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ABSTRACT
Wereview briefly some examples that would support an extended role for quantitative sensitivity analysisin the
context of model-based analysis (Section 1). We then review what features a quantitative sensitivity analysis should
haveto play such arole (Section 2). The methods that meet these requirements are described in Section 3. An
exampleis given in Section 4 along with some pointers to further research in Section 5.
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1.0 Introduction

Sengtivity Analyss (SA) isthe study of how the uncertainty in the output of amodd (numerica
or otherwise) can be gpportioned to different sources of uncertainty in the model input. The SA
is hence consdered by some as a prerequisite for mode building in any setting, be it diagnostic
or prognogtic, and in any field where models are used. Kolb, quoted in (Rabitz, 1989), noted that
theoretica methods are sufficiently advanced, so that it isintelectudly dishonest to perform
modelling without SA. Firbinger 1996 muses:

- Sengdtivity andyssfor moddlers?

- Would you go to an orthopaedist who didn't use X-ray?

In our opinion, among the reasons for an increased role of SA in the scientific discourseislast
decade’ s change in the role of sciencein society. Quantitative sengtivity andyds (QSA) is
increasingly invoked for the corroboration, the quaity assurance, and the defengbility of modd-
based andlysis. Issues such as relevance and trangparency become critical in this context, as we
ghdl try toillugtrate in this section.

According to Hornberger and Spear (1981), “ ... most Smulation modeswill be complex, with
many parameters, state-variables and non linear relations. Under the best circumstances, such
modd s have many degrees of freedom and, with judicious fiddling, can be made to produce
virtualy any desred behaviour, often with both plausible structure and parameter values. ”
Examples of instrumenta use of modes can be found in the literature, especidly when models
are used for making decisons having alarge socid and economic impact. Thus, it isnot
surprisSing to meet cynic opinions about models. An exampleisin The Economist, ajournd,
where one reads that “ based largely on an economic modd . . . completing K2R4 [a nuclear
reactor] in 2002 has a 50% chance of being ‘least cost’ ” (The Economigt, 1998). Given that the
mode was used, to contradict a pand of experts on the opportunity to build the aforementioned
reactor, The Economist comments



“Cynics say that models can be made to conclude anything provided that suitable assumptions
arefed into them.”

The problem highlighted by Hornberger and illustrated by the example above is acutdly fdt in
the modelling community. An economist, Edward E. Leamer, suggests the following: "'l have
proposed aform of organised sengtivity andysisthat | cdl ‘globd sengtivity andyss inwhich
aneighbourhood of dternative assumptions is selected and the corresponding interval of
inferencesisidentified. Conclusons are judged to be sturdy only if the neighbourhood of
assumptions is wide enough to be credible and the corresponding interval of inferencesis narrow
enough to be useful.” (Leamer 1990). This awareness of the dangersimplicit in selecting a
mode structure as true and working happily theresfter leads naturally to the attempt to map
rigoroudy dternative mode structures or working hypotheses into the space of the modd
predictions. The naturd extension of thisisthe analysis of how much each source of uncertainty
weights on the mode prediction. One possible way to gpportion the importance of the input
factor with respect to the modd output isto apply globa QSA methods. Here the expression,
"Globa Sengtivity Andlyss" takes on an additiond meaning, with respect to that proposed by
Leamer, in that a decomposition of the total uncertainty is sought. A combination of uncertainty
and SA isaline of action that we have recommended in a number of review works, and mostly
in the multi-author book on the subject published recently (Sdltelli et d. Eds. 2000).

Hornberger’ s concern is better known in the scientific community as the problem of the GIGO
models (Garbage In-Garbage Out?). Thereis apparently even an operative definition of aGIGO
principle: “Precison of outputs goes up as accuracy of inputs goes down” (Stirling, 2000a). In
other words, one way of GIGQing isto obtain precise outputs by arbitrarily restricting the input
space.

Andrew Stirling studies “precautionary” and “ science based” approaches to risk assessment and
environmenta gppraisal. In arecent work, that isin fact the compilation of four different sudies
on the subject, he studies what the precautionary principle implies and how can it be
operationdised (Stirling, 2000b). One of the recommendation he arrives a is* Express
Andyticd Results Usng Sendtivity Andyss':

It has been shown in thisinterim report that—in a variety of areas—risk assessment

results are often presented with a very fine degree of numerica precison. Such a

dyle conveys the impression of great accuracy, and distracts atention from the

crucid question of the sengtivity of find results to changesin garting

assumptions. This problem is particularly acute, where the values obtained—and

even the ordering of different options—are quite volatile under the perspectivesin

gopraisa associated with different socid congtituencies and economic interests. A

practical and well-established way of dedling with such aproblem liesin

‘sengtivity andyss—a technique involving the explicit linking of dternative

framing assumptions with the results which they yidd. Rather than being

expressed as discrete scalar numbers, then, risk assessment results might be

expressed as ranges of vaues, with the ends of the ranges reflecting extremitiesin

the framing assumptions associated with different stakeholdersin the appraisa

process.

! Assuming one has got ridden already of garbage in between, i.e. numerical or conceptual code errors.



Stirling introduces in this text the vdue-laden nature of different framing assumptions, whichisa
very crucid topic in present day discourse on governance (seeadso Lemonset a., 1997). We
want to illustrate now how SA (or the lack of it) might impinge on the defensbility of amodd-
based andysis.

The same The Economist (2001) reported recently on the work of ateam led by Daniel Esty of
Y de Univergty, with support from Columbia University, about a new Environmentd
Sugtainahility Index (ESI, 2001) produced on behalf of the World Economic Forum, and
presented to the annua Davos summit thisyear. This study contains a detailed assessment of
dozens of variables that influence the environmenta hedth of economies, producing an overal
index that dlows countries to be ranked. Mathis Wackernagdl, menta father of the “Ecologica
Footprint” and thus an authoritative source in the Sustainable Devel opment expert community,
concludes an argumented critique of the study done by Danid Esty et d. by noting: "Overdl, the
report would gain from amore extensive peer review and a sendtivity andyss. Thelacking
sengtivity andyss undermines the confidence in the results since smdl changes in the index
architecture or the weighting could draméticdly ater the ranking of the nations.” (Wackernagd,
2001). Itisclear from this example that index numbers, such as ESl, can be consdered as
models. Tarantola et d. (2000) have shown how SA can be used to put an environmental debate
into track by showing that the uncertainty in the decision on whether to burn or dispose solid
urban waste depends on the choice of the index and not on the quality of the available data (e.g.
emission factors).

Oreskes et a. (1994) in an article on Science entitled “Verification, Vaidation and Confirmation
of numerica moddsin the earth sciences’, puts SA in an gpparently different context. The SA is
not treated as atool to build or improve amodd, but it represents one of the possible licit uses
that can be done of the mode itsdf. According to Oreskes, who takes a Popperian stance on the
issue, natural systems are never closed, and models put forward as description of these are never
unique. Hence, modes can never be “verified” or “vdidated”, but only “confirmed” or
“corroborated” by the demonstration of agreement (non-contradiction) between observation and
prediction. Since confirmation isinherently partia, modds are qudified by aheurigtic vaue:
modd s are representations, useful for guiding further study, but not susceptible to proof. Under
Oreskes et a.’spoint of view: “Models can corroborate a hypothesis. ... Modds can ducidate
discrepancies with other modds. Models can be used for sengitivity andysis—for exploring

“what if” questions—thereby illuminating which aspects of the sysem are most in need of further
study, and where more empirical data are most needed.”

Moddling as a craftsmanship is dso the subject of Rosen (1991). We would like to end this
introductory section with P. Hgeg, a Danish novelist, who notesin hisexcdlent Borderliners:
"That iswhat we meant by science. That both question and answer are tied up with uncertainty,
and that they are painful. But that there is no way around them. And that you hide nothing;
instead, everything is brought out into the open.” (Hgeg 1995).

Hgeg, like Oreskes, seemsto think that uncertainty is not an accident of the scientific method,
but its substance.



2.0 DESIRED PROPERTIES AND SETTINGS

Increasingly the role of scientistsin society is not that of reveding truth as that of providing
evidence, based on incomplete knowledge, sometimesin the form of probability, before systems
of conflicting stakes and beliefs (Funtowicz et d., 1996). This consderation, and the resulting
need for the scientist to provide evidence that is defensible, poses some demand on the SA, that
isone of the condtituent dement of dl modd based andyses. Thisiswhat has driven usin our
choice of amethodology for SA.

2.1 Properties

We shdl ignore here local methods, screening methods, regression-based methods, and others
that can be found in the reference book quoted (Sdtelli et d. Eds. 2000). Our focus will be on
methods that are global, quantitative, and model free?, capable of testing the robustness and
relevance of amodel-based andysis in the presence of uncertainties. Our choice is the variance-
based methods, aso known as importance measures or sengtivity indices. These methods
provide a factor-based decompogtion of the output variance, and implicitly assume that this
moment is sufficient to describe output variability. This may not be the case if oneis interested
e.g. inthetails of the output digtribution. We list below what are the desirable properties of
such methods.

Cope with the influence of scale and shape. The influence of the input should incorporate the
effect of the range of input variation and the form of its probability density function (pdf). It
meatters whether the pdf of an input factor is uniform or norma, and what are the digtribution
parameters.

Include multidimensiona averaging. In a perturbative approach to SA, one computes partia
derivatives. the effect of the variaion of afactor when dl others are kept congtant at the
centrd (nomind) vadue. A globd method should instead evauate the effect of afactor while
al others are varying aswell.

Be modd independent. The method should work regardless of the additivity or linearity of
the test modd. A globa sengtivity measure must be able to gppreciate the so-caled
interaction effect, especidly important for non-linear, non-additive models. These arise
when the effect of changing two factorsis different from the sum of their individud effects.

Be ableto treat grouped factors asif they were single factors. This property of synthesisis
essentiad for the agility of the interpretation of the results. One would not want to be
confronted with a SA made of dense tables of input-output correlations.

At the same time we would like that the setting for the SA itself be as stringent as possble. It
may well happen that using different measures of senstivity, different experts obtain different

2 |n the sense of independent from assumptions about the model, such as linearity, additivity and so on.



relative ranking of the influence of the various input factors (e.g. see OECD, 1993 for an
example). Thishgppensif the objective of the andyssis|eft unspecified. Inthe sameway as
there are severd definitions of risk (Risk Newdetter, 1987) there may be severd definitions of
importance. In thefollowing of this section, we shdl offer two dternative rigorous settings for
SA that will hep usin our andyss (Sdtelli and Tarantola, 2001).

Our point of departure is amathematical or computationd modd Y = f (XX, ..., X, ), where

some of the input factors are uncertain. We know something about their range of uncertainty.
This knowledge might come from a variety of sources. measurements, expert opinion, physica
bounds, anaogy with factors for smilar species, compounds, etc. Thislatter may be seenasa
particular case of expert opinion. We may further have information (e.g., viaobservation) on the
joint probakility digtribution of the factors.

The model may be used in a prognogtic (forecast) or diagnogtic (e.g., estimation) mode. Inthe
former, al our knowledge about modd input is aready coded in the joint probability distribution
of the input factors. In the latter, the input information congtitutes a prior, and the andys's might
be aimed to updating ether the distribution of the input factors or the model formulation based
on the evidence.

A “forecast” mode of use for the modd is assumed in the following unless otherwise specified.
We sdlect one among the many output produced by the given model and cal this our output of
interest. This might dso bein the form of an averaged mean over more model outputs. The
output of interest should be in the form asingle quantity, possibly ascdar Y, whose vdueis
taken as the top-most information that the model is supposed to provide. This could be, for
ingtance, the ratio of an environmenta pressure over the selected target vaue; it could be the
maximum or averaged number of hedth effectsin agiven areaand time span; it could be the
estimated failure probability for asystem and so on. We express this by saying that a sengtivity
andysis should not focus on the mode output as such, but rather on the answer that the mode is
supposed to provide, on the thesisthat it is supposed to prove or disprove. In

Y = (X, X,, ..., X, ), one does not need to assume f as constant, asit is customary to propagate

uncertainty through different model structure or formulations. In this case some of the input
factors are triggers that drive the sdection of a structure versus another, and f sands for the
computational code where al this takes place. Let us assume that we are able to compute the
model output as much aswe like, possbly sampling from the best joint probability distribution

of input that we can come up with. This procedureis called by some a parametric bootstrap, in
the sense that we sample with replacement the factors that enter into amode and re-evauate the
modd each time. Let usfurther assume for smplicity that each factor indeed has atrue, abeit
unknown, value. We know that often factors are themsalves lumped entities cdled in as
surrogate for some more complex underlying process, but we now assume thet they are smply
dataimprecisely known because of lack of sufficient observations. This clearly does not gpply to
Sochastic uncertainties, such as the time of occurrence of an earthquake in a given area athough
one might have frequency information for the areabased on geologica or historical records.
Eveninthiscaseit is useful to think of the stochadtic factor as possessing atrue vaue, for the
sake of assessing itsimportance relative to dl other factors. We can at this point introduce our
firg setting for SA.



2.2 Settings

Setting 1. The objective of SA isto identify the most important factor. Thisis defined to be the
onetha, if determined (i.e,, fixed to itstrue, dbeit unknown, vaue), would lead to the grestest
reduction in the variance of the top statement Y. Likewise, one can define the second most
important factor and so on till al factors are ranked in order of importance.

One might notice that we have made the concept of importance more precise, linking it to a
reduction of the variance of the target function. It should aso be noted that, in generd, one
would not be able to meet the objective of Setting 1, as thiswould imply knowing what the true
vaue of afactor is. The purpose of Setting 1 isto dlow arationd choice under uncertainty.

Anather thing worth noting about Setting 1, which will be eaborated below, is that it assumes
that factors are fixed one a atime. Thiswill prevent the detection of interactions, i.e,, in
adopting Setting 1, we accept the risk of remaining ignorant about important features of the
moded that is the object of the SA. In this setting, the presence of interactions that would
normally be something worth knowing about a model may escape the analysis atogether.

Theidedl use for the Setting 1 isfor the prioritisation of research, which is one of the most
common uses of SA. Under the hypothesisthat al uncertain factors are susceptible of
determination, at the same cogt per factor, Setting 1 alows the identification of the factor most
deserving better experimenta measurement.

A second setting that we have found useful when SA is part of arisk assessment sudy isthe
following. The objective of the andysisis the reduction of the variance of the target function Y
from its unconditiond vaue V (Y) to alower pre-established threshold vaue.

Setting 2. One must obtain avariance of Y equd or smdler than a given target variance
V. <V(Y) by fixing smultaneoudy the smalest number of factors. Even in this case we haveto
meake an informed choice without knowing where the true values of the factors lay.

Also, here we are only dlowed to make an informed choice, rather than finding the optimum that
would need the true factors vaue to be known. Setting 2 dlows factors to be fixed in groups,
and the solution in this case can be influenced by the interactions among factors, if these are
present.

We do not claim to have exhausted here dl possible settings for SA. Our point is a different one.
One setting must be defined for the andlysis to be unambiguoudy implemented. Settings 1 and 2
will be sufficient for the purpose of the present review.

At the same time one should not forget that, as mentioned at the beginning of this section, we
assume that oneisinterested in describing the output uncertainty in terms of its variance. In

some decisions contexts, there may be other measures that are more important, depending on the
preferences of the decison-maker (e.g., 95th percentile). Moreover, in some cases we may be
concerned about shiftsin central tendency of amodd output attributable to an input factor,
regardless of its contribution to the variance in the modd. In OECD 1993 an andysiswas



performed by shifting the entire distribution of each factor of a given fraction (5%), and the
resulting shift in the model output was used to rank the factors. This gpproach has some
drawbacks, as discussed in Sdtelli and Tarantola 2001. It isinsendtive to modd non-
monotonicity and dependent on the fraction shift (5%) in the input distributions. Probably more
thought should be given on how to shape the andlysis on settings where the emphasisis not on
the variance. Krykacz-Hausmann (2001) has criticised the use of variance as amessure of output

uncertainty, and suggested to use entropy H - instead, defined aseither H (Y) =- ¢f (y) In(f (y))

or H(Y) =- é P, In(pi) depending on whether the didtribution of Y is continuous (f) or discrete

(p). Krykacz-Hausmann's argument is that the largest uncertainty for Y should be that associated
to auniform digribution for Yin its range. By some intuitive examples, he showsthat H is better
than V in capturing this aspect of the problem.

3.0 METHODS

The previous discussion on settings should now help us to introduce the recommended methods
in afarly naturd way.

Let usput oursalvesin Setting 1. We want to rank factors according to how much the
unconditiond variance V (Y) of Y isreduced by fixing the various factors to their true vaue.

The factors could then be ranked according to V(Y| X, =X/ ) the variance being taken over dll

factorsbut X;, or equivaientlytov(lei - >(‘)%(Y),where V(Y|Xi = Xi*) isthe variance
obtained by fixing X, toitstruevalue X, . Notethat V(Y|X, = X; | couid even be larger than

V(Y) for particular vduesof X. . The problem isthat we do not know what X, isfor each X .
It will hence sound sensible to look at the factor with the smallest weighted average of the above
measure over dl posshlevdues X, of X, ,i.e, over E(V(Y|Xi)). We have dropped the

dependence from X" intheinner variance asthisis diminated by the outer mean.

Statistical sciencetellsusthat V =V (E(Y|X, )+ E{v(v|X; )) so that betting on the highest
V(E(Y|X, ) is perfectly equivalent to betting on the lowest E(V(Y|X; ).

Unsurprisingly, many practitioners of SA have come up with different estimates of
V. :V(E(Y|Xi )) asameasure of sengitivity (sSomehavecdled V., or S :\%(Y) importance

measures, sengtivity indices, et coetera. See Chan et a. (2000), and Sdtdlli et d. (1999, 2000)
for reviews.



In concluson, under Setting 1, S :\%(Y) isaproper measure of sengtivity to use to rank the

input factors in order of importance even if the model is non additive and the input factors are
correlated (Saltelli and Tarantola, 2001). The coefficients S arenicely scaled in [0].

Before we proceed with the method, we would like to illustrate another path to the same measure
of importance. Imagine that we have just completed an estimation step in amode and that we
have obtained for the factors under andysis ajoint posterior distribution. We can now perform a
parametric bootstrap, sampling with replacement from the joint pdf of the input and re-
computing at each trid the sum of residuas between computed and experimental values of the
output. The resulting scatter-plots can look something like Figure 1 from Planas and Depoutot
(2000).

Figure 1. Importance of input factorson trend estimates
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Clearly we shdl have more faith in the estimation of the factor THETA (1) than for factor
LENGTH OF MONTHS. Thisis because the conditiond variance of the target function Y,
where Y isnow sum of resduas between modd boot-prediction and the best fit prediction, is

smd| on averagefor dl vauesof THETA(), i.e, E(\/(Y| X, )) ismuch smdler for factor

THETA(1) than for factor LENGTH OF MONTHS. We have found again the same importance
measure in acontext of parameter estimation. This shows that SA can tell us something about



the quality of the estimation process. Scatterplots such asthose in Figure 1 have been used by
Y oung 1999.
We can now close our digression on estimation and go back to our description of the methods.

When the input factors are independent, the conditional variances V (E(Y| X, )) canbeseeninthe

context of agenera variance decomposition scheme proposed by Sobol’ (1990), whereby the
totd unconditiona variance for amodd with k factors can be decomposed as.

ViY)=aVv.+aaVv, +-+Va,. 3.1
i [
where
v, =V(E(Yx, ), 3.2
Vi :V(E(Y|Xi’xi»' Vi- Vi, 33

and so on. The development in Equation 3.1 contains k terms of the first order V, , k(k- %
terms of the second order V; and so on, till the last term of order k , for atotal of 2 - 1 terms.
The V; terms are the second-order (or two-way) terms, anaogous to the second-order effects
described in experimental design textbooks (see e.g. Box et d., 1978). The V, terms capture that

part of the effect of X; and X that is not described by the first order terms. Equation 3.1 hasa

long history, and various authors have proposed different versons of it. A discusson can be
found in Archer et d. (1997), aswell asin Rabitz et d. (1999, 2000). Sobol’ decompositionis
based on a decompostion of the function f itsdf into terms of increasing dimensondlity, i.e,

f(Y)=f, +é. f. +é. é fij +o+f, 34

g

where each term is afunction only of thefactorsinitsindex, i.e. f, = f (X)), f, = f; (xi,x].)

and o on. The decompositions in Equations 3.1, 3.4 are unique provided that the input factors
areindependent and that the individud termsin f;; ; are square integrable over the domain of

exisence.

One important agpect of Sobol’ development is that similar decompositions can be written by
taking the factors into subsets. Imagine that the factors have been partitioned into atrial set
u=(X,_X, ..X, ),andtheremaningset v=(X, X, ..X, ). Thenaccording to Sobol’ the
total variance associated with u can be computed as

V(EMu))+V(EMu, v)) =v(Y) - V(E(V|V)), 35



In Equation 3.4 V(E(Y|u)) isthe firg-order effect of the set u, while vV (E (Y lu, v )) isthe
interaction term between the sets uand v.

Before we proceed we need to introduce a new notation for a sengtivity measure closed within a

subset of factors. Letuscall it V|, where the superscript ¢ stands for closed, ie. V| isthe
amofdl Vv, ; termsin Equation 3.1that isclosedintheindices iy, i,,..i 0 V) =V,
Vi =V +V, +V,, andsoon. Likewise V5, | will indicatethesumof dl V|  that are closed

within the complementary set of i, i,,...i1,. Note that these can be aso written in the usua
Bayesan notdtion aseg., V;; =V (E(Y| Xi X, )) see Equation 3.3.

We introduce now one lagt conditiona variance (Homma and Sdtelli, 1996), V(E(Y|X_ j )) This
isthetota contribution to the variance of Y dueto non- X, . Thisimpliesthat the difference
V(Y)- V(E(Y|X_ J)) isequd to the sum of al termsin the variance decompostion (Equation 3.1)
that indude X, . Weillustrate this for the case k = 3:

_V) - V(E(VX.,) - EM(WX..) 36

S veY) =TV =S +S, * S+ Sss

Where eg., S :V(E(Y|X1%(Y) , and anaogous expressions can bewrittenfor S, S} . We

have cdled the S].T 's“Totd effect” terms. Thetotd effects are useful for the purpose of SA, as
discussed in SAtelli et d. (1999), asthey give information on the non-additive part of the model.

k
It may be useful to observe here that for a purdly additive modd, é S =1, whilefor agiven

i=1
factor X, animportant difference between SjT and S; flags an important role of interactions for
that factor in Y . Clearly the same information could be obtained by computing al termsin
Equation 3.1, but these are as many as 2* - 1. This problem has been referred to by Rabitz et d.,
(2000) as “the curse of dimensiondity”. For this reason we customarily tend to compute the set
of dl S plusthesetof dl S, which gives afairly good description of the model sensitivities at

the more reasonable cost. Many gpplications of this strategy to different models can be found in
various chapters of Satelli et d. Eds. (2000).

We are now posed to suggest a strategy to tackle problem Setting 2. Thisis particularly
complex, especidly for the generd case where the input factors are not independent. The
problem with corrdlated input, in brief, is that the reduction in variance that can be achieved
fixing one factor depends on whether or not other factors have been fixed, and the incremental
reduction in variance for each factor depends on the order in which factors are fixed. Equation
3.1losssitsuniquenessin thiscase. One can still compute closed variances such as

10



Vi =V (E(Y| X X, )) but this can no longer be decomposed asfirst order and interaction effects
in aunique way.

In SAtdli and Tarantola (2001), we have suggested the following empirical procedures for
Setting 2.

Procedure 1. Case of uncorrelated input. We compute the full set of V, 'sand V;; 'sand usethe
|atter to rank the factors. A sequence Vi, Vi ..., Vi isthus generated where

Vig > Vg >.. >V . If V. isgreater than V(Y) -V, , then the problem is solved. Otherwise,
we take the factor with the second highest total index, i.e. Vg . If

Vg, = Ve, +Vg, +Vig >V (Y) - V,, then end the procedure, and so on.

This procedure has an dternative in a brute force search of al combination of factorsyielding
the desired reduction of variance, but this would again confront us with the curse of
dimensiondity. The procedure for the correated case is more complex.

Procedure 2. Case of corrdated input. This time we cannot compute the total effect indices, and
thus we rank the single factorsin order of importance using the vaues of the first order terms

V;, obtaining asequence V Vg ...,V ,whereV, >V, >..>V, .If Vo >V(Y)-V,, thenthe
problem is solved. Otherwise we compute the second-order term V (E(Y| Xe i X, )) , where X,

the second factor to be “fixed”, has been selected on the basis of a“figure of merit” M that

shall be defined below. V (E(Y|X ., X, )) gives usthe reduction of the variance of V/(Y) that can

be achieved by fixing the pair X, X, . If V(E[Y|X . X, )|>V(¥) - V, thenthepair X, , X,
solves our problem. Otherwise, athird factor X, is selected using the same measure (we select

the factor with the highest M,,), and the third order index V/(EIY|X .. X ;. X,,)) is computed. If
V(EMXRl,X].,Xm))>V(Y)- V, thenthetriplet X, , X, X solvesthe problem, otherwise we
continue in the same fashion.

The formulaproposed for M, is Sdtelli and Tarantola (2001) is:

Ve _yNe .2 3.7
M, =S(R Xl' meXp %|)§+T'VT'% ’
a
where S(R i ) is a Savage score (Savage, 1956)
1 3.8
S(Rj): é l::Rj?1

11



and uisthe subset of theinput factors that have aready been fixed. Thefird two termsin the
product of Equation 3.7 mean that therank R, of the candidate factor (obtained viathe first
order terms) isfirst converted into a Savage score and then pendized by an amount related to the
highest correlation figure involving that factor and thosein the set u dready fixed. c; isthe

correlation coefficient between factors X, X; and isknown a-priori.

The last term contains the sengtivity coefficient (tota and first order) for the non-correlated

case, and the corresponding unconditiona variance, hencethe NC in the subscript. The retiond
of thisterm isthat a candidate factor for incluson that interacts with one or more of the factors
aready fixed should be prized, asit could lead to a higher variance reduction than it isimplied

byits V.

The procedure and Equation 3.7 suggested above imply that besides computing terms such as
Vi, V(E(Y|XRl X, )) and V(EMXRl X, Xm)), using the procedure of Section 5, we also
compute the full set of fird-order and total-order coefficients for the associated uncorrel ated
problem.

In concluson, we see that for the uncorrelated case, arational selection strategy for the subset of
interest is based on the computation of the full setsof S, and SJ.T . Thisdrategy is meant to fight

the curse of dimensondlity, as atempting dl combination of factorsin a brute-force search for
the smallest subset of X that gives the desired reductionin V(YY) would be computetionaly
prohibitive; one would have to compute dl 2% - 1 termsin Equation 3.1 to start with. The
iterative procedure described above for the uncorrelated case includes as a step the computation

of thefull setof S, and S .

For the correlated case, one might till engage in a brute force search computing dl possible
closed terms V;, ;. Note that for the correlated casethe V,; ;- can no longer be decomposed

meaningfully into asum of lower dimengondity terms, but would Hill dlow a perfectly
informed choice, aswould the V., . in the uncorrelated case. Also for the correlated case, our

iio..ig

suggested dternative involves the computation of the S, and S].T for the non-correlated problem.

We do not detail here how to estimatetermssuch as Vv, V(E(Y|Xi,Xj)), V(E(Y‘Xi ,X].,Xm)),

and hence S, and SJ.T etc. It will sufficeto say that in the case of non-correlated input,

accelerated computation procedures are available. For these, the reader is referred to the work of
Sobol’ (1990) and Homma and Saltelli (1996), where Monte Carlo based strategies are offered.
An dternative isthe FAST method (Fourier Amplitude Sengtivity Test), in its extended verson
(Sdtdli et d., 1999). A review isin Chan et d. (2000). When the input is corrlated, a different

estimation procedure is available for the first order terms V(E(Y| X; )) . This procedure (see
McKay, 1995) usesthe replicated Latin Hypercube Sampling design (r-LHS). For higher order
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terms and correlated input a more laborious procedure is necessary that involves the explicit
egimation of the multidimensiond integral associated to terms such as V(E(Y| X X, ))

4.0 A WORKED EXAMPLE

The Level E test case describes a problem of mass transfer governed by advection, dispersion,
chemica retention, and radioactive decay in amulti-layered medium (OECD, 1989). Thistest
case was used as a benchmark of computer codes used in the assessment of the performance of a
geological disposd for radioactive waste. The Level E modd is of medium complexity. It
involves the numericd solution of a system of partid differentia equations. The output variable
consdered in this study isthe total annua dose to man due to dl the migrating radionuclides

(**| andthechan Z"Np ® 2°U ® 2°Th).

The factors for the Level E exercise and their distribution were decided by apanel of experts
who designed this exercise for the benchmark (OECD, 1989). The factors are assumed
independent, but a correlated version was generated for the purpose of Sdtelli and Tarantola
(2001). TheLeve E, with its strong non-monotonic and non-additivity nature, was used as a test
modd by severd practitioners. It was thus instrumenta in the development of the new methods
for sengtivity andyss.

The radiological dose dueto the four nuclidesat t = 10°y in the future is the quantity of interest
inthe study. The overdl predictive uncertainty about that dose is due to uncertaintiesin mode
parameters (both intrinsic, such as the time of occurrence of a geological event, or dueto our
poor knowledge of the system). Twelve uncertain parameters are indeed taken into account in
the amulation modd, including relevant physicd congtants of the process, retention coefficients
for radioactive species, length of pathways, and so on (Table 1).
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Table 1, Input factorsfor Leve E

| Notation | Definition | Distribution | Range | Units |
T containment time nniform /100,1000/ | yr
kr leach rate for Iodine log-uniform | /10-3,1072/ | !
ke leach rate for Np chain nuclides | log-miform | /107510757 [ yr~!
D water vel. in geosphere’s 1st layer | log-uniform | /1079,1071/ | m/yr
IeY length of geosphere’s 1st layer uniform /100, 500/ 1T
Ry’ refention factor for I {1st layer) nniform /1, 5/ -
RE;” factor to compute ret. coeff.
for Np (1st layer) nniform /3,30/ -
) water vel. in geosphere’s 2nd layer | log-uniform | /1072, 107/ | m/fyr
i length of geosphere’s 2nd layer uniform /50,200/ m
ol retention factor for I (2nd layer) nniform /1,5/ -
Rg, factor to compute ret. coeff.
for Np {2Znd layer) nniform /3,30/ -
W stream flow rate log-mniform | 105,107/ | m¥/yr
4.1 Cases

Four cases are sequentidly tackled in Sdtdli and Tarantola (2001):
a) setting 1 and parameters assumed not correlated;

b) setting 2 and parameters assumed not correlated;

C) setting 1 and some parameters assumed correlated;

d) setting 2 and some parameters assumed correlated.

4.1.1 Casea. Thefirgt order terms V, are computed, that rank the factorsin the order v®, W,

and 19, with S :\% equal to 0.18, 0.04, and 0.02, respectively. The V, for the other factors

are negligible. Thetotal cost of this analysis was of 8,192 times 12 (the number of factors)
smulaions usng the method of Sobol’ (1990).

4.1.2 Caseb. A 40% variance reduction has been used as atarget. Thetota indices V,; are
computed for the twelve factors and the three most important factorsare v® , W and 1?0 . Fixing

v® done does not meet our target, so that the second-order term

Vv

viOw

must be estimated. The
am S, + S, +S,u, 15032, that ill does not give us the required 40% reduction in the

variance. We compute then the two second-order terms V , o , Vo, » @d the third order term
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V o, - ThethirdordertemV , ., isfoundtobehigh,ie,V s, /V =0.23, and this
alows our target to be met by simultaneoudy fixing the three factors v, W, and 1, The cost
of this analysis was 8,192 x 12 to compute the 12 pairs V., V;, , plus four times 8,192 to compute
the four partid variances V i, , V 0,0+ V,

1Ow and Vv(1>|<1)w :

W )

Let us now consider cases ¢) and d) where some of the input factors are correlated (Table 2).

Table 2. Corrdations

Pairs of correlated factors Corrdation

K, ,Ke 0.5
R®, R 0.3
sz) , Réz) 0.3

T,v® 0.7
VERVC 05
R1(1) ’ Rl(Z) 05
RY, R® 0.5

4.1.3 Case c. Computing dl the V; showsthat v® isno longer the most influential factor, and
the two top-ranked factors are W and k¢ (Table 3). Thismay be due to the interplay between
interaction and correlaion. The cost of the analysis was of 1000 runs using an efficient scheme

suggested by McKay (1995).
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Table 3. Correlated case: The V,, theRatios V, /V, the Rankingon V,,
and the Merit Figures M, are Given.
(Inthe last two columns theratios V. /V and V" /V for the uncorrelated set
are also given, asthey serve to compute the M, .)

17 Vi/v Ranking \ v NC

Factor Vi * 10 on Vi M i VTi /V
T 7.17 0.01 4 1.27 0 0

K 0. 0. 6 0.08 0 0

ke 2.1 0031 2 2.10 0 0

v 18 0026 |3 4.51 0.18 0.86
I 0. 0. 6 0.39 0.02 0.51
R® 0. 0. 6 0.61 0 0.49
R 0. 0. 6 0.41 0 0.03
Vo 0. 0. 6 0.68 0 0.15
1 5.1 ~0 5 0.95 0 0.08
R® 1.2 ~0 5 0.79 0 0.10
R 6.8 ~0 5 1.09 0 0.03
W 34.9 0.05 1 - 0.04 0.64

4.1.4 Cased. Thetarget variance reduction is aso here fixed a 40%. The ranking based on V,
yields W as the most important factor, but the average output variance reduction that we would
obtain by fixing W isonly 5% (Table 3). The largest figure of merit M; is obtained for v® | and
based on our procedure 2 we compute V(EM\N RV )) that corresponds to a variance reduction

of about 28%. The factor k, is henceindluded in the andlysis and the term V (E{Y\W, v k) is

estimated. Thistime the target is reached, with a variance reduction of about 43%. Note that the
sum of the firgt order terms for the three sdected factors is not high, while their co-operative
effect important. 1000 runs were needed to compute the first order terms, while two samples of

size 10,000 were needed to compute V(E(Y|\N, Ve )) : V(E(Y|\N, v&® k. ))

5.0 FINAL REMARKS

We have mostly focused on a prognostic use of moddls. We would like to conclude this review
work by coming back to a diagnogtic use of models. Thereisin fact some resonance between
the quantitative sengtivity approach defended here and Monte Carlo-based approaches to model
cdibration presented in recent sudies:

Monte Carlo (MC) filtering, (Rose et d., 1991), is the process of rejecting sets of mode

smulationsthat fail to meet some pre-gpecified criteria of mode performance (acceptable
behaviour). This process can be presented as an objective method for modd calibration: the
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subsets of model parameters that generate acceptable mode simulations can be regarded as
equally satisfactory modd calibrations. Contrary to the gpproach defended in the present
article, the authorsin (Rose et d., 1991) sdected the subset of factors for the andysisusing a
loca SA method.

Moreradicaly, Fedraet d. (1981) present MC filtering as an aternative to the concept of
loca cdibration. The andyst should refrain from searching for an optima solution but rest
with the plausible ones.

“Regiondized (or Generdized) Sengtivity Andyss’ isaterm used by Hornberger and Spear
(1981), Spear (1994), Y oung et al. (1996) to indicate the use of the outcome fromaMC
filtering experiment for SA purposes. The mode output from the MC run is categorised into
ether acceptable (A) or unacceptable (B). The sets of modd inputs that lead to acceptable
behaviour are then statigtically compared with those that do not. Specificaly, for agiven
input variable X, two subsets of possible vaues are identified: those that lead to acceptable
behaviour, subset XA, and those that lead to unacceptable behaviour, subset Xg. A datidtica
test of hypothesisis then gpplied to check if the two subsets are samples from the same
datistical digtribution. An input variable is regarded asimportant when the generated sample
digribution functions are Satidticaly different. In our view, this gpproach has alimitation, in
that it takes into account only the output variation aong the acceptable-unacceptable
direction, while it ignores the variations of the output within the class of the acceptable

vaues. In other words, an influent parameter could escagpe such an anadlysis only because it
drives variation within the acceptable range.

Generalised Likdihood Uncertainty Estimation technique (GLUE) is based on the concept of
Bayesian Inference for uncertainty estimation and has been devel oped from an acceptance of
the possible equifindity of models, i.e,, different sets of modd parameters may be equdly
likely as smulators of the red system. It workswith multiple sets of factors, typicdly via
MC sampling. Model redizations are weighted and ranked on a likelihood scale via
conditioning on obsarvations. In practice the likelihood for each redization in GLUE is
inversaly proportiona to the sum of squared differences between data and mode predictions
in correspondence of a known set of modd forcing functions (e.g., meteorological data).
Based on the likelihood, weights are defined and used to formulate a cumulative digtribution
of the mode output when the model is used in conjunction with anew set of forcing
functions for which observations are not available. So no true calibration is donein the
GLUE approach, but al parameter sets of the MC sample are used to compute the model

output, smply applying weights.

We have recently (Ratto et d., 2001) performed quantitative sengtivity andysis (QSA) on the
likelihood measure itsdlf, thus coupling QSA and GLUE. The QSA dlows a quantitative
assessment of mode factors mainly driving mode behaviourd runs. The use of GLUE, through
the definition of alikelihood measure for each modd run, alows the performance of a QSA
conditioned to observations. The likelihood measure provides an estimate of the posterior joint
pdf of the input factors and its analyss dlows a description of the interaction structure between
factors, connected to model over-parameterization. The QSA dlows a quantitative
decomposition of the likelihood variance with respect to the input factors, including high order
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terms. Factors providing negligible contributions to the likelihood variation can be clearly
identified, dlowing the modeler to exclude them from the calibration procedure and to fix them
a anomind vaue. On the other hand, factors having a significant impact on the likelihood
measure (either asamain effect or asatota effect in interaction with al the other factors) have
to be accounted in cdlibration, snce they are able to drive behaviourd runs of the modd.
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