterized the 
variability and uncertainty in these risks using a geographical information system approach to 
modeling the population around airports.  Following the approach used by Goldstein et al (28) 
and simply updating the data to reflect current information, the results suggest that the average 
annual risk is now 1.2 x 10-9, which becomes 9 x 10-7 when multiplied by 70 and which falls 
below the risk management “bright line” threshold of 1 x 10-6.  While this result alone is 
interesting because it shifts the point estimate from above 1 x 10-6 to below that level, this 
average result still fails to consider the variability and uncertainty in the risks.  In the analysis of 
the variability and uncertainty of this risk, Thompson et al. (29) find that the exposure to 
groundling fatality risk varies by about a factor of approximately 100 in the spatial dimension of 
distance to an airport, with the risk declining rapidly outside the first 2 miles around an airport.  
Figure 1 shows the estimates of the current annual risks as a function of distance away from the 
airport for the population.  Figure 2 shows the upper tail of the cumulative distribution. 
 
Several key implications of this analysis emerge.  First, from a risk management perspective, the 
risks of planes killing people on the ground are very small, and for most of the population that 
lives greater than a mile or two from an airport, the annual risks are below 1 x 10-8.  Given these 
remarkably low levels for most people, the lack of public concern about the risks of planes 
falling out of the sky and killing people on the ground is not surprising.  Second, even for this 
very small risk, approximately 3% of the U.S. population experiences an annual risk that exceeds 
1.5 x 10-8  (which when multiplied by 70 leads to a lifetime risk estimate exceeding 1 x 10-6).   
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 Figure 1.  Variability of the risk of groundling fatalities in the dimension distance to an 
airport for the Top100, Top250, and Top2250 airports (Source: Ref. 29, Figure 7). 

 
 
 

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0.8 0.85 0.9 0.95 1

Percentage of the population

Top100

Top250

Top2250

 
Figure 2.  Upper percentiles of the estimated risks for the entire population 
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Hypothetically, if we were to apply a 99.9th percentile “threshold for regulatory concern” to this 
risk (recognizing that it is a “chronic” risk), then that might lead to some consideration of actions 
that could be taken to reduce this risk, at least for the people who live close to the airport.  
Airport authorities do benefit economically from their activities that appear to impose heightened 
risks to nearby residents and consequently remedial, and/or compensatory measures might not 
seem inappropriate based on that risk management criterion.  However, several limitations in this 
analysis lead to uncertainty in the results.  Specifically, Thompson et al. (29) assumed that 
characterizing the variability in risk as a function of distance to the airport would suffice; 
however, greater resolution of this variability could be obtained by considering the distance to 
runway flight paths, which would better incorporate the specific dynamics at each individual 
airport.  Second, Thompson et al. (29) relied on the use of Census data to estimate the number of 
people living within a certain distance of the airports and ignored mobility in the population by 
using the resident population at that distance as the denominator in the risk assessment.  Thus, 
the results give the hypothetical risk of someone remaining at distance d during an entire year, 
and any given individual will exhibit diurnal and seasonal displacements that may heighten or 
reduce the risk in Figure 2.  Finally, considerable uncertainty arises in extrapolating the annual 
risks to lifetime risks.  When we look at this particular case, we see that airplane travel risk 
reduction activities including better plane design and air traffic control continue to reduce the 
chances of collisions and make airplanes safer.  However, the increasing size of the population, 
the number of people traveling by plane, and the trend toward urbanization may all lead to 
increases in the groundling risks.  Airplane travel 70 years ago was very uncommon, and the 
groundling risk estimates for that period in American history would probably have been much 
lower than the estimate given by Thompson et al. (29).  Similarly, we can only guess how 
airplane travel will change in the next 70 years, just as we can only guess that life expectancy in 
70 years may be higher (e.g., it is now approximately 75 years).  Further, we know that people 
are highly mobile and that the probability of living in one place for an entire lifetime is very 
small.  Thus, extrapolating the current annual risk numbers to a lifetime of 70 years introduces a 
great deal of uncertainty into the analysis.  In fact, the approach of multiplying the distribution 
obtained for the annual risk by 70 years implicitly assumes that the distribution will not change 
over time and ignores the fact that uncertainty about the current distribution being representative 
of future years increases with the number of years.  This suggests that going from the distribution 
that shows variability in annual risks to the one that shows lifetime risks would require another 
dimension that would convey the uncertainty, which should be expected to get wider as the 
length of time included in the extrapolation increases. 
 
From a risk communication perspective, these results provide an important insight that is 
completely lost in the average risk estimate.  They show that while the risk for most people is 
very small, so small that many people would consider it to be negligible, the risk is not zero for 
anyone; and for the small percentage of the population that lives near airports, the risks appear to 
exceed the commonly used risk management criterion of one-in-a-million if extrapolated to a 
lifetime assuming that people stay in one place for their entire lives.  Using the average result for 
the entire population as suggested by Goldstein et al. (28) in the context of risk communication is 
very misleading, because it suggests that the risks are larger for the entire population than they 
really are and it ignores the fact that some people are at what some might consider a significantly 
elevated risk.  In this case, doing a proper uncertainty or sensitivity analysis is critical to 
accurately characterize the risks for individuals in the population.   
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2.2  The Risks and Benefits of Airbags 
 
The case of mandatory airbags in motor vehicles also provides an important example of where 
insights from the sensitivity analysis and framing of the issue can lead to very different 
outcomes.  Early evaluations of airbags based primarily on experimental testing and engineering 
judgment made different predictions about the lifesaving benefits of this technology.  The 
National Traffic Highway Safety Administration (NHTSA) estimates from 1977 to 1987 were 
that 9,000 lives could be saved each year if all passenger cars were equipped with airbags (31).  
Now, over a decade later, extensive real-world crash experience led to revision of lifesaving 
estimates downward and NHTSA currently assumes an annual lifesaving of approximately 3,000 
lives each year when the fleet is fully equipped with frontal airbags (31).  Thompson et al. (31) 
pinpointed four major errors in lifesaving forecasts: (1) a large optimistic bias in the estimate of 
airbag effectiveness for unbelted adult occupants; (2) a pessimistic bias in the estimate of the 
number of adult motorists who would wear lap/shoulder belts; (3) a generally pessimistic view of 
the number of occupants who would be at risk of fatal injury and potentially available for 
protection by airbags, and (4) poor appreciation of the unique hazards that airbags pose for 
children under the age of 12.  Graham et al. (30) performed a cost-effectiveness analysis for 
airbags that showed large differences in the cost-effectiveness of the driver and passenger 
airbags, with the passenger airbags being less effective overall in large part because young 
children are more likely to sit in front of a passenger airbag and be killed by it.  This analysis 
included both one-way and two-way sensitivity analyses that showed how the estimates of the 
cost-effectiveness ratios changes as a function of key model inputs.  Recently, Thompson et al. 
(32) performed a retrospective analysis of the cost-effectiveness ratios using a one-way 
sensitivity analysis and quantified the inputs that had the most significant impact on the 
estimated cost-effectiveness of airbags based on the 1984 model inputs compared to the 1997 
model inputs. 
 
Remarkably, for a lifesaving technology, airbags can pose a significant risk, particularly for 
children and small-stature adults.  Current estimates of airbag effectiveness suggest that on net 
airbags kill more children under the age of 10 than they save and that passenger airbags are bad 
for children.  Graham et al. (30) estimated that passenger airbags save 5 to 10 adults for every 
child that they kill.  If we put this in the context of the risk-only management criterion, the 
results clearly demonstrate a problem.  Airbags put approximately 10% of the U.S. population at 
a greater risk of dying in a motor vehicle accident than those members of the population would 
experience in the absence of the airbag, and annual risks of dying in motor vehicle accidents 
already exceed 1 x 10-6.  Again, if we look at this result as a function of how the risks distribute 
in the population, airbags simply could not meet the risk management criterion that they protect a 
99.9th percentile individual given their harmful effect on children who comprise more than .1 
percent of the population.  Even without meeting this criterion, however, airbags may be good 
public policy because they save more lives overall than they take.  One of the interesting ironies 
of airbags is that they were an engineering solution to a behavioral problem (i.e., the fact that 
people were not wearing their safety belts), but given their impact on kids, the engineering 
solution (i.e., airbags) has led to the need for a new behavioral solution (i.e., the need to have 
children ride in the back seat). 
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By explicitly considering the variability in the population, risk management efforts can be 
developed to target reducing the risks for children and small-stature adults, and had this been the 
expectation from the beginning, airbags may have been designed differently in a way that 
avoided the tragic risk trade-offs that have been observed.  For example, campaigns to require 
children to sit in the back seats of motor vehicles could have been implemented sooner, reducing 
the exposure of children to passenger airbags.  Also, airbags could have been “depowered” 
initially, instead of “over designed” as required by the original standard (31).  Recognition of 
variability in the population with respect to how people interact with airbags led the NHTSA to 
change its motor vehicle compliance standards for airbags such that the tests now use different 
sizes of crash dummies instead of simply the large adult male-sized dummy.  
 
Appreciating the variability in the population also clearly impacts risk communication.  Clearly 
simply saying that airbags save approximately 3,000 lives each year fails to capture the 
significant threat that airbags pose to children and small-stature adults.  Once this variability is 
acknowledged, however, opportunities for reducing the risks to those groups may be recognized 
and implemented.  
 
 
3.0  DISCUSSION 
 
These two cases represent examples of risks that are familiar and relatively well characterized.  
The implications of applying a simple, seemingly objective bright-line risk management criterion 
like protecting the 99.9th percentile individual to these cases would appear to be a potentially bad 
idea and should lead to questions about whether the application of such a criterion in any context 
might make sense, particularly based on highly uncertain lifetime risk estimates.   
 
Appreciating the variability in risk should lead to better understanding of the distribution of the 
risks and should increase the opportunities to make changes that can target and reduce risks for 
those people at the highest risk.  Appreciating uncertainties, including uncertainty about 
variability in the population, can lead to appropriate consideration of the option of seeking better 
information, using a value-of-information approach as suggested by the National Research 
Council report Understanding Risk: Informing Decisions in a Democratic Society (Ref. 36, see p. 
110). 
 
While these examples may be categorically different than examples that could be found in the 
context of other risks including pesticide and food-related risks, at a basic level these cases 
would suggest that variability and uncertainty in risks should be explicitly considered and 
addressed to ensure that ignoring them does not mislead either the risk manager or the public.  
Recently the FDA has performed probabilistic risk analyses for a number of pathogens (e.g., 
Foodborne Listeria monocytogenes among selected categories of ready-to-eat foods, Vibrio 
parahaemolyticus in raw molluscan shellfish, Fluoroquinlone resistant Campylobacter attributed 
to the consumption of chicken), as has the USDA (e.g., for E. coli O157:H7 in beef in the U.S., 
Salmonella Enteritidis-infected shell eggs and egg products).  Probabilistic risk assessments are 
also playing a role in the deliberations of the World Trade Organization, and we can expect that 
the number of risk management decisions based on the results of probabilistic analyses will 
continue to grow.  In these cases, the risk managers are now grappling with making decisions 
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and issues that we can expect to see arise include discussion of how to deal with the implications 
of variability in the context of managing risks, particularly as a function of the underlying source 
of the variability (e.g., differences in genetic susceptibility, voluntary and involuntary behaviors, 
etc.).  Clearly more research is needed to improve our ability to effectively implement the 
analytic-deliberative process (36) and to make risk management more iterative. 
 
We have a long way to go in developing effective ways to present the results of probabilistic risk 
assessments and sensitivity analyses to risk managers and to the public and in ensuring that these 
results do ultimately lead to improved risk management decisions.  At a minimum, we must shift 
away from the past practices of using point estimates of risks and benefits and begin to teach 
people that any point estimate probably represents a gross simplification that may ignore 
important underlying dynamics.  Indeed, we will have to find an effective way to get past the 
legacy of the point estimate approach that has left the public believing that we can estimate risks 
exactly with incredible precision (which has sometimes been expressed with far more significant 
figures than justified), and which leads to the perception that when we come back to the public 
with the results of an uncertainty analysis we are now more uncertain than we were when we 
presented the point estimate (even though from an analytical perspective we are typically more 
confident that we understand things better having gone through the probabilistic analysis).  This 
means that we must arm risk communicators with better information about variability and 
uncertainty in the risks that they use for risk comparisons, test different strategies for 
communicating about variability and uncertainty in risk using both qualitative and quantitative 
information, and strive to develop appropriate risk management criterion for risks assessed 
probabilistically. 
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