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ABSTRACT

In the past decade, the use of probabilistic risk analys's techniques to quantitatively address
variability and uncertainty in risks increased in popularity as recommended by the 1994 Nationd
Research Council that wrote Science and Judgment in Risk Assessment. Under the 1996 Food
Quality Protection Act, for example, the U.S. EPA supported the development of tools that
produce didtributions of risk demongtrating the variability and/or uncertainty in the results. This
paradigm shift away from the use of point estimates creates new chalenges for risk managers,
who now struggle with decisions about how to use distributions in decison-making. The
chalenges for risk communication, however, have only been minimaly explored. This
presentation uses the case sudies of varigbility in the risks of dying on the ground from a
crashing arplane and from the deployment of motor vehicle airbags to demonstrate how better
characterization of varigbility and uncertainty in the risk assessment lead to better risk
communication. Andogiesto food safety and environmenta risks are dso discussed. This
presentation demongtrates that probabilistic risk assessment impacts both risk management and
risk communication, and highlights remaining research issues associated with using improved
sengtivity and uncertainty anadlyses in risk assessment.
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1.0 INTRODUCTION

Risk analysis continues to evolve and mature as a field, with dramatic changes impacting the
three dements of risk assessment, risk management, and risk communication. The Reactor
Safety Study in the mid-1970s (1,2) and related studies in the late 1970s and early 1980s (3-5)
began a shift toward improved trestment of variability and uncertainty in risk assessment as
reviewed by Rechard (6). Sincethe late 1980s, calls for increased consideration of variability
and uncertainty in risk assessments combined with sgnificant advancements in computationa
speed and capability motivated a greater shift toward the use of probabilistic risk assessments (7-
14). Sendtivity andysisis onetype of uncertainty analysis that may be used to consider the
impacts of uncertainty. Traditiond sengtivity andyssis conducted by changing one uncertain
input at atime and showing how the results of amoded change over the range of possible vaues



of that oneinput. However, two-way sengtivity andysisis dso common (eg., varying two
inputs at the same time and plotting the resultsin atwo-dimensionad space), and as an analyst
moves toward alarger number of inputs allowed to vary (and dimensions required to present the
results), the sengtivity andysis essentidly trangtionsinto a probabilistic uncertainty andyss
(typicdly using Monte Carlo smulation methods). Numerous references discuss sengtivity
andysis and uncertainty andysis concepts (e.g., 15-23).

The importance of explicitly including congderation of variability and uncertainty inrisk
assessments arises directly from their ramifications in risk management (24,25). While the
concepts of variability and uncertainty may be easily confused, they remain distinct concepts
defined within a decison-making context (25). Variability refersto red and identifiable
differences between individua s within a population addressed by the risk assessment. For
example, variability might refer to differences between individud Americans or individud ships
within afleet or individud fadilities thet al produce the same commodity or individua crops or
batches of afood. True variability does not disappear with better measurement. The existence
of variability in the population implies thet a Sngle action or strategy may not emerge as optimal
for each of the individuas, and consequently any decision made will go too far for some and not
far enough for others.

Uncertainty differs sgnificantly from variability. Uncertainty arises from our lack of perfect
knowledge, and it may be related to the modd used to characterize the risk, the parameters used
to provide vaues for the modd, or both. 1n some cases, we can reduce uncertainty by obtaining
better information, but this may not dways be possible. Uncertainty implies that we might make
anon-optimal choice because we may expect one outcome but something quite different might
actualy occur.

In the past decade, the use of probabilistic risk analys's techniques to quantitatively address
variability and uncertainty in risksincreased in popularity as recommended by the 1994 Nationd
Research Council (NRC) that wrote Science and Judgment in Risk Assessment (24). The NRC
emphasized the different ramifications of variability and uncertainty in risk by sating that:
“Uncertainty forces decison makers to judge how probable it is that risks will be overestimated
or underestimated for every member of the exposed population, wheress variability forces them
to cope with the certainty that different individuas will be subjected to risks both above and
below any reference point one chooses’ (Ref. 24, p. 237). The NRC adso chalenged the U.S.
EPA to “...develop the ability to conduct iterative risk assessments that would alow
improvements to be made in the estimates until (1) the risk is below the gpplicable decision-
making levd, (2) further improvements in the scientific knowledge would not Sgnificantly
change therisk estimate, or (3) ... the stakes are not high enough to warrant further andyss’
(Ref. 24, p. 14). The NRC report’s emphasis on the importance of better uncertainty analyses
emerged at atime when an increasing number of risk analysts discussed the use of Monte Carlo
techniques to propagate uncertainties in risks and made digtinctions between variability and
uncertainty in risk. However, as noted by Finke (26), who suggested that ” ... [practitioners of
quantitative uncertainty analysis| have risked making oursaves akin to mousetrap sdlesmen who
beleaguer the consumer with engineering details before he even understands that if the gadget
works, the result will be ahouse free of mice,” the anaysts gppeared to be primarily talking



amongst themsalves and failing to adequately communicate the benefits of better analyses to risk
managers and the public.

In 1996, the Food Quality Protection Act (FQPA) led to sweeping changesin the assessment and
management of food, microbid, and pesticide risks and to expectations that andysts would
assess aggregate and cumulative risks that they did not know how to estimate, and which they
are dill trying to figure out how to estimate today, nearly five yearslater. Nonetheess, the
FQPA opened the door for increased use of probabilistic risk assessment methods, and the U.S.
EPA supported the development of tools that produce distributions of risk demongtrating the
variability and/or uncertainty in pesticide-related risk assessment results and issued guiddines
related to the use of thesetools. While the effort remains far from complete, considerable
andytica progress has been made, including the important recognition thet time mattersin the
context of assessing risks and assuming lifetime average numbers for modd inputs could lead to
mideading results.

The production of probabilistic risk assessment results that represented a paradigm shift away
from the use of point estimates created new chalenges for risk managers. Instead of comparing
gngle point estimates to “bright lines’ of risk, risk managers must now struggle with decisons
about how to use didtributions in the decision-making process (25). Clearly recognizing
variability in apopulation leads to questions about who to protect and how much, questions that
look alot different in nature than the question that they replaced: “Isthis risk above the bright
lineor not?” While gppreciation of the artificid nature of the “bright ling’ criterion and the
dramatic oversmplification of the risk assessment required to derive a point estimate might
provide some reassurance of the importance of using a probabilistic andyssto characterize the
variability and uncertainty in the risks, it does not make the job of picking criteriato determine

the “acceptability” of risk any easer. Following much debate, the U.S. EPA decided to make the
99.9"" percentile individua its “threshold of regulatory concern” when assessing acute dietary
exposure to a pesticide resdue (with the expectation that a sengtivity anadysiswill be conducted,
as appropriate, to properly gauge the “reasonableness of the upper-end percentile estimates’), but
it did not select a percentile god for chronic exposures due to limitations in the existing food
consumption data (27).

While risk managers are now beginning to grapple with the challenge of deding with
probabilitic risk assessment results, the chalenges for risk communication have only been
minimally appreciated or explored. This paper extends two probabilistic risk assessment case
gudies to explore what happens when the results meet risk management and risk communication.
The first case sudy exploresthe risks of dying on the ground from a crashing airplane, which
Goldstein et d. (28) proposed as a good risk communication tool and Thompson et d. (29)
recently reanalyzed using probabilistic methods. The second case study focuses on the
deployment of motor vehicle airbags, which Graham et d. (30) assessed in the context of a cost-
effectiveness andys's and which Thompson et d. (31) explored to identify the andytica errors
that occurred in early estimate of the benefits of airbags and Thompson et d. (32) extended to
consder theimplications for codt- effectiveness analysis. These examples demongtrate how
better characterization of variability and uncertainty in the risk assessment may lead not only to
better risk management, but also to better risk communication. Following the case sudies, the
discussion explores some andogies to food safety and environmenta risks and highlights



remaining research issues associated with using improved sengitivity and uncertainty anaysesin
risk assessment for better risk management and risk communication.

2.0 LEARNING FROM THE PAST
2.1 TheRisk to Groundlingsfrom Crashing Airplanes

In 1992, Goldgtein et d. (28) first estimated the risk of an American “groundling” dying due to
crashing airplanes. Using avery smple modd, th%/ edimated the risk using a point estimate
gpproach to find an average annud risk of 6 x 10°°, and by multiplying this by 70 they estimated
alifetimerisk of 4.2x 10™. Goldgtein et d. (28) emphasized that this risk might be very useful
in the context of risk communication because: (i) it isamanmade risk (i) arisng from economic
activities (iii) from which the victims derive no benefit and (iv) exposure to which the victims
cannot control. While some of these criteria may be arguable (e.g., people living near arports
can voluntarily move or they may derive some economic benefits from lower rents or housing
prices or less car travel required to get to the airport if they fly frequently), these factors probably
do makethisrisk generdly one that is agood one for comparison to other technologicd risks
with smilar factors. Since this point estimate of lifetime risk exceeded the very commonly used
“bright line’ risk management threshold of 1 x 10°®, Goldstein et d. (28) suggested it might be a
useful risk communicetion tool, and in fact it has been used (33-35). Unfortunately, however,
the andyss did not consder variahility or uncertainty in the risk estimates or any sengtivity
andyss.

Thompson et d. (29) recently reandyzed the risks to groundlings from airplanes usng more
recent data from the Nationa Transportation Safety Board and aso explicitly characterized the
variability and uncertainty in these risks using a geographica information system gpproach to
modeling the population around airports. Following the approach used by Goldstein et d (28)
and smply updating the datato reflect current information, the results suggest that the average
annual risk isnow 1.2 x 10°°, which becomes 9 x 10°” when multiplied by 70 and which fdls
below the risk management “bright line’ threshold of 1 x 10°®. Whilethisresult doneis
interesting because it shifts the point estimate from above 1 x 10° to below that level, this
average result il faillsto congder the variability and uncertainty in therisks. In the anayss of
the variability and uncertainty of thisrisk, Thompson et d. (29) find that the exposure to
groundling fatality risk varies by about afactor of gpproximately 100 in the spatid dimension of
distance to an airport, with the risk declining rapidly outsde the first 2 miles around an arport.
Figure 1 shows the estimates of the current annud risks as afunction of distance avay from the
arport for the population. Figure 2 shows the upper tail of the cumulative ditribution.

Severd key implications of thisandysisemerge. Fird, from arisk management perspective, the
risks of planeskilling people on the ground are very small, and for most of the population that
lives greater than amile or two from an airport, the annual risks are below 1 x 108, Given these
remarkably low levels for most people, the lack of public concern about the risks of planes
faling out of the Sky and killing people on the ground is not surprising. Second, even for this
very smdl risk, approximately 3% of the U.S. population experiences an annuad risk that exceeds
1.5x 10® (which when multiplied by 70 leads to alifetime risk estimate exceeding 1 x 10°).
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Figure 1. Variability of therisk of groundling fatalitiesin the dimension distanceto an
airport for the Top100, Top250, and Top2250 airports (Source: Ref. 29, Figure 7).
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Figure 2. Upper percentiles of the estimated risksfor the entire population



Hypotheticaly, if we were to apply a99.9™ percentile “threshold for regulatory concern” to this
risk (recognizing that it isa*chronic”’ risk), then that might lead to some congderation of actions
that could be taken to reduce thisrisk, at least for the people who live close to the airport.
Airport authorities do benefit economicaly from their activities that gppear to impose heightened
risks to nearby residents and consequently remedia, and/or compensatory measures might not
seem ingppropriate based on that risk management criterion. However, severd limitationsin this
andysislead to uncertainty in the results. Specificdly, Thompson et d. (29) assumed that
characterizing the variability in risk as afunction of distance to the airport would suffice;
however, greater resolution of this variability could be obtained by considering the distance to
runway flight paths, which would better incorporate the specific dynamics at each individua
arport. Second, Thompson et d. (29) relied on the use of Census data to estimate the number of
people living within a certain distance of the arports and ignored mobility in the population by
using the resident population at that distance as the denominator in the risk assessment. Thus,
the results give the hypothetica risk of someone remaining at distance d during an entire year,
and any given individud will exhibit diurnd and seasond displacements that may heighten or
reduce therisk in Figure 2. Findly, considerable uncertainty arises in extrapolating the annud
risksto lifetime risks. When we look at this particular case, we see that airplane travel risk
reduction activities including better plane desgn and air traffic control continue to reduce the
chances of collisons and make airplanes safer. However, the increasing size of the population,
the number of people traveling by plane, and the trend toward urbanization may dl lead to
increases in the groundling risks. Airplane travel 70 years ago was very uncommon, and the
groundling risk estimates for that period in American history would probably have been much
lower than the estimate given by Thompson et d. (29). Similarly, we can only guess how
arplane travel will change in the next 70 years, just as we can only guessthat life expectancy in
70 years may be higher (e.g., it isnow gpproximately 75 years). Further, we know that people
are highly mobile and thet the probability of living in one place for an entire lifetimeis very

amdl. Thus, extrapolating the current annud risk numbersto alifetime of 70 yearsintroduces a
great ded of uncertainty into the analyds. In fact, the gpproach of multiplying the distribution
obtained for the annud risk by 70 yearsimplicitly assumes that the distribution will not change
over time and ignores the fact that uncertainty about the current distribution being representative
of future years increases with the number of years. This suggests that going from the ditribution
that shows variahility in annud risks to the one that shows lifetime risks would require another
dimension that would convey the uncertainty, which should be expected to get wider asthe
length of time included in the extrgpolation increases.

From arisk communication perspective, these results provide an important insght that is
completely lost in the average risk estimate. They show that while the risk for most peopleis
very smdl, so smdl that many people would congder it to be negligible, the risk is not zero for
anyone; and for the small percentage of the population that lives near airports, the risks appear to
exceed the commonly used risk management criterion of one-in-a-million if extrgpolated to a
lifetime assuming that people stay in one place for their entire lives. Using the average result for
the entire population as suggested by Goldgtein et d. (28) in the context of risk communicetion is
very mideading, because it suggests thet the risks are larger for the entire population than they
redly are and it ignores the fact that some people are a what some might consider asignificantly
elevated risk. Inthis case, doing a proper uncertainty or sengtivity andyssis criticd to
accurately characterize therisks for individuals in the population.



2.2 TheRisksand Benefits of Airbags

The case of mandatory airbags in motor vehicles aso provides an important example of where
indghts from the sengitivity andysis and framing of the issue can lead to very different

outcomes. Early evauations of airbags based primarily on experimenta teting and engineering
judgment made different predictions about the lifesaving benefits of thistechnology. The
Nationa Traffic Highway Safety Adminigtration (NHTSA) estimates from 1977 to 1987 were
that 9,000 lives could be saved each year if al passenger cars were equipped with airbags (31).
Now, over adecade |ater, extensive real-world crash experience led to revison of lifesaving
esimates downward and NHTSA currently assumes an annual lifesaving of gpproximately 3,000
lives eech year when the flegt is fully equipped with fronta arbags (31). Thompson et d. (31)
pinpointed four mgor errorsin lifesaving forecass: (1) alarge optimistic bias in the estimate of
arbag effectiveness for unbelted adult occupants, (2) a pessmidic biasin the estimate of the
number of adult motorists who would wear [gp/shoulder belts, (3) agenerdly pessmigtic view of
the number of occupants who would be a risk of fata injury and potentidly available for
protection by airbags, and (4) poor appreciation of the unique hazards that airbags pose for
children under the age of 12. Graham et a. (30) performed a codt- effectiveness anadysis for
arbags that showed large differences in the cost- effectiveness of the driver and passenger
arbags, with the passenger airbags being less effective overdl in large part because young
children are more likely to st in front of a passenger airbag and be killed by it. Thisandyss
included both one-way and two-way sengtivity analyses that showed how the estimates of the
cost- effectiveness ratios changes as a function of key modd inputs. Recently, Thompson et d.
(32) performed a retrogpective analyss of the cost-effectiveness ratios usng a one-way
sengtivity analysis and quantified the inputs that had the most Sgnificant impact on the
estimated cost-effectiveness of airbags based on the 1984 model inputs compared to the 1997
model inputs.

Remarkably, for alifesaving technology, arbags can pose a sgnificant risk, particularly for
children and smdl-gtature adults. Current estimates of airbag effectiveness suggest that on net
arbags kill more children under the age of 10 than they save and that passenger airbags are bad
for children. Graham et a. (30) estimated that passenger airbags save 5 to 10 adults for every
child that they kill. 1f we put thisin the context of the risk-only management criterion, the

results clearly demonstrate a problem. Airbags put gpproximately 10% of the U.S. population at
agreater risk of dying in amoator vehicle accident than those members of the population would
experience in the absence of the airbag, and annua risks of dying in motor vehicle accidents
already exceed 1 x 10°°. Again, if welook at this result as afunction of how the risks distribute
in the population, airbags smply could not meet the risk management criterion that they protect a
99.9"" percentile individua given their harmful effect on children who comprise more than .1
percent of the population. Even without meeting this criterion, however, airbags may be good
public policy because they save more lives overdl than they take. One of the interesting ironies
of airbagsis that they were an engineering solution to a behaviord problem (i.e,, the fact that
people were not wearing their safety belts), but given their impact on kids, the engineering
solution (i.e., airbags) has led to the need for a new behaviord solution (i.e., the need to have
children ride in the back seet).



By explicitly consdering the variability in the population, risk management efforts can be
developed to target reducing the risks for children and smdl-stature adults, and had this been the
expectation from the beginning, airbags may have been designed differently in away that
avoided the tragic risk trade-offs that have been observed. For example, campaignsto require
children to gt in the back seats of motor vehicles could have been implemented sooner, reducing
the exposure of children to passenger airbags. Also, airbags could have been “depowered”
initidly, instead of “over designed” asrequired by the origina standard (31). Recognition of
variability in the population with respect to how people interact with airbags led the NHTSA to
changeits motor vehicle compliance standards for airbags such that the tests now use different
szes of crash dummiesingead of Smply the large adult mae-szed dummy.

Appreciating the variahility in the population aso dearly impacts risk communication. Clearly
amply saying that airbags save approximately 3,000 lives each year falsto capture the
sgnificant threet that airbags pose to children and samdl-gature adults. Once this varidbility is
acknowledged, however, opportunities for reducing the risks to those groups may be recognized
and implemented.

3.0 DISCUSSION

These two cases represent examples of risksthat are familiar and relatively well characterized.
Theimplications of gpplying asmple, seemingly objective bright-line risk management criterion
like protecting the 99.9"" percentile individual to these cases would appear to be a potentially bad
idea and should lead to questions about whether the gpplication of such a criterion in any context
might make sense, particularly based on highly uncertain lifetime risk estimates.

Appreciating the variability in risk should lead to better understanding of the didtribution of the

risks and should increase the opportunities to make changes that can target and reduce risks for

those people a the highest risk. Appreciating uncertainties, including uncertainty about

variability in the population, can lead to agppropriate consderation of the option of seeking better
information, using a vaue-of-information approach as suggested by the National Research

Council report Understanding Risk: Informing Decisionsin a Democratic Society (Ref. 36, see p.
110).

While these examples may be categoricdly different than examples that could be found in the
context of other risks including pesticide and food-related risks, at abasic level these cases
would suggest that variability and uncertainty in risks should be explicitly considered and
addressed to ensure that ignoring them does not midead ether the risk manager or the public.
Recently the FDA has performed probabilistic risk analyses for a number of pathogens (e.g.,
Foodborne Listeria monocytogenes among selected categories of ready-to-eat foods, Vibrio
parahaemol yticus in raw molluscan shdlfish, FHuoroguinlone resstant Campyl obacter attributed
to the consumption of chicken), as hasthe USDA (e.g., for E. coli O157:H7 in beef inthe U.S,
Salmonella Enteritidis-infected shell eggs and egg products). Probabilistic risk assessments are
aso playing arolein the deliberations of the World Trade Organization, and we can expect that
the number of risk management decisions based on the results of probabilistic andyses will
continue to grow. In these cases, the risk managers are now grappling with making decisons



and issues that we can expect to see arise include discussion of how to ded with the implications
of variahility in the context of managing risks, particularly as afunction of the underlying source
of the variability (eg., differencesin genetic susceptibility, voluntary and involuntary behaviors,
etc.). Clearly more research is needed to improve our ability to effectively implement the
andytic-deliberative process (36) and to make risk management more iterative.

We have along way to go in developing effective ways to present the results of probabilitic risk
asessments and sengitivity analyses to risk managers and to the public and in ensuring that these
results do ultimately leed to improved risk management decisons. At aminimum, we must shift
away from the past practices of using point estimates of risks and benefits and begin to teach
people that any point estimate probably represents a gross smplification that may ignore
important underlying dynamics. Indeed, we will have to find an effective way to get past the
legacy of the point estimate approach that has left the public beieving that we can estimate risks
exactly with incredible precison (which has sometimes been expressed with far more significant
figures than justified), and which leads to the perception that when we come back to the public
with the results of an uncertainty anaysis we are now mor e uncertain than we were when we
presented the point estimate (even though from an anaytica perspective we are typicaly more
confident that we understand things better having gone through the probabiligtic andyss). This
means that we must arm risk communicators with better information about variability and
uncertainty in the risks that they use for risk comparisons, test different strategies for
communicating about variability and uncertainty in risk usng both quditative and quantitative
information, and drive to develop gppropriate risk management criterion for risks assessed
probabiligticaly.
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