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In many fields of science and engineering, it is often necessary to predict the effect of some
trestment or intervention on a human subject.. It is unethicd to identify hedth or safety effects
by experiments on humans. Therefore, the biologica responsesto a given trestment are
represented by a mathematica model, which is usualy based on data from animal experiments.
The parameter values for animals can be replaced by vaues for humans. The modd’ s behavior
under various imposed boundary conditions predicts the human response to an actud treatment.
All moddls are smplifications—often idedlizations—of the redl system, and excessve
amplification may reduce the modd’ s rdiability. Predictions may aso be unrdiable because of
restricted accuracy of the data on which the mode is based. One method by which the reliability
of the predictions can be assessed is sengtivity anayss.

Definitions

A mathematica model comprises equations for the ingtantaneous state of a system given the
imposed conditions. This may be afunction of time. Terms used in modding follow.

state variable—the quantities that specify the instantaneous description (state) of the system

independent variable—the dimension (typicdly time) over which the Sate of the system

changes

state equations—equations that specify the Sate variables as functions of the independent

vaiable (typicdly differentid equationsin adynamic modedl)

boundary conditions—congraints that specify the particular solution of the Sate equations;

e.g. initid vaues of the State variables or the rate of input to a process in the model
transient—the tempord profile of the Sate variables after a perturbation in the boundary
conditions

steady state—a solution of the State equations when the time derivatives of the Sate

vaiablesare dl set to zero; dso cdled astationary state

par ameter s—congtants (as opposed to variables) in the state equations

sengitivity coefficient—a partid derivative of a state variable with respect to variationsin a

parameter value, these quantities may vary with time



r obustness—invariance of amodd’s predictions with respect to smdl variaionsin its
parameter values

This paper will focus on dynamic systems, their trangent responses, and their steedy- state
solutions. Arrayswill be denoted by boldface type, lower case for vectors and upper case for
matrices.
System Sensitivity Theory

Early engineering modds described the output y(t) of a system (e.g. an dectrica current) asa
“trandfer” function of theinput sgnd u(t) (e.g. a periodic voltage). The earliest gpplication of
sengitivity andysis was to predict the effect on output of variations of input as afunction of
frequency [1]. In the 1960s, sengtivity theory was gpplied to the time domain [2]. Dencting the

date variables by x(t), the Sate functions are
(1) = dz_f) - f(x,a1)

x(6)=x,
wherea isavector of parameterswith nomina vauesa o and tp istheinitid time. Because of
measurement and approximation errors, the true parameter values may differ from the nomind

vaues by Da . The resulting uncertainty in the computed state variables can be estimated by

Dx = (‘{f(x,ao + Da,t)- f(x,ao,t)]dt
The mapping of the space of parameters into the state space is uniquely determined by the
functionsf(x, a, t), but this method is computationdly extremely demanding for more than afew
parameters [3]. In some cases, the errors introduced by numerical integration can introduce

unacceptable inaccuracies in the solution [3].

This problem isusudly dleviated by defining a sengtivity function S that relates Da . to Dx.
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S,j isasengtivity coefficient. Under certain conditions Dx can be expanded about the nomina

solution in a Taylor series and trunceted after the firgt-order terms [3]. Thisis exact if the state



functions are linear and autonomous (not explicit functions of t). Otherwise, it is areasonable

goproximation for small vaues of Da .. The linearized sengtivity equations are

¥= 35+ L
Ta

where the matrix J isthe “ Jacobian” of the system. The partia derivatives in the above equations
can rarely be caculated andyticdly, but they can be computed by finite differences with a
aufficently smdl Da .

The differential equations for the sengtivity coefficients can be solved adong with the state
equations. The resulting uncertainty in the integrated values of the state variable can then be
approximated by

Dx = SDa
where Dx is cdled the * supplementary motion” of the system. This gpproximation isvalid as
long as Da .is sufficently smdl. However, for sysems in which there are strong interactions
among the variables, an impracticaly smdl increment Da .would be required and unacceptable
round-off error would accumulate. For steedy Stetes, the time derivatives of the sengitivity
coefficients are zero, and the differential equations reduce to algebraic equations.

Therdiability of amahematicd modd isreflected in the numerica vaues of the sengtivity
coefficients. A modd must be sensitive to large (relative to typica experimentd error) changes
in parameter vaues. Otherwise, awide range of vaues will produce subgtantidly the same
behavior and it will not be possible to verify that correct parameter values have been used in the
smulation. Thus, the sructure of the modd will be suspect. A modd must be robust with respect
to smal (reative to typica experimenta error) uncertainties in parameter vaues. Otherwise,
smal errorsin the parameter vaues will produce large supplementary motions, and the model
will not be testable. Thus, the predictions of the modd will not be religble. These inferences hold

even when the parameter value cannot be measured.



Sensitivity Analysis of Empirical Models

Thefunctionsf(x, a, t) for the time derivatives of the State variables are often unknown or
too complex to be represented in detail. Thus, the available data may be inadequate to identify al
the parameter values, and an gpproximate function must be obtained. One approximation that has
been proposed [4] isan S-system ('S for synergistic) in which the function is represented by
empirica power laws. The derivative function is divided into two terms for processes that
increase and decrease the state variable.

X=v'(x)- v (x)
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where a; and b; are constants (analogous to rate constants) that characterize the rates of
production and consumption, respectively, of x; and the g and h parameters are termed kinetic
orders. The summation is over those variables that contribute to the derivative. Integration of the
power laws can generate accurate time profiles over awide range of valuesfor the variables [5].
Extrapolation outsde this range can lead to sgnificant errors, however.

The steady- state solution to these equations can be obtained by setting the time derivatives to
zero. A change of varigbley; = In(x;) gives a st of linear agebraic equationsin y with constant
coefficients which are functions of the rate multipliers and the kinetic orders. These transformed
equations are easily solved for the Sate variable vaues.

An S-system readily permits calculation of sensitivity coefficients. Differentiation of the

equations for X with respect to parameter variations gives
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for the sengtivities with respect to the rate multipliers and
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for the sengtivities with respect to the kinetic orders. Integration of these equations givesthe
tempord profiles of the sengtivities.

Sengtivity andyss of S-systemsin a Seady State is most easily obtained from the equations
transformed into logarithmic space [6]. The sengtivities of In(x) to variaionsinin(@) or In(b)
are zero, and the sengtivities to the kinetic orders are In(x) for g-parameters and -In(x) for h-
parameters. These are equivdent to relative sengtivities
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which are especidly convenient for comparison of variant models. Aslong as the solution space
of x(t) iswithin the range where the approximete rate equations are valid, these sengtivities will
berdiable.
Senditivity in Metabolic Networks

Thefunctionsf(x, a, t) in the Sate equations above are arbitrary, but empirical
representations such as S-systems may not provide the detail needed for mechanistic
understanding. When x is avector of the concentrations of metabolic intermediates, the State
functions are sums of the rates of the individua enzyme-catalyzed reactions in the pathway being
modeled. The rate functions include kinetic constants (e.g. K, and Vimax) that can be estimated
from tempord or initia velocity data obtained with the purified enzyme. The use of the rdlative
sengitivity equations obtained for such a system has been termed metabolic control andysis[7].
The sengtivity equations have been derived for Steady states [8], and attempts have been made to
extend the theory to transents[9].

Metabolic control theory commences from the definition of the time derivetives of the

metabaolite concentrations.
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where m is the number of metabolic intermediates, n is the number of reactions, and M; k isthe
goichiometry of metabolite j in reaction k whose rate is vi. To andyze metabolic control in a
seady dtate, the time derivatives are set to zero and the resulting linear equations can be solved.

Therate laws v can be differentiated with respect to each parameter to obtain relative
senstivity coefficients cdled “ dadticities”

_ e &

= %
‘ﬂaj v,

€,
These quantities are fundamenta properties loca to the enzymes, but they determine the globa
regulatory properties of the reaction network. In metabolic control theory, the parametersa  are
normally the enzyme concentrations and the enzyméic rate is assumed to vary linearly with this

quantity. Two additiond coefficients are defined; they are the concentration control coefficient

Gl =
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and the flux control coefficient
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where J isthe net flux through the pathway at steady State. The concentration control coefficient
isthe sengtivity of a steady-sate metabolite concentration to the activity of an enzyme. The flux
control coefficient is the sensitivity of the overdl pathway flux to the activity of an enzyme.

The control coefficients are derived from alinear perturbation andysis. A new steedy dtate
achieved after an infinitesmal time following an infinitesmal parameter variation is expanded
about the origind state in a Taylor series, which istruncated after the firs-order terms.
Consequently, these sengitivity coefficients are properties of the entire network rather than of
each enzyme consdered in isolation. Y &, as shown above, the control coefficients are dependent
on the eladticities, which are properties of the isolated enzymes.

At steady state and in the absence of conservation congtraints or interactions among the



enzymes, the above sengtivity coefficients obey the following relations. The connectivity
theorems[10] state
Ce=-1
C’e=0
where C! is adiagona matrix of flux control coefficients. Note that the control coefficients are
Specified by the dadticities. The summation theorems [10] state
C1=0
C’l =1
Simultaneous solution of these linear dgebraic equations yields the vaues of the control
coefficients.

The predictions of metabolic control analysis have been tested experimentaly [11]. Flux
control coefficients have been determined by direct modulation of the activity a targeted enzyme
[12]. Sometimes this was achieved by genetic manipulation [13]. In other cases enzymatic
activity was reduced by addition of inhibitors[14]. The measured vaues were found to agree
with the caculated vaues.

Examples from Physiological Modeling

A physiologicad modd describes an experimental anima or human as a series of spaces
caled “compartments’ corresponding to specific anatomica regions. A typica modd may
contain compartments for blood, fat, liver, muscle, and other tissues. Each compartment is
associated with avolume and ablood perfusion rate. The agent being studied is administered into
one compartment, distributed by blood flow among the other spaces, and equilibrated between
the blood and tissue. The equilibrium retio of concentrations in two compartmentsis cdled a
partition coefficient. In most modds, the agent isachemica that is metabolized by enzymesin
one or more tissues, and nonlinear functions for the reaction rate are included. The above
processes condtitute pharmacokinetics. The state equations are differential equations for the
agent and its metabolites.

In more advanced models, the administered chemica or one of its metabolites participatesin



other processes that are thought to be involved in the biologica response. Examples are
activation or inhibition of biochemica processes consequent to binding to specific proteins,
dteration in gene expression by interference with the action of transcription factors, and
formation of covalent complexes with proteins or DNA. These processes conditute the
pharmacodynamics of the system; they introduce additional state equations and other quantities
associated with these chemica species.

A physiological modd of the disposition in rats of inhaled carbon tetrachloride included
compartments for blood, fat, liver, and consolidated compartments for dowly (muscle, skin, and
bone) and rapidly (remainder of body) perfused tissues[15]. Metabolism was assumed to be
confined to the liver, and apparent Vimax and K, vaues were estimated by fitting deta for gas
uptake from a closed chamber. To identify the physiological parameters that control the
disposition of the chemica this mode was subjected to sensitivity analyss. The predicted
chamber concentration was sengtive to about half of the parameters, and many of the relaive
sengitivity coefficients displayed striking time dependence.

The sengtivity to the volume of dowly perfused tissues was high early in the time course,
reflecting its large volume into which the inhaled gas could be distributed. The sensitivity to the
fat volume was high late in the time course, because a equilibrium most of the body burden was
in thistissue, owing to its high partition coefficient. Other compartment volumes had smdll
sengtivities. The blood perfusion rate of fat was the only flow rate (asde from overdl cardiac
output) to which the modd’ s predictions were sengtive. The sengtivity with respect to the
ventilation rate was Sgnificant mainly & early time points.

The moded was sengtive to partition coefficients for blood:air, fat, and dowly perused tissues
but not for liver or rapidly perfused tissues. Asfor compartment volumes, the sengtivity to the
partition coefficient for dowly perfused tissues was high at early time points, and the sengtivity
to the fat partition coefficient was high & late time points. The sengtivities to the metabolic
parameters increased as the chamber concentration decreased over time. This behavior is dueto

the decreasing enzymétic dadticity (see above) with increasing substrate concentration, i.e. the



reaction rate becomes less sendtive to the substrate concentration as the enzyme approaches
saturation.

Sengtivity analyss was performed on asmilar physiologica model for the digposition of
inhaded 2-butoxyethanol [16]. In this mode, the conversion of the parent to the metabolite was
represented by severd steps. The smulated experiments involved severd hours of inhaation of
the parent chemica followed by severd hours during which the chemicd and its metabolite 2-
butoxyacetic acid were cleared from the blood. Time profiles were computed for the sengtivities
of the blood concentrations of parent and metabolite with respect to the dissociation constant of
2-butoxyethanal for plasma protein, the metabolic parameters, and the metabolite excretion
parameters.

The blood concentration of parent was sengtive only to the Vinax and K, of theinitid step of
metabolism, and the sengtivity increased as the chemica was cleared from the blood. The
metabolite blood concentration was sengtive only to the partition coefficient for dowly perfused
tissues, reflecting the large volume of this space that is accessible to this polar chemical species.
The sensitivity of metabolite production decreased during the clearance period, corresponding to
the falling concentration of the precursor chemicdl.

A complex physiological modd was developed for the disposition of intravenous and ora
doses of 2,4,4-trimethyl-2-pentanol in maerats[17]. Thismode included compartments for
blood, fat, liver, kidney, gastrointestinal tract, and consolidated compartments for dowly and
rapidly perfused tissues. Metabolism by oxidation and glucuronidation wasincluded in liver and
kidneys. The parent chemica binds to a plasma protein found only in mae rats, and the liganded
protein is partly excreted in urine and partly taken up by kidney proxima tubule epithdlid cells
where it accumulates. The modd includes enhanced production and re-absorption of the protein
and reduced proteolysis in kidney lysosomes consequent to ligand binding. A sengtivity andysis
was performed to identify those adjustable parameters to which the blood and kidney
concentrations of the chemica and the accumulation of the binding protein in the kidney were

mogt sendtive,
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The pathway's represented in this model are complex. In addition to equations for delivery of
parent chemical to tissues and metabolic clearance, the modd includes equations for induction of
the protein, ligand binding, rend uptake, and proteolytic degradation. Because the Sate variables
depend on so many interacting factors, the relative sengtivities of the blood and kidney
concentrations to the parameters are Smilar. The variation is greatest at low dose where the
numerica values of the sengtivity coefficients were smalest. The sengtivitiesincrease in vaue
as the dose increases, reflecting the increased rates of the regulatory processes.

Conclusions

It gppears that Smple models such asthat for 2-butoxyethanol digpostion are sendtiveto a
small subset of the modd’ s parameters, whereas a complex model such asthat for 2,4,4-
trimethyl- 2- pentanol is more uniformly sengtive to the parameters. Complexity is only one
agpect; the identity of the Sate variable whose sengitivity is of interest is dso important. In the 2-
butoxyethanol model, the blood concentrations of parent were sensitive only to the kinetic
parameters for its metabolic clearance and not to the parameters for further metabolism. Clearly,
in the absence of metabolism 2-butoxyethanol would rapidly equilibrate with the ambient air and
al sengtivitieswould be zero. Thus, the blood concentration is set soldly by the kinetic
parameters for the enzyme that consumes this chemica.

In the 2,4,4-trimethyl- 2- pentanol modd, the blood and kidney concentrations of this
chemica depend on parameters for absorption, distribution to tissues, metabolism, and induction
of binding protein. Asthe rena accumulation of binding protein aso depends on the amount of
the parent chemica in blood and tissues as well as hepatic production and rend re-absorption, it
is sendtive to the same parameters. Because the equations for these effects are not separable, the
sengtivity coefficients for these variables with respect to each parameter are smilar. Thus, the
ability of sengtivity andyssto identify the critica parameters depends on selection of an
appropriate state variable that captures the essential features of the biologica response.
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