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In many fields of science and engineering, it is often necessary to predict the effect of some 

treatment or intervention on a human subject.. It is unethical to identify health or safety effects 

by experiments on humans. Therefore, the biological responses to a given treatment are 

represented by a mathematical model, which is usually based on data from animal experiments. 

The parameter values for animals can be replaced by values for humans. The model’s behavior 

under various imposed boundary conditions predicts the human response to an actual treatment. 

All models are simplifications—often idealizations—of the real system, and excessive 

simplification may reduce the model’s reliability. Predictions may also be unreliable because of 

restricted accuracy of the data on which the model is based. One method by which the reliability 

of the predictions can be assessed is sensitivity analysis. 

Definitions 

A mathematical model comprises equations for the instantaneous state of a system given the 

imposed conditions. This may be a function of time. Terms used in modeling follow. 

state variable—the quantities that specify the instantaneous description (state) of the system 

independent variable—the dimension (typically time) over which the state of the system 

changes 

state equations—equations that specify the state variables as functions of the independent 

variable (typically differential equations in a dynamic model) 

boundary conditions—constraints that specify the particular solution of the state equations; 

e.g. initial values of the state variables or the rate of input to a process in the model 

transient—the temporal profile of the state variables after a perturbation in the boundary 

conditions 

steady state—a solution of the state equations when the time derivatives of the state 

variables are all set to zero;  also called a stationary state 

parameters—constants (as opposed to variables) in the state equations 

sensitivity coefficient—a partial derivative of a  state variable with respect to variations in  a  

parameter value; these quantities may vary with time 
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robustness—invariance of a model’s predictions with respect to small variations in its 

parameter values 

This paper will focus on dynamic systems, their transient responses, and their steady-state 

solutions. Arrays will be denoted by boldface type, lower case for vectors and upper case for 

matrices. 

System Sensitivity Theory 

Early engineering models described the output y(t) of a system (e.g. an electrical current) as a 

“transfer” function of the input signal u(t) (e.g. a periodic voltage). The earliest application of 

sensitivity analysis was to predict the effect on output of variations of input as a function of 

frequency [1]. In the 1960s, sensitivity theory was applied to the time domain [2]. Denoting the 

state variables by x(t), the state functions are 

Ý x t( )=
dx t( )

dt
= f x,αα,t( )

x t0( )= x0

 

where αα  is a vector of parameters with nominal values αα  0 and t0 is the initial time. Because of 

measurement and approximation errors, the true parameter values may differ from the nominal 

values by ∆αα . The resulting uncertainty in the computed state variables can be estimated by 

∆x = f x,αα 00 + ∆αα,t( )− f x, αα00 ,t( )[ ]dt∫  

The mapping of the space of parameters into the state space is uniquely determined by the 

functions f(x, αα , t), but this method is computationally extremely demanding for more than a few 

parameters [3]. In some cases, the errors introduced by numerical integration can introduce 

unacceptable inaccuracies in the solution [3]. 

This problem is usually alleviated by defining a sensitivity function S that relates ∆αα . to ∆x. 

Si, j =
∂xi

∂αj
 

Si,j is a sensitivity coefficient. Under certain conditions ∆x can be expanded about the nominal 

solution in a Taylor series and truncated after the first-order terms [3]. This is exact if the state 
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functions are linear and autonomous (not explicit functions of t). Otherwise, it is a reasonable 

approximation for small values of ∆αα .. The linearized sensitivity equations are 

Ý S = JS +
∂f
∂αα

Ji , j =
∂fi

∂x j

 

where the matrix J is the “Jacobian” of the system. The partial derivatives in the above equations 

can rarely be calculated analytically, but they can be computed by finite differences with a 

sufficiently small ∆αα . 

The differential equations for the sensitivity coefficients can be solved along with the state 

equations. The resulting uncertainty in the integrated values of the state variable can then be 

approximated by 

∆x = S∆αα  

where ∆x is called the “supplementary motion” of the system. This approximation is valid as 

long as ∆αα .is sufficiently small. However, for systems in which there are strong interactions 

among the variables, an impractically small increment ∆αα .would be required and unacceptable 

round-off error would accumulate. For steady states, the time derivatives of the sensitivity 

coefficients are zero, and the differential equations reduce to algebraic equations. 

The reliability of a mathematical model is reflected in the  numerical values of the sensitivity 

coefficients. A model must be sensitive to large (relative to typical experimental error) changes 

in parameter values. Otherwise, a wide range of values will produce substantially the same 

behavior and it will not be possible to verify that correct parameter values have been used in the 

simulation. Thus, the structure of the model will be suspect. A model must be robust with respect 

to small (relative to typical experimental error) uncertainties in parameter values. Otherwise, 

small errors in the parameter values will produce large supplementary motions, and the model 

will not be testable. Thus, the predictions of the model will not be reliable. These inferences hold 

even when the parameter value cannot be measured. 
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Sensitivity Analysis of Empirical Models 

The functions f(x, αα , t) for the time derivatives of the state  variables are often unknown or 

too complex to be represented in detail. Thus, the available data may be inadequate to identify all 

the parameter values, and an approximate function must be obtained. One approximation that has 

been proposed [4] is an S-system (‘S’ for synergistic) in which the function is represented by 

empirical power laws. The derivative function is divided into two terms for processes that 

increase and decrease the state variable. 

Ý x 
i = v

i

+ x( )− v
i

− x( )

v
i
+ = αi

x
j

gi ,j

j
∏

v
i
− = βi

x
j
h i, j

j
∏

 

where αi and βi are constants (analogous to rate constants) that characterize the rates of 

production and consumption, respectively, of xi and the g and h parameters are termed kinetic 

orders. The summation is over those variables that contribute to the derivative. Integration of the 

power laws can generate accurate time profiles over a wide range of values for the variables [5]. 

Extrapolation outside this range can lead to significant errors, however. 

The steady-state solution to these equations can be obtained by setting the time derivatives to 

zero. A change of variable yi = ln(xi) gives a set of linear algebraic equations in y with constant 

coefficients which are functions of the rate multipliers and the kinetic orders. These transformed 

equations are easily solved for the state variable values. 

An S-system readily permits calculation of sensitivity coefficients. Differentiation of the 

equations for Ý x 
i  with respect to parameter variations gives 

∂Ý x 
i

∂αi

=
d

dt
∂x

i

∂αi

 

 
  

 

 
  = v

i
+ αi

∂Ý x 
i

∂βi

=
d

dt
∂x

i

∂βi

 

 
  

 

 
  = − v

i
− βi

 

for the sensitivities with respect to the rate multipliers and 
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∂Ý x i
∂gi

=
d
dt

∂xi

∂gi

 

 
  

 

 
  = vi

+ ln xi( )

∂Ý x i
∂hi

= d
dt

∂xi

∂hi

 

 
  

 

 
  = −vi

− ln xi( )
 

for the sensitivities with respect to the kinetic orders. Integration of these equations gives the 

temporal profiles of the sensitivities. 

Sensitivity analysis of S-systems in a steady state is most easily obtained from the equations 

transformed into logarithmic space [6]. The sensitivities of ln(x) to variations in ln(α) or ln(β) 

are zero, and the sensitivities to the kinetic orders are ln(x) for g-parameters and -ln(x) for h-

parameters. These are equivalent to relative sensitivities 

∂ ln x
i( )

∂ln αj( ) =
∂x

i

∂αj

⋅
αj

xi
 

which are especially convenient for comparison of variant models. As long as the solution space 

of x(t) is within the range where the approximate rate equations are valid, these sensitivities will 

be reliable. 

Sensitivity in Metabolic Networks 

The functions f(x, αα , t) in the state equations above are arbitrary, but empirical 

representations such as S-systems may not provide the detail needed for mechanistic 

understanding. When x is a vector of the concentrations of metabolic intermediates, the state 

functions are sums of the rates of the individual enzyme-catalyzed reactions in the pathway being 

modeled. The rate functions include kinetic constants (e.g. Km and Vmax) that can be estimated 

from temporal or initial velocity data obtained with the purified enzyme. The use of the relative 

sensitivity equations obtained for such a system has been termed metabolic control analysis [7]. 

The sensitivity equations have been derived for steady states [8], and attempts have been made to 

extend the theory to transients [9]. 

Metabolic control theory commences from the definition of the time derivatives of the 

metabolite concentrations. 
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Ý x i = Mj ,kvk
k=1

n

∑
j =1

m

∑  

where m is the number of metabolic intermediates, n is the number of reactions, and Mj,k is the 

stoichiometry of metabolite j in reaction k whose rate is vk. To analyze metabolic control in a 

steady state, the time derivatives are set to zero and the resulting linear equations can be solved. 

The rate laws v can be differentiated with respect to each parameter to obtain relative 

sensitivity coefficients called “elasticities.” 

ε j, k =
∂vk

∂αj

⋅
αj

vk
 

These quantities are fundamental properties local to the enzymes, but they determine the global 

regulatory properties of the reaction network. In metabolic control theory, the parameters αα  are 

normally the enzyme concentrations and the enzymatic rate is assumed to vary linearly with this 

quantity. Two additional coefficients are defined; they are the concentration control coefficient 

Ci,k
x =

∂xi

∂vk

⋅
vk

x i
 

and the flux control coefficient 

Ck
J =

∂J
∂vk

⋅
vk

J  

where J is the net flux through the pathway at steady state. The concentration control coefficient 

is the sensitivity of a steady-state metabolite concentration to the activity of an enzyme. The flux 

control coefficient is the sensitivity of the  overall pathway flux to the activity of an enzyme. 

The control coefficients are derived from a linear perturbation analysis. A new steady state 

achieved after an infinitesimal time following an infinitesimal parameter variation is expanded 

about the original state in a Taylor series, which is truncated after the first-order terms. 

Consequently, these sensitivity coefficients are properties of the entire network rather than of 

each enzyme considered in isolation. Yet, as shown above, the control coefficients are dependent 

on the elasticities, which are properties of the isolated enzymes. 

At steady state  and in the absence of conservation constraints or interactions among the 
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enzymes, the above sensitivity coefficients obey the following relations. The connectivity 

theorems [10] state 

Cx εε = − I

CJ εε = 0
 

where Cj is a diagonal matrix of flux control coefficients. Note that the control coefficients are 

specified by the elasticities. The summation theorems [10] state 

Cx I = 0

CJ I = I
 

Simultaneous solution of these linear algebraic equations yields the values of the control 

coefficients. 

The predictions of metabolic control analysis have been tested experimentally [11]. Flux 

control coefficients have been determined by direct modulation of the activity a targeted enzyme 

[12]. Sometimes this was achieved by genetic manipulation [13]. In other cases enzymatic 

activity was reduced by addition of inhibitors [14]. The measured values were found to agree 

with the calculated values. 

Examples from Physiological Modeling 

A physiological model describes an experimental animal or human as a series of spaces 

called “compartments” corresponding to specific anatomical regions. A typical model may 

contain compartments for blood, fat, liver, muscle, and other tissues. Each compartment is 

associated with a volume and a blood perfusion rate. The agent being studied is administered into 

one compartment, distributed by blood flow among the other spaces, and equilibrated between 

the blood and tissue. The equilibrium ratio of concentrations in two compartments is called a 

partition coefficient. In most models, the agent is a chemical that is metabolized by enzymes in 

one or more tissues, and nonlinear functions for the reaction rate are included. The above 

processes constitute pharmacokinetics. The state equations are differential equations for the 

agent and its metabolites. 

In more advanced models, the administered chemical or one of its metabolites participates in 
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other processes that are thought to be involved in the biological response. Examples are 

activation or inhibition of biochemical processes consequent to binding to specific proteins, 

alteration in gene expression by interference with the action of transcription factors, and 

formation of covalent complexes with proteins or DNA. These processes constitute the 

pharmacodynamics of the system; they introduce additional state equations and other quantities 

associated with these chemical species. 

A physiological model of the disposition in rats of inhaled carbon tetrachloride included 

compartments for blood, fat, liver, and consolidated compartments for slowly (muscle, skin, and 

bone) and rapidly (remainder of body) perfused tissues [15]. Metabolism was assumed to be 

confined to the liver, and apparent Vmax and Km values were estimated by fitting data for gas 

uptake from a closed chamber. To identify the physiological parameters that control the 

disposition of the chemical this model was subjected to sensitivity analysis. The predicted 

chamber concentration was sensitive to about half of the parameters, and many of the relative 

sensitivity coefficients displayed striking time dependence. 

The sensitivity to the volume of slowly perfused tissues was high early in the time course, 

reflecting its large volume into which the inhaled gas could be distributed. The sensitivity to the 

fat volume was high late in the time course, because at equilibrium most of the body burden was 

in this tissue, owing to its high partition coefficient. Other compartment volumes had small 

sensitivities. The blood perfusion rate of fat was the only flow rate (aside from overall cardiac 

output) to which the model’s predictions were sensitive. The sensitivity with respect to the 

ventilation rate was significant mainly at early time points. 

The model was sensitive to partition coefficients for blood:air, fat, and slowly perused tissues 

but not for liver or rapidly perfused tissues. As for compartment volumes, the sensitivity to the 

partition coefficient for slowly perfused tissues was high at early time points, and the sensitivity 

to the fat partition coefficient was high at late time points. The sensitivities to the metabolic 

parameters increased as the chamber concentration decreased over time. This behavior is due to 

the decreasing enzymatic elasticity (see above) with increasing substrate concentration, i.e. the 
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reaction rate becomes less sensitive to the substrate concentration as the enzyme approaches 

saturation. 

Sensitivity analysis was performed on a similar physiological model for the disposition of 

inhaled 2-butoxyethanol [16]. In this model, the conversion of the parent to the metabolite was 

represented by several steps. The simulated experiments involved several hours of inhalation of 

the parent chemical followed by several hours during which the chemical and its metabolite 2-

butoxyacetic acid were cleared from the blood. Time profiles were computed for the sensitivities 

of the blood concentrations of parent and metabolite with respect to the dissociation constant of 

2-butoxyethanol for plasma protein, the metabolic parameters, and the metabolite excretion 

parameters. 

The blood concentration of parent was sensitive only to the Vmax and Km of the initial step of 

metabolism, and the sensitivity increased as the chemical was cleared from the blood. The 

metabolite blood concentration was sensitive only to the partition coefficient for slowly perfused 

tissues, reflecting the large volume of this space that is accessible to this polar chemical species. 

The sensitivity of metabolite production decreased during the clearance period, corresponding to 

the falling concentration of the precursor chemical. 

A complex physiological model was developed for the disposition of intravenous and oral 

doses of 2,4,4-trimethyl-2-pentanol in male rats [17]. This model included compartments for 

blood, fat, liver, kidney, gastrointestinal tract, and consolidated compartments for slowly and 

rapidly perfused tissues. Metabolism by oxidation and glucuronidation was included in liver and 

kidneys. The parent chemical binds to a plasma protein found only in male rats, and the liganded 

protein is partly excreted in urine and partly taken up by kidney proximal tubule epithelial cells 

where it accumulates. The model includes enhanced production and re-absorption of the protein 

and reduced proteolysis in kidney lysosomes consequent to ligand binding. A sensitivity analysis 

was performed to identify those adjustable parameters to which the blood and kidney 

concentrations of the chemical and the accumulation of the binding protein in the kidney were 

most sensitive. 
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The pathways represented in this model are complex. In addition to equations for delivery of 

parent chemical to tissues and metabolic clearance, the model includes equations for induction of 

the protein, ligand binding, renal uptake, and proteolytic degradation. Because the state variables 

depend on so many interacting factors, the relative sensitivities of the blood and kidney 

concentrations to the parameters are similar. The variation is greatest at low dose where the 

numerical values of the sensitivity coefficients were smallest. The sensitivities increase in value 

as the dose increases, reflecting the increased rates of the regulatory processes. 

Conclusions 

It appears that simple models such as that for 2-butoxyethanol disposition are sensitive to a 

small subset of the model’s parameters, whereas a complex model such as that for 2,4,4-

trimethyl-2-pentanol is more uniformly sensitive to the parameters. Complexity is only one 

aspect; the identity of the state variable whose sensitivity is of interest is also important. In the 2-

butoxyethanol model, the blood concentrations of parent were sensitive only to the kinetic 

parameters for its metabolic clearance and not to the parameters for further metabolism. Clearly, 

in the absence of metabolism 2-butoxyethanol would rapidly equilibrate with the ambient air and 

all sensitivities would be zero. Thus, the blood concentration is set solely by the kinetic 

parameters for the enzyme that consumes this chemical. 

In the 2,4,4-trimethyl-2-pentanol model, the blood and kidney concentrations of this 

chemical depend on parameters for absorption, distribution to tissues, metabolism, and induction 

of binding protein. As the renal accumulation of binding protein also depends on the amount of 

the parent chemical in blood and tissues as well as hepatic production and renal re-absorption, it 

is sensitive to the same parameters. Because the equations for these effects are not separable, the 

sensitivity coefficients for these variables with respect to each parameter are similar. Thus, the 

ability of sensitivity analysis to identify the critical parameters depends on selection of an 

appropriate state variable that captures the essential features of the biological response. 
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