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Abstract 

A sequence of linear, monotonic, and nonmonotonic test problems is used to illustrate sampling-based uncertainty 

and sensitivity analysis procedures.  Uncertainty results obtained with replicated random and Latin hypercube 

samples are compared, with the Latin hypercube samples tending to produce more stable results than the random 

samples.  Sensitivity results obtained with the following procedures and/or measures are illustrated and compared: 

correlation coefficients (CCs), rank correlation coefficients (RCCs), common means (CMNs), common locations (CLs), 

common medians (CMDs), statistical independence (SI), standardized regression coefficients (SRCs), partial 

correlation coefficients (PCCs), standardized rank regression coefficients (SRRCs), partial rank correlation coefficients 

(PRCCs), stepwise regression analysis with raw and rank-transformed data, and examination of scatterplots.  The 

effectiveness of a given procedure and/or measure depends on the characteristics  of the individual test problems, 

with (i) linear measures (i.e., CCs, PCCs, SRCs) performing well on the linear test problems, (ii) measures based on 

rank transforms (i.e., RCCs, PRCCs, SRRCs) performing well on the monotonic test problems, and (iii) measures 

predicated on searches for nonrandom patterns (i.e., CMNs, CLs, CMDs, SI) performing well on the nonmonotonic 

test problems. 
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1.  Introduction 

Sampling-based methods for uncertainty and sensitivity analysis have become very popular (e.g., Refs. [1-13]).  

Such methods involve the generation and exploration of a mapping from uncertain analysis inputs to uncertain 

analysis results (e.g., Refs. [14-23]). 

The analysis or model under consideration can be represented by a vector function 

( ) ( )= =y y x f x   (1) 

where 

[ ]1 2, , , nXx x x= Kx  (2) 

and 

[ ]1 2, , , nYy y y= Ky   (3) 

designate the inputs to the analysis and the outcomes of the analysis, respectively.  In real analyses, the dimensions 

nX and nY of x and y can be large (e.g., >100).  Further, the function f can be quite complex (e.g., a model that 

involves the numerical solution of a system of nonlinear partial differential equations or possibly a probabilistic risk 

assessment for a complex engineered facility such as a nuclear power plant). 

If the value for x was unambiguously known, then y(x) could be determined and presented as the unique 

outcome of the analysis.  However, there is uncertainty with respect to the appropriate value to use for x in most 

analyses, with the result that there is also uncertainty in the value of y(x).  The uncertainty in x and its associated 

effect on y(x) lead to two closely related questions: (i) “What is the uncertainty in y(x) given the uncertainty in x?”, 

and (ii) “How important are the individual elements of x with respect to the uncertainty in y(x)?”  Attempts to answer 

these two questions are typically referred to as uncertainty analysis and sensitivity analysis, respectively. 

An assessment of the uncertainty in y derives from a corresponding assessment of the uncertainty in x.  In 

particular, y is assumed to have been developed so that appropriate analysis results are obtained if the appropriate 

value for x is used in the evaluation of y.  Unfortunately, it is impossible to unambiguously specify the appropriate 

value of x in most analyses; rather, there are many possible values for x of varying levels of plausibility.  Such 

uncertainty is often given the designation subjective or epistemic (e.g., Refs. [24-31]) and is characterized by 

assigning a distribution  

1 2, , , nXD D DK  (4) 
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to each element xi of x.  Correlations and other restrictions involving the xi are also possible.  These distributions 

and any associated conditions characterize a degree of belief as to where appropriate value of each variable xi is 

located for use in evaluation of y and in turn lead to distributions for the individual elements of y.  Given that the 

distributions in Eq. (4) characterize a degree of belief with respect to where the appropriate input to use in the 

analysis is located, the resultant distributions for the elements of y characterize a corresponding degree of belief with 

respect to where the appropriate values of the outcomes of the analysis are located.  The distributions in Eq. (4) are 

often developed through an expert review process (e.g., Refs. [32-53]). 

Sampling-based methods for uncertainty and sensitivity analysis are based on a sample 

1 2 ,, , , , 1, 2, , ,k k k knXx x x k nS = = K Kx  (5) 

of size nS from the possible values for x as characterized by the distributions in Eq. (4) and on the corresponding 

evaluations 

( ) ( ) ( ) ( )1 2, , , , 1, 2, , ,k k k nY ky y y k nS= =  K Ky x x x x  (6) 

of y.  The pairs 

( ), , 1, 2, , ,k k k nS=   Kx y x  (7) 

form a mapping from the uncertain analysis inputs (i.e., the xk’s) to the corresponding uncertain analysis results (i.e., 

the y(xk)’s). 

When an appropriate probabilistic procedure, such as random sampling or Latin hypercube sampling,[54] has 

been used to generate the sample in Eq. (5) from the distributions in Eq. (4), the resultant distributions for the 

elements of y characterize the uncertainty in the results of the analysis (i.e., constitute the outcomes of an 

uncertainty analysis).  Further, examination of scatterplots, regression analysis, partial correlation analysis, and other 

procedures for investigation the mapping in Eq. (7) provide a way to determine the effects of the elements of x on the 

elements of y (i.e., constitute procedures for sensitivity analysis).  

The purpose of this presentation is to use selected test problems from a recent book on sensitivity analysis[55] 

to illustrate sampling-based methods for uncertainty and sensitivity analysis.  No attempt is made to present results 

for all test problems.  Rather, the problems to be discussed were selected because they either provided representative 

results or interesting analysis challenges.  All the problems involve a single analysis outcome and thus have the form  

( )y f= x  (8) 

rather than the more common and complex vector form in Eq. (1). 
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To illustrate the effects of sampling procedures, each problem is evaluated with 10 independent Latin hypercube 

samples (LHSs) of size 100 each and also 10 independent random samples of size 100 each.  Sensitivity analysis 

results will be presented for 1 LHS of size 100 (i.e., nLHS = 100); in some instances, sensitivity analysis results will 

also be presented for the 1000 sample elements that result from pooling the 10 LHSs (i.e., nLHS = 1000).  The 

sensitivity analysis procedures and/or measures considered will include correlation coefficients (CCs), rank 

correlation coefficients (RCCs), common means (CMNs), common locations (CLs), common medians (CMDs), 

statistical independence (SI), standardized regression coefficients (SRCs), partial correlation coefficients (PCCs), 

standardized rank regression coefficients (SRRCs), partial rank correlation coefficients (PRCCs), stepwise regression 

analysis with raw and rank-transformed data, and examination of scatterplots.   

It is hoped that the presentation of these results will help the reader develop insights with respect to the 

behavior and effectiveness of the techniques under consideration.  Use of these relatively simple test problems has 

several advantages over the use of more complex problems, including (i) clear specification of the model under 

consideration, (ii) low computational cost that allows the consideration of replicated samples and samples of different 

sizes, and (iii) the opportunity for independent solution of the problems by the interested reader. 

The presentation is organized as follows.  The uncertainty and sensitivity analysis procedures in use are briefly 

described (Sect. 2).  Then, example analyses involving linear test problems (Sect. 3), monotonic test problems 

(Sect. 4), and nonmonotonic test problems (Sect. 5) are presented.  Finally, the presentation ends with a concluding 

discussion (Sect. 5). 

2.  Uncertainty and Sensitivity Analysis Procedures 

This presentation will illustrate the use of both random sampling and Latin hypercube sampling in the generation 

of the mapping between analysis inputs and analysis results in Eqs. (5)–(7).  For convenience in distinguishing 

between sampling procedures in subsequent discussions, random and LHSs will be referred to as being of size nR 

and nLHS, respectively, rather than of size  nS as in Eqs. (5)–(7). 

In the absence of correlations between the elements of x, random sampling operates in the following manner to 

generate the sample in Eq. (5).  To produce xk, each element xki, i = 1, 2, …, nX, of xk is randomly selected from its 

distribution Di in Eq. (4).  This sampling is carried out independently for each xk to produce the nR (i.e., nS) sample 

elements in Eq. (5). 

Unlike random sampling, Latin hypercube sampling is a stratified sampling technique, and the sample elements 

xk in Eq. (5) cannot be generated independently of each other.  In the absence of correlations between the elements 

of x, Latin hypercube sampling operates in the following manner to generate the sample in Eq. (5).  The range of each 

variable (i.e., the xi, i = 1, 2, …, nX) is divided into nLHS intervals of equal probability and one value is selected at 
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random from each interval in consistency with the distributions in Eq. (4).  The nLHS values thus obtained for x1 are 

paired at random and without replacement with the nLHS values obtained for x2.  These nLHS pairs are combined in a 

random manner without replacement with the nLHS values of x3 to form nLHS triples.  This process is continued until 

a set of nLHS nX-tuples is formed.  This set of nX-tuples constitutes an LHS of size nLHS (i.e., the sample of size nS 

in the context of Eq. (5)). 

Unlike random sampling, Latin hypercube sampling ensures a full stratification over the range of each sampled 

variable.  Additional discussion and illustration of random and Latin hypercube sampling is given in Sect. 6.3 of Ref. 

[56].  Correlations can be imposed on both random and LHSs with a restricted pairing technique developed by Iman 

and Conover [57-59]. None of the test problems under consideration involve correlated variables; thus, there was no 

requirement to induce nonzero correlations between variables.  However, the restricted pairing technique was used to 

assure that correlations between sampled variables were close to zero (see Sect 3.2 of Ref. [19] for an introductory 

description of this technique). 

Both random and Latin hypercube sampling provide a basis for uncertainty analysis.  In particular, each sample 

element can be assigned a weight (i.e., a probability in common but incorrect usage) equal to the reciprocal of the 

sample size that can be used in the construction probabilistic representations of the uncertainty in analysis 

outcomes.  Possible representations include cumulative distribution functions (CDFs), complementary cumulative 

distribution functions (CCDFs), box plots, and means and standard deviations (Sect. 6.5, Ref. [56]).  This presentation 

will use CDFs to display the uncertainty in the outcomes of the test problems. 

The simplest procedure for exploring the mapping in Eq. (7) is the examination of scatterplots, which are plots 

with the values of a sampled variable on one axis and the corresponding values of the analysis outcome on the other 

axis.  Specifically, a scatterplot is simply a plot of the points 

( ), , 1,2, , ,ki kx y k nS= K  (9) 

for the uncertain variable xi in the sample in Eq. (5). 

A simple but formal method to assess the relationship between analysis input and analysis results is to calculate 

CCs between sampled variables and corresponding analysis outcomes.  For the sequence of observations in Eq. (9), 

the (sample or Pearson) correlation yxi
r  between xi and y is defined by 

( )( )

( ) ( )

1 ,1 / 2 1 / 2
2 2

1 1

n S
k i i k

k
x yi n S n S

k i i k
k k

x x y y
r

x x y y

− −
==

   
   − −
   = =   

∑

∑ ∑

 (10) 
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where 

 
1 1

/ , /
nS nS

k i ki
k k

y y nS x x nS
= =

= =∑ ∑ . 

The CC x yir  takes values between –1 and 1 and provides a measure of the linear relationship between xi and y.  The 

quantity x yiz r nS=  is distributed approximately normally with mean 0 and standard deviation 1 when xi and y are 

uncorrelated, xi and y have enough convergent moments (i.e., the tails of their distributions die off sufficiently 

rapidly), and nS is sufficiently large (p. 631, Ref. [60]), and thus can be used to test for the significance of yxi
r  (i.e., to 

determine the probability, or p-value, that a CC yxi
r~  satisfying yxyx ii

rr ≥~  would occur by chance in the presence of 

no relationship between xi and y; see Eqs. (6.6.38) – (6.6.40) in Ref. [56] for additional discussion). 

The CC x yir  measures the effect of one variable (i.e., xi) at a time on y.  Regression analysis can be used to 

assess the combined effects of multiple variables on y.  Specifically, least squares procedures can be used to 

construct the regression model 

,0
1

ˆ
nX

i i
i

y b b x+
=

= ∑  (11) 

where b0, b1, …, bnX are coefficients determined in the construction of the regression model ([61-65]; Sect. 6.6.2, Ref. 

[56]). The signs of the coefficients b1, b2, …, bnX indicate whether y increases (i.e., a positive coefficient) or 

decreases (i.e., a negative coefficient) as the corresponding x value increases.  Further, the regression model in Eq. 

(11) has associated with it a quantity called an R2 value, or coefficient of determination, that is equal to the fraction of 

the uncertainty in y that can be accounted for by the regression model (see Eqs. (6.6.11) and (6.6.14), Ref. [56]).  

When the variables x1, x2, …, xnX are independent, 

2 2 2 2
1 2 nXR R R R= + + +L , (12) 

where 2, 1,2,..., ,iR i nX=  is the R2 value that results from regressing y on only xi. 

The usefulness of the coefficients b1, b2, …, bnX in Eq. (11) in sensitivity analysis is severely limited by the fact 

that they depend on the units in which y and the xi are expressed.  Because of this, the regression model in Eq. (11) is 

usually expressed in the following normalized form: 

( ) ( )( )
1

ˆ ˆ ˆ ˆ ˆ
nX

i i i i i
i

y y s b s s x x s
=

− = −∑ , (13) 

where 
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( ) ( ) ( ) ( )
1/2 1/2

2 2

1 1

ˆ ˆ1 , 1 ,
nS nS

k i ki i
k k

s y y nS s x x nS
= =

   
= − − = − −   

      
∑ ∑  

and y and ix are defined in conjunction with Eq. (10).  The coefficients /ˆ ˆi ib s s  appearing in Eq. (13) are called 

standardized regression coefficients (SRCs).  When the xi are independent, the absolute value of the SRCs can be 

used to provide a measure of variable importance.  Specifically, the coefficients provide a measure of importance 

based on the effect of moving each variable away from its expected value by a fixed fraction of its standard deviation 

while retaining all other variables at their expected values.  Calculating SRCs is equivalent to performing the 

regression analysis with the input and output variables normalized to mean zero and standard deviation one. 

Determination of the regression coefficients in Eq. (11) and the SRCs in Eq. (13) is based entirely on procedures 

involving minimization of functions and algebraic manipulations and entails no statistics.  If desired, formal statistical 

procedures can be used to indicate if these coefficients appear to be different from zero (Sect. 6.6.3, Ref. [56]).  In 

particular, these procedures provide the probability (i.e., the p-value) that a stronger linear relationship would appear 

by chance alone if there was no relationship between the variables involved.  However, such procedures are based 

on assumptions that are not satisfied in sampling-based sensitivity studies of deterministic models (i.e., models for 

which a given input always produces the same result), and thus the outcome of using formal statistical procedures to 

make assessments about the significance of individual coefficients or other entities in sampling-based sensitivity 

studies should be regarded simply as one form of guidance as to whether or not a model prediction appears to be 

affected by a particular model input. 

When many uncertain variables are under consideration (i.e., when nX is large), construction and presentation of 

the regression models in Eqs. (10) and (12) with all nX variables is unwieldy and typically unnecessary.  In this 

situation, the regression models are usually constructed in a stepwise manner in which one variable at a time is added 

to the regression model until a point is reached at which no additional significant variables can be identified (i.e., a 

stepwise regression analysis is carried out; see Sect. 6.6.5, Ref. [56]).  Variable importance is indicated by the order in 

which the variables enter the regression model, the size of the SRCs for the individual variables, and the changes in 

R2 values as successive variables enter the regression model.  A specified significance level (i.e., p-value) is usually 

used to define a stopping point for the stepwise procedure. 

The CC x yir  is perhaps best interpreted in the context of regression analysis.  Specifically, the following 

regression model relating x and y can be constructed with least squares procedures:  

0ˆ i iy b b x= + . (14) 

The definition of x yir in Eq. (10) is equivalent to the definition  
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( ) ( )1 /22
x y i iir sign b R= , (15) 

where sign(bi) = 1 if bi ≥ 0, sign(bi) = −1 if bi < 0 and 2
iR  is the coefficient of determination that results from 

regressing y on xi.  Thus, x yir  captures both the sign of the regression coefficient bi and the fraction of the 

uncertainty in y that can be accounted for by a linear relationship involving xi; further, if bi is a SRC, then x y iir b= . 

The CC x yir  represents the linear relationship between xi and y but makes no correction for the possible effects 

on y of other uncertain variables.  The PCC provides a representation of the linear relationship between two variables 

after a correction has been made to remove the linear effects of all other variables in the analysis (Sect. 8.4, Ref. [56]).  

The PCC between an individual variable xi and y is obtained from the use of a sequence of regression models.  First, 

the following two regression models are constructed: 

0 0
1 1

ˆ ˆ and .
nX nX

i p p p p
p p
p i p i

x c c x y b b x
= =
≠ ≠

= + = +∑ ∑  (16) 

Then, the results of the two preceding regressions are used to define the new variables ˆi ix x− and ˆy y− .  The PCC 

x yip between xi and y is the CC between ˆi ix x− and yy ˆ− .  Thus, the PCC provides a measure of the linear 

relationship between xi and y with the linear effects of the other variables removed. 

Thus far, CCs, SRCs and PCCs have been introduced as measures of the relationship between uncertain (i.e., 

sampled) variables and analysis results.  These coefficients are based on determining linear relationships and 

typically perform poorly when the underlying relationships are nonlinear.  When these relationships are nonlinear, 

but still monotonic, the rank transformation can be used to linearize the underlying relationships between sampled 

and calculated variables ([66, 67]; Sect. 8.6, Ref. [56]).  With the rank transformation, data are replaced with their 

corresponding ranks, and then the usual regression and correlation procedures are performed on these ranks.  

Specifically, the smallest value of each variable is assigned the rank 1, the next largest value is assigned the rank 2, 

and so on up to the largest value, which is assigned the rank nS, where nS denotes the number of observations (i.e., 

samples).  Further, averaged ranks are assigned to equal values of a variable.  The analysis is then performed with 

these ranks being used as the values for the input and output variables.  The outcomes of such analysis are RCCs, 

SRRCs and PRCCs instead of CCs, SRCs and PCCs, respectively.  In essence, the use of rank-transformed data 

results in an analysis based on the strength of monotonic relationships rather than on the strength of linear 

relationships.  

When regression-based approaches to sensitivity analysis  (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) do not 

yield satisfactory insights, important variables can be searched for by attempting to identify patterns in the mapping 

in Eq. (7) with techniques that are not predicated on searches for linear or monotonic relationships.  Possibilities 

include use of (i) the F-statistic to identify changes in the mean value of y across the range of individual xi’s, (ii) the 
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χ2-statistic to identify changes in the median value of y across the range of individual xi’s (iii) the Kruskal-Wallis 

statistic to identify changes in the distribution of y across the range of individual xj’s, and (iv) the χ2-statistic to 

identify nonrandom joint distributions involving y and individual xi’s [68, 69].  For convenience, the preceding are 

referred to as tests for (i) common means (CMNs), (ii) common medians (CMDs), (iii) common locations (CLs), and 

(iv) statistical independence (SI), respectively. 

The preceding statistics are based on dividing the values of xi in Eq. (9) into intervals.  Typically, these intervals 

contain equal numbers of values for xi (i.e., the intervals are of equal probability); however, this is not always the 

case (e.g., when xi has a finite number of values of unequal probability).  The calculation of the F-statistic for CMNs 

and the Kruskal-Wallis statistic for CLs involves only the division of xi into intervals.  The F-statistic and the 

Kruskal-Wallis statistic are then used to indicate if the y values associated with these intervals appear to have 

different means and distributions, respectively.  The χ2-statistic for CMDs involves a further partitioning of the y 

values into values above and below the median for all y in Eq. (9), with the corresponding significance test used to 

indicate if the y values associated with the individual intervals defined for xi appear to have medians that are different 

from the median for all values of y.  The χ2-statistic for SI involves a partitioning of the y values in Eq. (9) into 

intervals of equal probability analogous to the partitioning of the values of xi, with the corresponding significance 

test used to indicate if the distribution of the points (xki, yk) over the resultant cells appears to be different from what 

would be expected if there was no relationship between xi and y.  For each statistic, a p-value can be calculated which 

corresponds to the probability of observing a stronger pattern than the one actually observed if there is no 

relationship between xi and y.  An ordering of p-values then provides a ranking of variable importance (i.e., the 

smaller the p-value, the stronger the effect of xi on y appears to be).  More detail on these and other related 

procedures is given in Refs. [68, 69]. Further, the use of tests based on CMNs, CMDs, CLs and SI is extensively 

illustrated in the analyses for the individual test problems. 

3.  Linear Test Problems 

The first linear test problem (Model 1, Ref. [55] ) is defined by 

( ) [ ]
3

1 2 3
1

, , , ,i
i

f x x x x
=

= =∑x x  (17) 

with 1: ( , ), 3 ,i
i i i i i ix U x x x −− σ + σ =  0.5i ixσ =  for i = 1, 2, 3, and x:U(a, b) used to indicate that x has a uniform 

distribution on [a, b].  Thus, the Di , i =1, 2, 3, in Eq. (4) correspond to uniform distributions in this test problem. 

The distributions assigned to the xi lead to a distribution for f(x), with Latin hypercube sampling tending to 

produce more stable estimates of this distribution than random sampling (Fig. 1). 
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For the nLHS = 100, CCs, RCCs, CMNs, CLs, CMDs and SI all identify x3 as the most important variable; CCs 

and RCCs also indicate an effect for x2 (Table I).  Due to the large size of the p-values (i.e., > 0.05), CMNs, CLs, 

CMDs and SI do not indicate an effect for x2, and none of the tests indicate an effect for x1. 

The division of the x and y values for use in the test for SI is illustrated in Fig. 2.  The tests for CMNs and CLs 

only use the indicated divisions of the x-axis.  The test for CMDs uses the indicated divisions of the x-axis and an 

additional division of the y-axis into values above and below the median.  

For nLHS = 1000, CCs, RCCs, CMNs, CLs, CMDs and SI identify x3 and x2 as the two most important variables 

(Table I).  Further, CCs, RCCs, CMNs and CLs also indicate an effect for x1.  Thus, as might be expected, the larger 

sample is leading to more resolution in the sensitivity analysis.  However, CCs and RCCs were able to identify the 

two most important variables with a sample of size 100. 

Examination of scatterplots clearly shows the dominant effect of x3 (Fig. 2).  The effect of x2 is barely discernible 

in the scatterplot for nLHS = 100 but is easily seen for nLHS = 1000.  The scatterplots for x1 (not shown) indicate no 

visually discernible effect for nLHS = 100 and a barely discernible effect for nLHS = 1000. 

In addition to various tests of significance (Table I) and the examination of scatterplots (Fig. 2), various 

coefficient values (e.g., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) can also be used to assess variable importance 

(Table II).  In Table II and other similar tables in this presentation, CCs and RCCs are calculated between individual 

pairs of variables, and SRCs and SRRCs are calculated with all sampled variables included in the regression model 

(i.e., x1, x2, x3 in this example; see Eq. (17)).  In the complete absence of correlations between the sampled variable 

values, corresponding CCs and SRCs would be the same and so would corresponding RCCs and SRRCs.  As 

indicated by the similarity of the values for CCs and SRCs and also for RCCs and SRRCs, there is little correlation 

between the sampled variables.  Further, because an exact linear model is under consideration, PCCs and PRCCs are 

equal to one.  Thus, for a linear model, PCCs and PRCCs provide no information on the importance of individual 

variables.  Because of the linearity of the model, the sample of size nLHS = 1000 gives results almost identical to 

those in Table II for nLHS = 100. 

An alternative summary of the SRCs and SRRCs in Table II is to present the sensitivity results in the form of a 

stepwise regression analysis (Table III).  Then, variable importance is indicated by the order in which the variables 

entered the regression model, the sizes and signs of the SRCs or SRRCs, and the changes in R2 values as additional 

variables are added to the regression model.  Because a linear model is under consideration, the stepwise process 

ultimately produces a regression model with an R2 value of 1.00.  However, the last variable added to the regression 

model (i.e., x1) has little effect and only raises the R2 value from 0.99 to 1.00.  The regression coefficients do not 

provide information on variable importance (i.e., they are all 1.00); rather, it is the SRCs that provide an indication of 

variable importance.  The results in Table III are for raw data; use of rank-transformed data produces similar results. 



11 

When a linear relationship exists between a predicted variable and multiple input variables, stepwise regression 

analysis provides more information on variable importance than simply examining CCs.  First, the changes in R2 

values as additional variables are added to the regression model provides an indication of how much uncertainty can 

be accounted for by each variable.  For example, the R2 values produced with the addition of each variable to the 

regression model in Table III are 0.89, 0.99 and 1.00, respectively.  Thus, the last variable selected (i.e., x1) only 

changes the R2 value from 0.99 to 1.00.  Second, the F-test for the sequential addition of variables to the regression 

model is more sensitive than the test for the significance of a single CC.  For example, the p-value obtained with nLHS 

= 100 for the CC associated with x1 is 0.5091 (Table I); in contrast, the p-value for the entry of x1 into the regression 

model that already contains x3 and x2 is less than 10−4. 

The second linear test problem (Model 3, Ref. [55]) is defined by 

( ) ( ) [ ]
22

1 2 22
1

1 / 2 , , , , ,i i
i

f c x x x x
=

= − =∑ Kx x  (18) 

with xi : U(0, 1) and ci = (i − 11)2 for i = 1, 2, …, 22. 

Latin hypercube and random sampling produce estimates of similar stability for the CDF for f(x) (Fig. 3).  This is 

different from the first linear function, where Latin hypercube sampling produced more stable estimates (Fig. 1).  This 

stability probability results from the fact that the model can be written as 

( ) ( ) ( ) ( )
10

22 22 22
1

1/2 1/2 1/2 ,i i i
i

f c x c x x −
=

= − + − + −  ∑x  (19) 

which tends to smooth the effects of the random sampling owing to each ci for i = 1, 2, …, 10 being multiplied by the 

sum of two random values. 

For the LHS of size nLHS = 100, CCs and RCCs identify the same variables as affecting f (i.e., x22, x21, x1, x20, x3, 

x2, x19, x18, x4 with p-values less than 0.05) (Table IV).  Similar identifications are also made for CMNs and CLs; in 

contrast, CMDs and SI fail to identify some of the variables identified by CCs and RCCs.  For the LHS of size nLHS = 

1000, all tests identify more variables as affecting f (Table IV).  Further, there is more agreement between the tests on 

the most important variables (i.e., smallest p-values).  However, a number of variables are not identified as having an 

effect on f by any of the tests (e.g., x7, x15, x14, x8, x9, x12, x13, x11, x10 have p-values greater than 0.05 for most 

tests). 

Given that a linear model is under consideration, stepwise regression provides a more informative summary of 

variable effects than the coefficients in Table IV (Table V).  In particular, the stepwise regression analysis with nLHS 

= 100 identifies the effects of all 21 variables that influence the evaluation of f (i.e., all variables except x11, which has 
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a coefficient of zero).  The results for nLHS = 1000 (not shown) are essentially identical with those for nLHS = 100; 

thus, no improvement in the results of the stepwise regression analysis is obtained by increasing the sample size.  

Thus, the tests of significance used with the stepwise regression analysis are more effective in identifying the effects 

of individual variables than the tests used in conjunction with Table IV.  In particular, the stepwise regression in 

Table V correctly identifies the effects of all variables influencing f with a sample of size nLHS = 100; the test based 

on CCs in Table IV does not identify the effects of all variables with a sample of size nLHS = 1000 (i.e., some variables 

have p-values greater than 0.1). 

The cumulative R2 values with the entry of each variable into the regression model are shown in Table V.  The 

increase in the R2 value with the entry of a variable shows the fraction of the total uncertainty that can be accounted 

for by that variable in a linear regression model (e.g., x21 accounts for a fraction 0.36279 − 0.20948 = 0.15331 of the 

total uncertainty).  As indicated by the incremental R2 values, no single variable dominates the uncertainty in f. 

For perspective, scatterplots for the first two variables selected in the stepwise process (i.e., x22, x21) are shown 

in Fig. 4.  Although the patterns are discernible, they are not strong, which is consistent with the incremental R2 

values of 0.20948 and 0.15311 associated with x22 and x21. 

Both regression coefficients and SRCs are given in Table V.  The SRCs are a better measure of variable 

importance because they incorporate the effects of a variable’s distribution and also remove the effects of units.  

Except for the effects of correlations within a sample, CCs and SRCs are the same; thus, the CCs between the xi and 

f(x) are also available from Table V.  For example, Fig. IV contains scatterplots with associated CCs of approximately 

0.46052 for x22 and 0.38038 for x21. 

4.  Monotonic Test Problems 

The first monotonic test problem (Model 4, Ref. [55]) is defined by 

( ) [ ]4
1 2 1 2, , ,f x x x x= + =x x  (20) 

with xi : U(0, 1) for i = 1, 2 (Model 4a), xi : U(0, 3) for i = 1, 2 (Model 4b), or xi : U(0, 5) for i = 1, 2 (Model 4c).  Thus, f is 

the same in Models 4a, 4b, and 4c, but the distributions assigned to the xi change.  In the following, Models 4a and 

4c will be considered as this incorporates the two extremes in the behavior of f. 

Latin hypercube sampling produces more stable estimates of the CDFs for Models 4a and 4c than is the case for 

random sampling (Fig. 5).  This stability is particularly noticeable for Model 4c, where the value of f(x) is dominated 

by a strong nonlinear relationship involving x2; in this problem, the stratification associated with Latin hypercube 

sampling produces CDF estimates that are much more stable than those obtained with random sampling. 
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Sensitivity analysis for Model 4c is not very interesting due to the dominance of f(x) by x2 (Fig. 6), with the 

result that all of the sensitivity analysis procedures under consideration identify x2 as the dominant variable.  

Sensitivity analysis is more interesting for Model 4a as both x1 and x2 affect f(x).  Therefore, only sensitivity analysis 

for Model 4a will be discussed. 

All procedures identify x1 and x2 as affecting f(x) for Model 4a and the sample of size nLHS = 100 (Table VI).  

The well-defined effects of x1 and x2 can be seen in the corresponding scatterplots (Fig. 7).  The patterns are better 

defined in the scatterplots for nLHS = 1000 but still easily recognizable in the scatterplots for nLHS = 100. 

For perspective, various coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) involving x1, x2 and f(x) are 

presented in Table VII.  As should be the case, CCs and SRCs are similar in size and PCCs are larger than CCs and 

SRCs; similar patterns also hold for RCCs, SRRCs and PRCCs.  In this example, the coefficients calculated with raw 

(i.e., untransformed) data have values that are similar to those of the corresponding coefficients calculated with rank-

transformed data.  Thus, the problem is not as nonlinear over the distributions of x1 and x2 as might be suggested by 

the definition of f in Eq. (20), which is consistent with the linear trends appearing in the scatterplots in Fig. 7.  The use 

of samples of size nLHS = 100 and nLHS = 1000 produce similar coefficient values.  Thus, the behavior of the function 

is being adequately captured with nLHS = 100, and little is gained by using a large sample size (although the 

scatterplots are more visually appealing for nLHS = 1000). 

The sensitivity results for Model 4a can also be summarized as the outcome of a stepwise regression analysis 

(Table VIII).  As already observed in conjunction with Table VII, x1 is identified as having a stronger effect on the 

uncertainty in f(x) than x2, and analyses with raw (i.e., untransformed) data and rank-transformed data produce 

similar results.  Use of the sample of size nLHS = 1000 produces little improvement in the regression analyses, with R2 

values for the final regression model changing from 0.88580 and 0.87966 with raw and rank-transformed data with 

nLHS = 100 to 0.88356 and 0.88482 for nLHS = 1000 (regressions not shown).  Thus, as previously noted, increasing 

the sample size in this example does not improve the results of the sensitivity analysis. 

The use of regression analysis with rank-transformed data rather than raw data produced no improvement in the 

resultant regression model for Model 4a (Table VIII).  However, the potential exists for considerable improvement 

when the dependent variable is a nonlinear but monotonic function of the independent variable(s).  For example, a 

nonlinear but monotonic relationship exists between x2 and f(x) for Model 4c (Fig. 6).  In the analysis of this model, a 

regression with rank-transformed data relating f(x) to x2 with nLHS = 100 produces a regression model with an R2 

value of 0.97574; the corresponding regression with raw data produces a regression model with an R2 value of 

0.75003. 
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The rank transformation is self-standardizing in the sense that RRCs and SRRCs are essentially equal (Table 

VIII), with strict equality holding in the absence of equal (i.e., tied) variable values and approximate equality holding 

when equal variable values result in the use of average ranks for the equal values. 

The second monotonic test problem (Model 5, Ref. [55] ) is defined by 

( ) ( ) [ ]
6 6

1 2 6
11

exp 1 , , , , ,bii i i
ii

f b x e b x x x
==

 
= − ∏ − =  

 
∑ Kx x  (21) 

with b1 = 1.5, b2 = b3 = … = b6 = 0.9 and xi : U(0, 1) for i = 1, 2, …, 6. 

Latin hypercube sampling produces more stable estimates of the CDF for f(x) than does random sampling 

(Fig. 8).  However, the distribution has a long tail to the right, and both sampling procedures show considerable 

variation across replicates in the largest observed value for f(x).  Thus, if accurate estimates of the upper quantiles of 

the CDF were required, then it would be necessary to use a large sample size or possibly switch to an importance 

sampling procedure.  For functions that are as inexpensive to evaluate as f, it would be wasteful to invest the effort to 

design an importance sampling procedure.  However, as the cost of evaluating the function (i.e., model) increases, at 

some point use of importance sampling may become cost effective. 

All tests (i.e., CCs, RCCs, CMNs, CLs, CMDs, SI) identify x1 as the most important variable for nLHS = 100 

(Table IX); further, CCs and RCCs identify effects for all six xi.  Given the definition of f, x1 is the most important 

variable with respect to the uncertainty in f(x), and x2, x3, …, x6 have equal-sized effects on this uncertainty.  For 

nLHS = 1000, all tests identify effects for all six xi. 

The coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) involving the xi and f(x) are presented in Table X.  

The largest coefficients involve x1; x2, x3, …, x6 have similar-sized coefficients; CCs and SRCs are essentially equal, 

as is the case for RCCs and SRRCs; PCCs and PRCCs are larger than the corresponding CCs and RCCs, respectively; 

and all coefficients are positive, which is consistent with the use of the xi in the definition of f(x).  Samples of size 

nLHS = 100 and nLHS = 1000 produce similar coefficient estimates. 

The scatterplots for x1 and x2 show discernible, but not particularly strong, patterns (Fig. IX).  As should be the 

case given the definition of f(x) and the distributions assigned to the xi, the scatterplots for x1 show somewhat 

stronger patterns than the scatterplots for x2.  The scatterplots for x3, x4, x5, x6 are similar to those for x2. 

The sensitivity results for Model 5 can also be presented as stepwise regression analyses with raw and rank-

transformed data (Table XI).  The regression analyses with both raw and rank-transformed data identify the effects 

associated with all six xi’s.  Further, the regression analyses with rank-transformed data produce models with higher 

R2 values than the regression analyses with raw data (i.e., 0.94119 versus 0.74993 for nLHS = 100 and 0.96285 versus 
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0.80030 for nLHS = 1000).  There is little difference in the regression results obtained with nLHS = 100 and nLHS = 

1000 (not shown). 

5.  Nonmonotonic Test Problems 

The first nonmonotonic test problem (Model 7, Ref. [55]) is defined by 

( ) ( ) [ ]
8

1 2 8
1

8

1

, , , ,

4 2

1

i i
i

i i

ii

f g x x x x

x a

a

=

=

= =

− +
=

+

∏

∏

Kx x

 (22) 

with a1 = 0, a2 = 1, a3 = 4.5, a4 = 9, a5 = a6 = a7 = a8 = 99, and xi: U(0, 1) for i = 1, 2, …, 8. 

Latin hypercube sampling produces estimates of the CDF for f(x) that are more stable than those produced by 

random sampling (Fig. 10). 

Tests based on CCs and RCCs fail to identify any of the xi as affecting f(x) for nLHS = 100 and also for nLHS = 

1000 (Table XII).  In contrast, tests based on CMNs, CLs, CMDs and SI identify significant effects for x1 and x2 for 

both nLHS = 100 and nLHS = 1000, with the exception that the SI test does not identify x2 for nLHS = 100.  In 

addition, smaller effects are indicated for x3 (CMN, CL, CMD) and x4 (CMN, CL, CMD, SI) for nLHS = 1000.  Tests 

based on CCs and RCCs fail to identify the effects of x1 and x2 on f(x) because these effects are both nonlinear and 

nonmonotonic (Fig. 11).  In contrast, such effects are readily identified by CMNs, CLs, CMDs and SI.  All the 

coefficients involving f(x) and the xi’s (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) are essentially zero; similarly, 

the regression analyses with raw and rank-transformed data produce no meaningful results. 

The second nonmonotonic test problem (Model 8, Ref. [55]) is defined by 

( ) ( ) ( ) ( )
[ ]/ 22

2 2 1 2
0

, ,
x

i i
i

f h x c x x x
=

= ∑x  (23) 

where h, ci and gi are defined by 

( ) ( ) ( ) ( )( ) ( )2 2 22 2 22
2 2 1 2 1     2

2 , 1 , , ,i x x i x ix
i ii xh x c x g x x x− −−= = − =  

and x1: U(−1, 1), x2: DU(5), [~] designates the greatest integer function, and x:  DU(n) indicates that x has a uniform 

distribution over the integers j = 1, 2, …, n. 
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Latin hypercube sampling and random sampling produce estimates of the CDF for f(x) that exhibit similar 

stability (Fig. 12).  This behavior is in contrast to the other examples, where Latin hypercube sampling tends to 

produce more stable CDF estimates than random sampling. 

For nLHS = 100, tests based on CMNs and SI identify an effect for x1 (i.e., p-values < 0.05) (Table XIII).  The test 

based on CLs with a p-value of 0.0723 also suggests an effect for x1.  None of the remaining tests (i.e., CCs, RCCs, 

CMDs) indicates an effect for x1.  The test based on SI with a p-value of 0.0698 suggests a possible effect for x2; 

none of the other tests have p-values that suggest an effect for x2.  For nLHS = 1000, all tests indicate an effect for 

x1, and the test based on SI also indicates an effect for x2. 

This example has complex patterns involving x1 and x2 (Fig. 13).  These patterns partially emerge for nLHS = 100 

and are readily apparent for nLHS = 1000.  Of the tests under consideration, the test based on SI is most effective in 

identifying these patterns.  Due to the complexity of the relations involving x1, x2 and f(x), none of the previously 

considered coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) have values that provide any useful insights 

on these relationships.  Similarly, stepwise regression analyses with raw and rank-transformed data fail to provide 

any useful insights. 

The third nonmonotonic test problem (Model 9, Ref. [55]) is defined by 

( ) [ ]2 4
1 2 3 1 1 2 3sin sin sin , , , ,f x A x Bx x x x x= + + =x x  (24) 

with A = 7, B = 0.1, and xi: U(−π, π) for i = 1, 2, 3. 

For this example, the CDF estimates obtained with Latin hypercube sampling are more stable than those obtained 

with random sampling (Fig. 14).   

In sensitivity analyses with nLHS = 100, all tests identify x1 as affecting f(x) (Table XIV).  In addition, the CMNs, 

CLs, CMDs and SI tests also identify an effect for x2.  None of the tests identifies an effect for x3.  For nLHS = 1000, 

all tests indicate an effect for x1, and tests based on CMNs, CLs, CMDs and SI indicate an effect for x2.  In contrast, 

CCs and RCCs fail to indicate an effect for x2.  Further, the test based on SI also identifies an effect for x3.   

Examination of scatterplots clearly shows that x1, x2 and x3 have readily discernible influences on f(x) (Fig. 15).  

The tests based on CCs and RCCs are completely missing the nonlinear and nonmonotonic patterns induced in f(x) 

by x2 and x3.  Tests based on CCs and RCCs are able to identify a slight increasing pattern in the relationship 

between x1 and f(x); but this is only part of the patterns appearing in Fig. 15.  Tests based on CMNs, CLs and CMDs 

identify the pattern associated with x2 but fail to identify the pattern associated with x3 that tends to produce similar 

means and medians across the entire range of x3.  In contrast, this pattern was detected by the test for SI with nLHS 

= 1000. 
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Due to the lack of strong linear or monotonic relationships between x1, x2, x3 and f(x), individual coefficients 

(i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) are close to zero and provide little useful information to help in 

determining the effects of x1, x2 and x3 on f(x).  For the same reasons, stepwise regression analysis with raw or rank-

transferred data is not very informative. 

6.  Discussion 

This presentation uses relatively simple test problems to illustrate sampling-based procedures for uncertainty 

and sensitivity analysis.  Such simplicity helps in understanding the techniques in use but is not typical of real 

problems.  Many examples of real, and hence more complex, analyses using sampling-based procedures are 

available.[1-13, 70-83] 

The complexity of many real analysis problems is increased by the presence of both stochastic (i.e., aleatory) 

uncertainty and subjective (i.e., epistemic) uncertainty.[24-31]  Stochastic uncertainty arises because the system 

under study can behave in many different ways and thus is a property of the system.  Subjective uncertainty arises 

from an inability to specify the exact value of a quantity that is assumed to have a fixed value within a particular 

analysis and thus is a property of the analysts carrying out the study.  The distinction between stochastic and 

subjective uncertainty can be traced back to the beginnings of the formal development of probability theory in the 

late sixteen hundreds.[84-86]  

The test problems in this presentation are assumed to involve subjective uncertainty.  The analysis of problems 

that involve both stochastic and subjective uncertainty requires careful planning and implementation.  Often, event 

trees and fault trees are used to represent the effects of stochastic uncertainty, and sampling-based procedures of 

the type illustrated in this presentation are used to represent the effects  of subjective uncertainty.  Many examples of 

analyses involving both stochastic and subjective uncertainty exist, including analyses related to reactor safety,[87-

90] radioactive waste disposal,[91-93] environmental risk assessment,[94-100] and petroleum exploration.[101] 

Many approaches are available for uncertainty and sensitivity analysis, including differential analysis,[102-115] 

response surface methodology,[116-126] the Fourier amplitude sensitivity test (FAST),[127-131] variance 

decomposition,[132-141] and fast probability integration.[142-148]  Differential analysis involves approximating a 

model with a Taylor series and then using variance propagation formulas to obtain uncertainty and sensitivity 

analysis results.  Response surface methodology is based on using classical experimental designs to select points for 

use in developing a response surface replacement for a model; this replacement model is then used in subsequent 

uncertainty and sensitivity analyses based on variance propagation and Monte Carlo simulation.  The FAST is based 

on using techniques from Fourier analysis to decompose the variance of a model prediction into the components due 

to individual model inputs and is closely related to the other indicated variance decomposition procedures.  With the 

FAST and other variance decomposition procedures, uncertainty and sensitivity analysis results are based on the 
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variance of model predictions and the contribution of individual model inputs to this variance.  Fast probability 

integration is an uncertainty analysis technique used to estimate the tails of the uncertainty distributions for model 

predictions. 

Although many approaches to uncertainty and sensitivity analysis exist, a sampling-based approach is usually a 

suitable, and quite often the best, approach for various combinations of the following reasons: (i) conceptual 

simplicity and ease of implementation (e.g., unlike other methods, there are no requirements for model differentiation, 

complex experimental designs and associated response surface construction, or high dimensional integrations), (ii) 

dense stratification over the range of each sampled variable, especially when Latin hypercube sampling is used, (iii) 

direct provision of uncertainty analysis results without the use of surrogate models as approximations to the original 

model (e.g., Taylor series or response surfaces), (iv) availability of a variety of sensitivity analysis procedures, and 

(v) effectiveness as a model verification procedure (i.e., exploration of the mapping from uncertain inputs to model 

results provides a powerful tool for the identification of errors in model construction and analysis implementation).  

A concern often expressed about sampling-based uncertainty and sensitivity analyses is that the number of 

required model evaluations will make the cost of the analysis prohibitive.  In practice, this is usually not the case.  In 

most analyses, a sample size of considerably less than 1000 is sufficient to obtain useful uncertainty and sensitivity 

analysis results.  This is certainly the case for the test problems considered in this presentation and has been 

demonstrated in a number of real analyses.[69, 92, 149, 150] 

Several points need to be kept in mind when considering the computational cost associated with sampling-based 

uncertainty and sensitivity analyses.  First, high quantiles of distributions representing subjective uncertainty are 

typically not needed, and in addition, are usually not meaningful.  Specifically, a general idea of the uncertainty range 

in a model’s predictions is important to have but to know something such as the 0.999 quantile of the distribution is 

usually not very useful.  Further, in most analyses, the resolution at which the subjective uncertainty in a model’s 

inputs can be assessed does not justify ascribing any real meaning to very low or very high quantiles of resulting 

uncertainty distributions.  Second, the belief that estimates for extreme quantiles is needed often comes from 

confusing stochastic and subjective uncertainty.  In many analyses, stochastic uncertainty deals with rare events 

(e.g., unlikely accidents) that really could happen.  In such analyses, the estimation of extreme quantiles is important 

and is typically carried out with an importance sampling procedure defined and implemented through the use of event 

trees.  Third, the uncertainty in a given analysis result is usually dominated by the uncertainty in only a few inputs.  

As a result, a large sample size is not needed for an effective uncertainty and sensitivity analysis.  The preceding 

does not have to be true but is typically true in practice.  Fourth, implementation of the other previously indicated 

uncertainty and sensitivity analysis techniques can often require as many or more model evaluations as a sampling-

based analysis, and thus, have equal or greater computational cost.  Finally, in most analyses, the cost of the human 

time to develop the model, characterize the uncertainty in model inputs, and carry out the analysis is much greater 

than the cost of the required model evaluations.  
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Figure Captions 

Fig. 1.  Stability of estimated CDF for linear test problem with Model 1 (see Eq. (17). 

Fig. 2.  Scatterplots for linear test problem with Model 1 (see Eq. (17)). 

 

Fig. 3.  Stability of estimated CDF for linear test problem with Model 3 (see Eq. (18)). 

 

Fig. 4.  Scatterplots for linear test problem with Model 3 (see Eq. (18)). 

 

Fig. 5.  Stability of estimated CDFs for monotonic test problem with Models 4a and 4c (see Eq. (20)). 

 

Fig. 6.  Scatterplot with nLHS = 100 for monotonic test problem with Model 4c (see Eq. (20)). 

 

Fig. 7.  Scatterplots for monotonic test problem with Model 4a (see Eq. (20)). 

 

Fig. 8.  Stability of estimated CDF for monotonic test problem with Model 5 (see Eq. (21)). 

 

Fig. 9.  Scatterplots for monotonic test problem with Model 5 (see Eq. (21)). 

 

Fig. 10.  Stability of estimated CDF for nonmonotonic test problem with Model 7 (see Eq. (22)).  

 

Fig. 11.  Scatterplots for nonmonotonic test problem with Model 7 (see Eq. (22)). 

 

Fig. 12.  Stability of estimated CDF for nonmonotonic test problem with Model 8 (see Eq. (23)). 

 

Fig. 13.  Scatterplots for nonmonotonic test problem with Model 8 (see Eq. (23). 

 

Fig. 14.  Stability of estimated CDF for nonmonotonic test problem with Model 9 (see Eq. (24)). 

 

Fig. 15.  Scatterplots for nonmonotonic test problem with Model 9 (see Eq. (24)). 
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Fig. 1.  Stability of estimated CDF for linear test problem with Model 1 (see Eq. (17). 
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Fig. 2.  Scatterplots for linear test problem with Model 1 (see Eq. (17)). 
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Fig. 3.  Stability of estimated CDF for linear test problem with Model 3 (see Eq. (18)). 
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Fig. 4.  Scatterplots for linear test problem with Model 3 (see Eq. (18)). 
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Fig. 5.  Stability of estimated CDFs for monotonic test problem with Models 4a and 4c (see Eq. (20)). 
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Fig. 6. Scatterplot with nLHS = 100 for monotonic test problem with Model 4c (see Eq. (20)). 
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Fig. 7.  Scatterplots for monotonic test problem with Model 4a (see Eq. (20)). 
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Fig. 8.  Stability of estimated CDF for monotonic test problem with Model 5 (see Eq. (21)). 
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Fig. 9.  Scatterplots for monotonic test problem with Model 5 (see Eq. (21)). 
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Fig. 10.  Stability of estimated CDF for nonmonotonic test problem with Model 7 (see Eq. (22)).  
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Fig. 11.  Scatterplots for nonmonotonic test problem with Model 7 (see Eq. (22)). 
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Fig. 12.  Stability of estimated CDF for nonmonotonic test problem with Model 8 (see Eq. (23)). 
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Fig. 13.  Scatterplots for nonmonotonic test problem with Model 8 (see Eq. (23)). 
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Fig. 14.  Stability of estimated CDF for nonmonotonic test problem with Model 9 (see Eq. (24)). 
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Fig. 15.  Scatterplots for nonmonotonic test problem with Model 9 (see Eq. (24)). 
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Table I. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Linear Test Problem 
with Model 1 (see Eq. (17)) 

Sample Size:  nLHS  = 100 
 CCb  RCCc  CMNd  CLe  CMDf  SIg Variable 

Namea  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 
x3  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x2  2.0 0.0015  2.0 0.0027  2.0 0.0502  2.0 0.0779  2.0 0.5249  2.0 0.2954 

x1  3.0 0.5091  3.0 0.5694  3.0 0.7528  3.0 0.7089  3.0 0.7358  3.0 0.8392 

Sample Size:  nLHS  = 1000 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x3  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x2  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000 

x1  3.0 0.0007  3.0 0.0017  3.0 0.0155  3.0 0.0313  3.0 0.4748  3.0 0.1164 
a Variables ordered by p-values for CCs 
b Ranks and p-values for CCs 
c Ranks and p-values for RCCs 
d Ranks and p-values for CMNs test with 1 × 5 grid (i.e., division of x values into 5 intervals of equal probability and no division of 

y values). 
e Ranks and p-values for CLs (Kruskal-Wallis) test with 1 × 5 grid (i.e., division of x values into 5 intervals of equal probability and 

no division of y values). 
f Ranks and p-values for CMDs text with 2 × 5 grid (i.e., division of x values into 5 intervals of equal probability and division of y 

values into 2 intervals defined by the median of the y values). 
g Ranks and p-values for SI test with 5 × 5 grid (i.e., division of both x and y values into 5 intervals of equal probability). 

 

Table II. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) 
and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (17)) 

 CCb  SRCb  PCCb  RCCb  SRRCb  PRCCb Variable 
Namea 

 Rank Value  Rank Value  Rank Value  Rank Value  Rank Value  Rank Value 

x3  1 0.9439  1 0.9459  2 1.000  1 0.9466  1 0.9482  2 1.000 

x2  2 0.3175  2 0.3156  2 1.000  2 0.3018  2 0.2987  2 1.000 

x1  3 0.0660  3 0.1054  2 1.000  3 0.0572  3 0.0976  2 1.000 
a Variables ordered by p-values for CCs. 
b Ranks and values for CCs, SRCs, PCCs, RCCs, SRRCs and PRCCs as indicated.  
 

Table III. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed) 
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (17)) 

Variablea R2b RCc SRCd p-Valuee 

x3 0.89098 1.0000E+00 9.4588E−01 0.0000E+00 

x2 0.98891 1.0000E+00 3.1558E−01 0.0000E+00 

x1 1.00000 1.0000E+00 1.0541E−01 0.0000E+00 
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a Variables in order of entry into regression model. 
b Cumulative R2 value with entry of each variable into regression model. 
c Regression coefficients (RCs) in final regression model. 
d Standardized regression coefficients (SRCs) in final regression model. 
e For variable in row (i.e., xi), p- or α-value for addition of xi to regression model containing remaining variables.  

Table IV. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Linear Test Problem 
with Model 3 (see Eq. (18))a 

Sample Size:  nLHS = 100 
 CC  RCC  CMN  CL  CMD  SI Variable 

Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x22  1.0 0.0000  1.0 0.0000  1.0 0.0001  1.0 0.0002  1.5 0.0009  2.0 0.0208 

x21  2.0 0.0001  2.0 0.0002  2.0 0.0004  4.0 0.0018  9.0 0.1074  1.0 0.0086 

x1  3.0 0.0002  3.0 0.0003  5.0 0.0024  5.0 0.0043  7.0 0.0289  8.5 0.1137 

x20  4.0 0.0003  4.0 0.0005  7.0 0.0070  7.0 0.0131  11.0 0.2311  5.0 0.0615 

x3  5.0 0.0015  5.0 0.0016  6.0 0.0064  6.0 0.0086  4.0 0.0103  3.0 0.0239 

x2  6.0 0.0028  7.0 0.0037  3.0 0.0006  2.0 0.0012  3.0 0.0051  6.0 0.0791 

x19  7.0 0.0037  6.0 0.0025  10.0 0.0699  10.0 0.0445  5.0 0.0123  10.5 0.1785 

x18  8.0 0.0238  8.0 0.0197  8.0 0.0318  8.0 0.0294  6.0 0.0146  12.0 0.2202 

x4  9.0 0.0444  9.0 0.0289  9.0 0.0399  9.0 0.0295  10.0 0.1991  8.5 0.1137 

x17  10.0 0.1095  10.0 0.1135  12.0 0.1476  12.0 0.1515  15.5 0.4060  10.5 0.1785 

x16  11.0 0.1379  11.0 0.1154  20.0 0.7358  18.0 0.6699  13.5 0.3546  4.0 0.0316 

x5  12.0 0.2668  12.0 0.3349  4.0 0.0012  3.0 0.0016  1.5 0.0009  7.0 0.1010 

x6  13.0 0.4991  13.0 0.4195  18.0 0.6822  19.0 0.6835  18.0 0.5249  14.0 0.4186 

x9  14.0 0.5118  18.0 0.6595  17.0 0.3711  16.0 0.4258  18.0 0.5249  15.5 0.4884 

x7  15.0 0.5261  16.0 0.5194  19.0 0.7351  20.0 0.7596  15.5 0.4060  18.0 0.5987 

x8  16.0 0.5368  15.0 0.5006  14.0 0.3476  17.0 0.4307  18.0 0.5249  13.0 0.3239 

x12  17.0 0.5487  14.0 0.4632  16.0 0.3656  14.0 0.3570  20.0 0.7358  18.0 0.5987 

x13  18.0 0.7118  17.0 0.6491  13.0 0.2392  13.0 0.2676  13.5 0.3546  15.5 0.4884 

x14  19.0 0.8221  21.0 0.9223  21.0 0.9511  21.0 0.9651  22.0 0.9825  18.0 0.5987 

x15  20.0 0.8317  20.0 0.7924  22.0 0.9922  22.0 0.9929  21.0 0.9384  20.0 0.6359 

x11  21.0 0.8909  19.0 0.7495  11.0 0.0716  11.0 0.1020  8.0 0.0404  21.0 0.7440 

x10  22.0 0.9217  22.0 0.9840  15.0 0.3507  15.0 0.3963  12.0 0.3084  22.0 0.7776 

Sample Size:  nLHS = 1000 
 CC  RCC  CMN  CL  CMD  SI Variable 

Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x22  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x21  2.0 0.0000  2.0 0.0000  2.0 0.0000  3.0 0.0000  2.0 0.0000  3.0 0.0000 

x1  3.0 0.0000  3.0 0.0000  3.0 0.0000  2.0 0.0000  3.0 0.0000  2.0 0.0000 

x2  4.0 0.0000  4.0 0.0000  4.0 0.0000  4.0 0.0000  6.0 0.0000  4.0 0.0000 

x20  5.0 0.0000  5.0 0.0000  5.0 0.0000  5.0 0.0000  4.0 0.0000  5.0 0.0000 

x3  6.0 0.0000  6.0 0.0000  6.0 0.0000  6.0 0.0000  5.0 0.0000  6.0 0.0000 

x19  7.0 0.0000  7.0 0.0000  7.0 0.0000  7.0 0.0000  7.0 0.0000  7.0 0.0000 

x18  8.0 0.0000  8.0 0.0000  8.0 0.0000  8.0 0.0000  8.0 0.0000  9.0 0.0001 

x4  9.0 0.0000  9.0 0.0000  9.0 0.0000  9.0 0.0000  9.0 0.0000  10.0 0.0003 

x5  10.0 0.0000  11.0 0.0000  10.0 0.0000  10.0 0.0000  10.0 0.0002  8.0 0.0000 

x17  11.0 0.0000  10.0 0.0000  11.0 0.0002  11.0 0.0002  12.0 0.0040  12.0 0.0121 

x16  12.0 0.0011  12.0 0.0002  12.0 0.0124  12.0 0.0035  11.0 0.0004  13.0 0.1164 

x6  13.0 0.0018  13.0 0.0014  13.0 0.0252  13.0 0.0212  13.0 0.0206  11.0 0.0019 

x7  14.0 0.0637  14.0 0.0776  14.0 0.0267  14.0 0.0697  16.0 0.1538  14.0 0.1164 

x15  15.0 0.0959  15.0 0.0892  22.0 0.6771  20.0 0.5827  21.0 0.7431  21.0 0.6691 

x14  16.0 0.2579  18.0 0.3909  18.0 0.4664  19.0 0.5414  18.0 0.4809  15.0 0.1843 

x8  17.0 0.3165  16.0 0.2949  19.0 0.5583  18.0 0.4750  14.0 0.0425  17.0 0.2509 

x9  18.0 0.3907  19.0 0.4178  20.0 0.5701  21.0 0.7113  22.0 0.9437  18.0 0.2899 
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x12  19.0 0.4606  17.0 0.3616  16.0 0.3026  16.0 0.1976  15.0 0.1402  16.0 0.1944 

x13  20.0 0.4625  21.0 0.5867  15.0 0.1438  15.0 0.1348  17.0 0.2792  19.0 0.2954 

x11  21.0 0.6626  20.0 0.5806  17.0 0.3446  17.0 0.3143  19.0 0.4932  20.0 0.4530 

x10  22.0 0.7892  22.0 0.7117  21.0 0.6605  22.0 0.7753  20.0 0.5512  22.0 0.9950 
a Table structure same as in Table I. 
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Table V. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed) 
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 3 (see Eq. (18))a 

Variable R2 RC SRC p-Value 

x22 0.20948 1.2100E+02 4.6052E−01 2.7828E−08b 

x21 0.36279 1.0000E+02 3.8038E−01 2.7828E−08 

x1 0.50981 1.0000E+02 3.8141E−01 2.7828E−08 

x20 0.63339 8.1000E+01 3.0763E−01 2.7828E−08 

x2 0.73563 8.1000E+01 3.0830E−01 2.7828E−08 

x3 0.80541 6.4000E+01 2.4338E−01 2.7828E−08 

x19 0.86382 6.4000E+01 2.4317E−01 2.7828E−08 

x18 0.90285 4.9000E+01 1.8642E−01 2.7828E−08 

x4 0.93449 4.9000E+01 1.8614E−01 2.7828E−08 

x5 0.95728 3.6000E+01 1.3677E−01 2.7828E−08 

x17 0.97297 3.6000E+01 1.3665E−01 2.7828E−08 

x6 0.98146 2.5000E+01 9.5070E−02 2.7828E−08 

x16 0.98978 2.5000E+01 9.5121E−02 2.7828E−08 

x15 0.99340 1.6000E+01 6.0789E−02 2.7828E−08 

x7 0.99710 1.6000E+01 6.0905E−02 2.7828E−08 

x8 0.99833 9.0000E+00 3.4256E−02 2.7828E−08 

x14 0.99950 9.0000E+00 3.4263E−02 2.7828E−08 

x9 0.99974 4.0000E+00 1.5206E−02 2.7828E−08 

x13 0.99997 4.0000E+00 1.5225E−02 2.7828E−08 

x10 0.99999 9.9999E−01 3.8041E−03 2.7828E−08 

x12 1.00000 1.0000E+00 3.8018E−03 2.7828E−08 

x11 1.00000 −3.0113E−05 −1.1426E−07 2.6792E−01 
a Table structure same as in Table III. 
b Identical values result from lack of resolution in algorithm used in the calculation of very small p-values. 

 

Table VI. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Monotonic Test 
Problem with Model 4a (see Eq. (20)) and nLHS = 100a 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name 

 Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x2  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0004  2.0 0.0000 
a Table structure same as in Table I. 
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Table VII. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) for 
Monotonic Test Problem with Model 4a (see Eq. (20)) 

Sample Size:  nLHS = 100 

 CCb  SRCc  PCCc Variable 
Namea  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.7367  1.0 0.7401  1.0 0.9097 

x2  0.0000 2.0 0.5814  2.0 0.5857  2.0 0.8662 

 RCCe  SRRCf  PRCCf Variable 
Named  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.7688  1.0 0.7723  1.0 0.9122 

x2  0.0000 2.0 0.5322  2.0 0.5373  2.0 0.8401 

Sample Size:  nLHS = 1000 

 CC  SRC  PCC Variable 
Name 

 p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.5 0.7310  1.0 0.7263  1.0 0.9051 

x2  0.0000 1.5 0.5967  2.0 0.5910  2.0 0.8660 

 RCC  SRRC  PRCC Variable 
Name 

 p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.5 0.7531  1.0 0.7489  1.0 0.9108 

x2  0.0000 1.5 0.5692  2.0 0.5637  2.0 0.8567 
a Variables ordered by p-values for CCs. 

b p-values, ranks and values for CCs.  

c Ranks and values for SRCs and PCCs as indicated.  

d Variables ordered by p-values for RCCs. 

e p-values, ranks and values for RCCs. 

f Ranks and values for SRRCs and PRCCs as indicated.  

 

Table VIII. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with 
Model 4a (see Eq. (20)) and Sample Size nLHS = 100a 

Raw Data 

Variable R2 RC SRC p-Value 

x1 0.54273 1.0070E+00 7.4014E−01 2.7828E−08 

x2 0.88580 7.9861E−01 5.8573E−01 2.7828E−08 

Rank-Transformed Data 

Variable R2 RRCb SRRCc p-Value 

x1 0.59099 7.7229E−01 7.7229E−01 2.7828E−08 

x2 0.87966 5.3728E−01 5.3728E−01 2.7828E−08 
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a Table structure same as in Table III. 
b Rank regression coefficient (RRC). 
c Standardized rank regression coefficient (SRRC). 
 

Table IX.  Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Monotonic Test 
Problem with Model 5 (see Eq. (21))a 

Sample Size:  nLHS  = 100 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x4  2.0 0.0005  5.0 0.0009  3.0 0.0161  4.0 0.0095  6.0 0.1468  5.0 0.2436 

x5  3.0 0.0007  6.0 0.0029  2.0 0.0006  2.0 0.0011  3.0 0.0342  2.0 0.0156 

x2  4.0 0.0041  4.0 0.0007  4.0 0.0211  5.0 0.0098  2.0 0.0087  3.0 0.0180 

x6  5.0 0.0051  3.0 0.0004  6.0 0.0840  6.0 0.0184  4.0 0.0477  6.0 0.4530 

x3  6.0 0.0052  2.0 0.0003  5.0 0.0464  3.0 0.0070  5.0 0.0780  4.0 0.0540 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x5  2.0 0.0000  6.0 0.0000  3.0 0.0000  4.0 0.0000  5.0 0.0000  5.0 0.0000 

x2  3.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000  2.0 0.0000 

x4  4.0 0.0000  4.0 0.0000  5.0 0.0000  3.0 0.0000  3.0 0.0000  4.0 0.0000 

x3  5.0 0.0000  3.0 0.0000  4.0 0.0000  6.0 0.0000  6.0 0.0000  6.0 0.0000 

x6  6.0 0.0000  5.0 0.0000  6.0 0.0000  5.0 0.0000  4.0 0.0000  3.0 0.0000 
a Table structure same as in Table I. 
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Table X. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) for 
Monotonic Test Problem with Model 5 (see Eq. (21))a 

Sample Size:  nLHS = 100 

 CC  SRC  PCC Variable 
Name  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.5078  1.0 0.5223  1.0 0.7221 

x4  0.0005 2.0 0.3459  3.0 0.3446  3.0 0.5673 

x5  0.0007 3.0 0.3371  2.0 0.3509  2.0 0.5739 

x2  0.0041 4.0 0.2868  5.0 0.2952  5.0 0.5080 

x6  0.0051 5.0 0.2803  6.0 0.2837  6.0 0.4929 

x3  0.0052 6.0 0.2793  4.0 0.2973  4.0 0.5108 

 RCC  SRRC  PRCC Variable 
Name  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.5852  1.0 0.6013  1.0 0.9273 

x3  0.0003 2.0 0.3596  2.0 0.3763  2.0 0.8404 

x6  0.0004 3.0 0.3591  3.0 0.3669  3.0 0.8339 

x2  0.0007 4.0 0.3405  4.0 0.3456  4.0 0.8183 

x4  0.0009 5.0 0.3334  5.0 0.3317  5.0 0.8071 

x5  0.0029 6.0 0.2992  6.0 0.3142  6.0 0.7912 

Sample Size:  nLHS = 1000 

 CC  SRC  PCC Variable 
Name  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.5259  1.0 0.5217  1.0 0.7594 

x5  0.0000 2.0 0.3412  2.0 0.3367  2.0 0.6017 

x2  0.0000 3.0 0.3297  4.0 0.3241  4.0 0.5871 

x4  0.0000 4.0 0.3275  3.0 0.3251  3.0 0.5882 

x3  0.0000 5.0 0.3274  5.0 0.3220  5.0 0.5846 

x6  0.0000 6.0 0.3032  6.0 0.3044  6.0 0.5629 

 RCC  SRRC  PRCC Variable 
Name  p-Value Rank Value  Rank Value  Rank Value 

x1  0.0000 1.0 0.5960  1.0 0.5917  1.0 0.9508 

x2  0.0000 2.0 0.3624  2.0 0.3558  2.0 0.8792 

x3  0.0000 3.0 0.3553  4.0 0.3486  3.0 0.8751 

x4  0.0000 4.0 0.3484  5.0 0.3462  5.0 0.8736 

x6  0.0000 5.0 0.3467  3.0 0.3486  4.0 0.8751 

x5  0.0000 6.0 0.3431  6.0 0.3380  6.0 0.8687 
a Table structure same as in Table VII. 
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Table XI. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with 
Model 5 (see Eq. (21)) and Sample Size nLHS = 100a 

Raw Data 

Variable R2 RC SRC p-Value 

x1 0.25787 4.4071E+01 5.2230E−01 2.7828E−08 

x5 0.37674 2.9727E+01 3.5091E−01 2.9036E−08 

x4 0.49249 2.9194E+01 3.4459E−01 2.9872E−08 

x2 0.58539 2.4960E+01 2.9519E−01 1.7598E−07 

x3 0.66967 2.5164E+01 2.9734E−01 1.5130E−07 

x6 0.74993 2.4008E+01 2.8369E−01 4.1674E−07 

Rank-Transformed Data 

Variable R2 RRC SRRC p-Value 

x1 0.34245 6.0130E−01 6.0130E−01 2.7828E−08 

x6 0.48424 3.6689E−01 3.6689E−01 2.7828E−08 

x3 0.62262 3.7628E−01 3.7628E−01 2.7828E−08 

x2 0.73162 3.4561E−01 3.4561E−01 2.7828E−08 

x4 0.84275 3.3165E−01 3.3165E−01 2.7828E−08 

x5 0.94119 3.1419E−01 3.1419E−01 2.7828E−08 
a Table structure same as in Table VIII. 

 

Table XII. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test 
Problem with Model 7 (see Eq. (22))a 

Sample Size nLHS  = 100 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.1657  1.0 0.2382  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x3  2.0 0.4400  3.0 0.4666  3.0 0.2294  3.0 0.3469  7.0 0.7358  3.0 0.1010 

x8  3.0 0.4518  2.0 0.4090  7.0 0.7298  8.0 0.7661  7.0 0.7358  8.0 0.9489 

x6  4.0 0.4566  6.0 0.5905  5.0 0.6637  6.0 0.7193  4.5 0.5918  7.0 0.8666 

x7  5.0 0.4758  4.0 0.5528  8.0 0.7360  7.0 0.7623  7.0 0.7358  6.0 0.6728 

x5  6.0 0.6796  5.0 0.5860  6.0 0.7179  5.0 0.4218  4.5 0.5918  2.0 0.0698 

x2  7.0 0.7545  8.0 0.9833  2.0 0.0010  2.0 0.0055  2.0 0.0206  4.0 0.1601 

x4  8.0 0.9581  7.0 0.9002  4.0 0.4531  4.0 0.3902  3.0 0.0916  5.0 0.5615 

Sample Size nLHS  = 1000 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x7  1.0 0.2089   1.0 0.1838   7.0 0.7123   7.0 0.7153  6.0 0.2873  6.0 0.4153 

x6  2.0 0.2644   3.0 0.2813   8.0 0.8882   8.0 0.7586  7.0 0.6411  8.0 0.9394 

x8  3.0 0.2943   2.0 0.2345   6.0 0.6228   6.0 0.4925  8.0 0.7652  7.0 0.6544 

x4  4.0 0.3376   4.0 0.4287   4.0 0.0045   4.0 0.0140  4.0 0.0224  3.0 0.0156 

x2  5.0 0.6614   6.0 0.9430   2.0 0.0000   2.0 0.0000  2.0 0.0000  2.0 0.0000 

x1  6.0 0.7620   8.0 0.9708   1.0 0.0000   1.0 0.0000  1.0 0.0000  1.0 0.0000 

x5  7.0 0.8045   7.0 0.9433   5.0 0.4128   5.0 0.3011  5.0 0.1712  5.0 0.2412 
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x3  8.0 0.9197   5.0 0.7315   3.0 0.0001   3.0 0.0034  3.0 0.0220  4.0 0.1178 
a Table structure same as in Table I. 
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Table XIII. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test 
Problem with Model 8 (see Eq. (23))a 

Sample Size nLHS  = 100 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.1968  2.0 0.3458  1.0 0.0346  1.0 0.0723  1.0 0.1468  1.0 0.0003 

x2  2.0 0.2412  1.0 0.2722  2.0 0.7078  2.0 0.7449  2.0 0.9384  2.0 0.0698 

Sample Size nLHS  = 1000 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000 

x2  2.0 0.6222  2.0 0.0659  2.0 0.9090  2.0 0.2553  2.0 0.1847  2.0 0.0000 
a Table structure same as in Table I. 

 

Table XIV. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test 
Problem with Model 9 (see Eq. (24))a 

Sample Size nLHS  = 100 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.0 0.0000  1.0 0.0000  2.0 0.0001  1.0 0.0000 

x3  2.0 0.5667  2.0 0.6361  3.0 0.6917  3.0 0.5495  3.0 0.9384  3.0 0.0615 

x2  3.0 0.8327  3.0 0.8393  2.0 0.0000  2.0 0.0000  1.0 0.0000  2.0 0.0008 

Sample Size nLHS = 1000 

 CC  RCC  CMN  CL  CMD  SI Variable 
Name  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val  Rank p-Val 

x1  1.0 0.0000  1.0 0.0000  1.5 0.0000  1.5 0.0000  2.0 0.0000  1.5 0.0000 

x3  2.0 0.0162  2.0 0.0187  3.0 0.0438  3.0 0.0347  3.0 0.1446  3.0 0.0000 

x2  3.0 0.9799  3.0 0.9999  1.5 0.0000  1.5 0.0000  1.0 0.0000  1.5 0.0000 
a Table structure same as in Table I. 

 

 

 


