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Abstract

A sequence of linear, monotonic, and nonmonotonic test problems is used to illustrate sampling-based uncertainty
and sensitivity analysis procedures. Uncertainty results obtained with replicated random and Latin hypercube
samples are compared, with the Latin hypercube samples tending to produce more stable results than the random
samples. Sensitivity results obtained with the following procedures and/or measures are illustrated and compared:
correlation coefficients (CCs), rank correlation coefficients (RCCs), common means (CMNSs), common locations (CLS),
common medians (CMDs), statistical independence (SI), standardized regression coefficients (SRCs), partial
correlation coefficients (PCCs), standardized rank regression coefficients (SRRCs), partial rank correlation coefficients
(PRCCs), stepwise regression analysis with raw and rank-transformed data, and examination of scatterplots. The
effectiveness of a given procedure and/or measure depends on the characteristics of the individual test problems,
with (i) linear measures (i.e., CCs, PCCs, SRCs) performing well on the linear test problems, (ii) measures based on
rank transforms (i.e., RCCs, PRCCs, SRRCs) performing well on the monotonic test problems, and (iii) measures
predicated on searches for nonrandom patterns (i.e., CMNs, CLs, CMDs, SI) performing well on the nonmonotonic

test problems.
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1. Introduction

Sampling-based methods for uncertainty and sensitivity analysis have become very popular (e.g., Refs. [1-13]).
Such methods involve the generation and exploration of a mapping from uncertain analysis inputs to uncertain

analysisresults (e.g., Refs. [14-23)).

The analysis or model under consideration can be represented by a vector function

y=y(x)=f(x) @
where

X =[ X0, %0. .., Xex] @
and

y =YL Y2, Yrv] 3

designate the inputs to the analysis and the outcomes of the analysis, respectively. In real analyses, the dimensions
nX and nY of x and y can be large (e.g., >100). Further, the function f can be quite complex (e.g., a model that
involves the numerical solution of a system of nonlinear partial differential equations or possibly a probabilistic risk

assessment for acomplex engineered facility such as anuclear power plant).

If the value for x was unambiguously known, then y(x) could be determined and presented as the unique
outcome of the analysis. However, there is uncertainty with respect to the appropriate value to use for x in most
analyses, with the result that there is also uncertainty in the value of y(x). The uncertainty in x and its associated
effect on y(x) lead to two closely related questions: (i) “What is the uncertainty iny(x) given the uncertainty inx?”,
and (i) “How important are the individual elements of x with respect to the uncertainty iny(x)?" Attemptsto answer

these two questions are typically referred to as uncertainty analysis and sensitivity analysis, respectively.

An assessment of the uncertainty in y derives from a corresponding assessment of the uncertainty in x. In
particular, y is assumed to have been developed so that appropriate analysis results are obtained if the appropriate
value for x is used in the evaluation of y. Unfortunately, it isimpossible to unambiguously specify the appropriate
value of x in most analyses; rather, there are many possible values for x of varying levels of plausibility. Such
uncertainty is often given the designation subjective or epistemic (e.g., Refs. P4-31]) and is characterized by

assigning a distribution

Dy, Dy ..., Dpy (4



to each element x; of x. Correlations and other restrictions involving the x; are also possible. These distributions
and any associated conditions characterize a degree of belief as to where appropriate value of each variable x; is
located for use in evaluation of y and in turn lead to distributions for the individual elements of y. Given that the
distributions in Eq. (4) characterize a degree of belief with respect to where the appropriate input to use in the
analysis is located, the resultant distributions for the elements of y characterize a corresponding degree of belief with
respect to where the appropriate values of the outcomes of the analysis are located. The distributionsin Eq. (4) are

often developed through an expert review process (e.g., Refs. [32-53]).

Sampling-based methods for uncertainty and sensitivity analysis are based on a sample

Xk = 81 X2, %px By K=12...,nS, )

of size nS from the possible values for x as characterized by the distributions in Eg. (4) and on the corresponding

evaluations

y(xk) =& (xk), Y2(Xk): - Yny (Xk)B k =1 2,...,nS, (6)

of y. Thepairs

@(k,y(xk)g, kle,...,nS, (7)

form a mapping from the uncertain analysis inputs (i.e., the x|’ s) to the corresponding uncertain analysis results (i.e.,
they(xy)'s).

When an appropriate probabilistic procedure, such as random sampling or Latin hypercube sampling,[54] has
been used to generate the sample in Eq. (5) from the distributions in Eq. (4), the resultant distributions for the
elements of y characterize the uncertainty in the results of the analysis (i.e., constitute the outcomes of an
uncertainty analysis). Further, examination of scatterplots, regression analysis, partial correlation analysis, and other
procedures for investigation the mapping in Eq. (7) provide away to determine the effects of the elements of x on the

elementsof y (i.e., constitute procedures for sensitivity analysis).

The purpose of this presentation is to use selected test problems from a recent book on sensitivity analysis[55]
to illustrate sampling-based methods for uncertainty and sensitivity analysis. No attempt is made to present results
for al test problems. Rather, the problems to be discussed were selected because they either provided representative

results or interesting analysis challenges. All the problemsinvolve asingle analysis outcome and thus have the form
y=f(x) ®)

rather than the more common and complex vector formin Eq. (1).



To illustrate the effects of sampling procedures, each problem is evaluated with 10 independent L atin hypercube
samples (LHSs) of size 100 each and also 10 independent random samples of size 100 each. Sensitivity analysis
results will be presented for 1 LHS of size 100 (i.e., nLHS = 100); in some instances, sensitivity analysis results will
also be presented for the 1000 sample elements that result from pooling the 10 LHSs (i.e., nLHS = 1000). The
sensitivity analysis procedures and/or measures considered will include correlation coefficients (CCs), rank
correlation coefficients (RCCs), common means (CMNSs), common locations (CLs), common medians (CMDs),
statistical independence (Sl), standardized regression coefficients (SRCs), partia correlation coefficients (PCCs),
standardized rank regression coefficients (SRRCs), partia rank correlation coefficients (PRCCs), stepwise regression

analysiswith raw and rank-transformed data, and examination of scatterplots.

It is hoped that the presentation of these results will help the reader develop insights with respect to the
behavior and effectiveness of the techniques under consideration. Use of these relatively simple test problems has
several advantages over the use of more complex problems, including (i) clear specification of the model under
consideration, (ii) low computational cost that allows the consideration of replicated samples and samples of different

sizes, and (iii) the opportunity for independent solution of the problems by the interested reader.

The presentation is organized as follows. The uncertainty and sensitivity analysis proceduresin use are briefly
described (Sect. 2). Then, example analyses nvolving linear test problems (Sect. 3), monotonic test problems
(Sect. 4), and nonmonotonic test problems (Sect. 5) are presented. Finally, the presentation ends with a concluding
discussion (Sect. 5).

2. Uncertainty and Sensitivity Analysis Procedures

This presentation will illustrate the use of both random sampling and L atin hypercube sampling in the generation
of the mapping between analysis inputs and analysis results in Egs. (5)—(7). For convenience in distinguishing
between sampling procedures in subsequent discussions, random and LHSs will be referred to as being of size nR

and nLHS, respectively, rather than of size nSasin Egs. (5)—(7).

In the absence of correlations between the elements of x, random sampling operates in the following manner to
generate the sample in Eq. (5). To produce Xy, each element xi, i =1, 2, ..., nX, of X israndomly selected from its
distribution D; in Eq. (4). This sampling is carried out independently for each x| to produce the nR (i.e, nS) sample

elementsin Eq. (5).

Unlike random sampling, Latin hypercube sampling is a stratified sampling technique, and the sample elements
Xk in Eq. (5) cannot be generated independently of each other. In the absence of correlations between the elements
of x, Latin hypercube sampling operates in the following manner to generate the samplein Eqg. (5). The range of each

variable (i.e, the x;, i = 1, 2, ..., nX) isdivided into nLHS intervals of equal probability and one value is selected at



random from each interval in consistency with the distributions in Eq. (4). The nLHS values thus obtained for x4 are
paired at random and without replacement with the nLHS values obtained for x,. These nLHS pairsare combinedin a
random manner without replacement with the nLHS values of x3 toform nLHStriples. This processis continued until
aset of nLHS nX-tuplesis formed. This set of nX-tuples constitutes an LHS of size nLHS (i.e., the sample of sizenS

in the context of Eq. (5)).

Unlike random sampling, Latin hypercube sampling ensures a full stratification over the range of each sampled
variable. Additional discussion and illustration of random and Latin hypercube sampling isgiven in Sect. 6.3 of Ref.
[56]. Correlations can be imposed on both random and LHSs with a restricted pairing technique developed by Iman
and Conover [57-59]. None of the test problems under consideration involve correlated variables; thus, there was no
requirement to induce nonzero correlations between variables. However, the restricted pairing technique was used to
assure that correlations between sampled variables were close to zero (see Sect 3.2 of Ref. [19] for an introductory

description of thistechnique).

Both random and Latin hypercube sampling provide a basis for uncertainty analysis. In particular, each sample
element can be assigned a weight (i.e., a probability in common but incorrect usage) equal to the reciprocal of the
sample size that can be used in the construction probabilistic representations of the uncertainty in analysis
outcomes. Possible representations include cumulative distribution functions (CDFs), complementary cumulative
distribution functions (CCDFs), box plots, and means and standard deviations (Sect. 6.5, Ref. [56]). This presentation

will use CDFsto display the uncertainty in the outcomes of the test problems.

The simplest procedure for exploring the mapping in Eq. (7) is the examination of scatterplots, which are plots
with the values of a sampled variable on one axis and the corresponding values of the analysis outcome on the other

axis. Specifically, ascatterplot issimply aplot of the points
(% Yk), k=1,2,....nS, o

for the uncertain variable x; in the samplein Eq. (5).

A simple but formal method to assess the relationship between analysis input and analysis resultsis to calculate
CCs between sampled variables and corresponding analysis outcomes. For the sequence of observationsin Eqg. (9),

the (sample or Pearson) correlation r, , between x; andy is defined by

QS
a (Xki -Xi )(Yk-Y)
-— :l
iy = on 17205 arz: (10
ed (xi-%)%u e& (yk-¥)%u
8k =1 Bk =1 ¢!



where

S s
y=a %/nS X =a x4/nS.
k=1 k=1

The CC My takes values between —1 and 1 and provides a measure of the linear relationship betweenx; andy. The
quantity z= rxiy\/ﬁ is distributed gpproximately normally with mean 0 and standard deviation 1 when x; and y are
uncorrelated, x; and y have enough convergent moments (i.e., the tails of their distributions die off sufficiently
rapidly), and nSis sufficiently large (p. 631, Ref. [60]), and thus can be used to test for the significance of r, , (i.e, to
determine the probability, or p-value, that aCC T, satisfying

Teyl® |rw| would occur by chance in the presence of

no relationship between x; and y; see Egs. (6.6.38) — (6.6.40) in Ref. [56] for additional discussion).
The CC lxy Measures the effect of one variable (i.e., X;) at atime ony. Regression analysis can be used to

assess the combined effects of multiple variables on y. Specifically, least squares procedures can be used to

construct the regression model

. x
y=hy+a bx, 1

i=1
where bg, by, ..., bpx are coefficients determined in the construction of the regression model ([61-65]; Sect. 6.6.2, Ref.
[56]). The signs of the coefficients by, by, ..., bpx indicate whether y increases (i.e., a positive coefficient) or
decreases (i.e., a negative coefficient) as the corresponding x value increases. Further, the regression model in Eq.
(11) has associated with it a quantity called an R2 value, or coefficient of determination, that is equal to the fraction of
the uncertainty in y that can be accounted for by the regression model (see Egs. (6.6.11) and (6.6.14), Ref. [56]).

When the variablesxy, X, ..., Xnx are independent,
RE=RE+ Ry+ -+ Ry, (12

where Rz,i =1,2,..., nX, isthe R2 value that results from regressing y on only x;.

The usefulness of the coefficients by, b, ..., bpx in Eq. (11) in sensitivity analysisis severely limited by the fact
that they depend on the unitsin whichy and the x; are expressed. Because of this, the regression model in Eq. (11) is
usually expressed in the following normalized form:

(hs/8)(%-%)/5 . (13

' ox,

(5 9)fs-

1

where



1/2 S 1/2

éns _ U . én _ U
5=68 (w- W /ns-1)a . §=64 (x -%)*/(ns-1a
k=1 e} k=1 0]

and yand X are defined in conjunction with Eq. (10). The coefficients b5 /S appearing in Eq. (13) are called
standardized regression coefficients (SRCs). When the x; are independent, the absolute value of the SRCs can be
used to provide a measure of variable importance. Specifically, the coefficients provide a measure of importance
based on the effect of moving each variable away from its expected value by a fixed fraction of its standard deviation
while retaining all other variables at their expected values. Calculating SRCs & equivalent to performing the

regression analysis with the input and output variables normalized to mean zero and standard deviation one.

Determination of the regression coefficients in Eq. (11) and the SRCsin Eq. (13) is based entirely on procedures
involving minimization of functions and algebraic manipulations and entails no statistics. |f desired, formal statistical
procedures can be used to indicate if these coefficients appear to be different from zero (Sect. 6.6.3, Ref. [56]). In
particular, these procedures provide the probahility (i.e., the p-value) that a stronger linear relationship would appear
by chance alone if there was no relationship between the variables involved. However, such procedures are based
on assumptions that are not satisfied in sampling-based sensitivity studies of deterministic models (i.e., models for
which a given input always produces the same result), and thus the outcome of using formal statistical procedures to
make assessments about the significance of individual coefficients or other entities in sampling-based sensitivity
studies should be regarded simply as one form of guidance as to whether or not a model prediction appears to be

affected by a particular model input.

When many uncertain variables are under consideration (i.e., when nX islarge), construction and presentation of
the regression models in Egs. (10) and (12) with all nX variables is unwieldy and typically unnecessary. In this
situation, the regression models are usually constructed in a stepwise manner in which one variable at atime is added
to the regression model until a point is reached at which no additional significant variables can be identified (i.e., a
stepwise regression analysis is carried out; see Sect. 6.6.5, Ref. [56]). Variableimportanceisindicated by the order in
which the variables enter the regression model, the size of the SRCs for the individual variables, and the changesin
R2 values as successive variables enter the regression model. A specified significancelevel (i.e., p-value) is usually

used to define a stopping point for the stepwise procedure.

The CC Iy is perhaps best interpreted in the context of regression analysis. Specifically, the following

regression model relating x and y can be constructed with least squares procedures:
¥= kb + q X . (14

The definition of ry yin Eq. (10) isequivalent to the definition



)l/ 2 ’ (15)

rxy =sign(b )(Riz

where sign(b;) = 1if b; 3 O, sign(b;)) = -1if b; <0 and F\’iz is the coefficient of determination that results from
regressing y on Xj. Thus, ryy captures both the sign of the regression coefficient b; and the fraction of the

uncertainty iny that can be accounted for by alinear relationship involving x;; further, if b; isa SRC, then Iy = h.

The CC ryy represents the linear relationship between x; and y but makes no correction for the possible effects
on y of other uncertain variables. The PCC provides a representation of the linear relationship between two variables
after a correction has been made to remove the linear effects of all other variablesin the analysis (Sect. 8.4, Ref. [56]).
The PCC between an individual variable x; and y is obtained from the use of a sequence of regression models. First,

the following two regression models are constructed:

% =co+a CpXp andy=bg+ g bpXp. (16)
p=l p=1
pti pi

Then, the results of the two preceding regressions are used to define the new variables x - % and y- §. ThePCC
p)qybetween x; and y is the CC between X - %and y- y. Thus, the PCC provides a measure of the linear

relationship between x; and y with the linear effects of the other variables removed.

Thus far, CCs, SRCs and PCCs have been introduced as measures of the relationship between uncertain (i.e.,
sampled) variables and analysis results. These coefficients are based on determining linear relationships and
typically perform poorly when the underlying relationships are nonlinear. When these relationships are nonlinear,
but still monotonic, the rank transformation can be used to linearize the underlying relationships between sampled
and calculated variables ([66, 67]; Sect. 8.6, Ref. [56]). With the rank transformation, data are replaced with their
corresponding ranks, and then the usual regression and correlation procedures are performed on these ranks.
Specifically, the smallest value of each variable is assigned the rank 1, the next largest value is assigned the rank 2,
and so on up to the largest value, which is assigned the rank nS, where nS denotes the number of observations (i.e.,
samples). Further, averaged ranks are assigned to equal values of a variable. The analysis is then performed with
these ranks being used as the values for the input and output variables. The outcomes of such analysis are RCCs,
SRRCs and PRCCs instead of CCs, SRCs and PCCs, respectively. In essence, the use of rank-transformed data
results in an analysis based on the strength of monotonic relationships rather than on the strength of linear

relati onships.

When regression-based approaches to sensitivity analysis (i.e.,, CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) do not
yield satisfactory insights, important variables can be searched for by attempting to identify patterns in the mapping
in Eq. (7) with techniques that are not predicated on searches for linear or monotonic relationships. Possibilities

include use of (i) the F-statistic to identify changes in the mean value of y across the range of individual x;’s, (ii) the



c2-statistic to identify changes in the median value of y across the range of individual x;'s (iii) the Kruskal-Wallis
statistic to identify changes in the distribution of y across the range of individual x's, and (iv) the c2-statistic to
identify nonrandom joint distributions involving y and individual x;'s [68, 69]. For convenience, the preceding are
referred to as tests for (i) common means (CMNSs), (ii) common medians (CMDs), (iii) common locations (CLs), and

(iv) statistical independence (SI), respectively.

The preceding statistics are based on dividing the values of x; in Eq. (9) into intervals. Typically, these intervals
contain equal numbers of values for x; (i.e., the intervals are of equal probability); however, thisis not always the
case (e.g., when x; has afinite number of values of unequal probability). The calculation of the F-statistic for CMNs
and the Kruskal-Wallis statistic for CLs involves only the division of x; into intervals. The F-statistic and the
Kruskal-Wallis statistic are then used to indicate if the y values associated with these intervals appear to have
different means and distributions, respectively. The c2-statistic for CMDs involves a further partitioning of the y
values into values above and below the median for al y in Eq. (9), with the corresponding significance test used to
indicate if the y values associated with the individual intervals defined for x; appear to have medians that are different
from the median for all values of y. The c2-statistic for Sl involves a partitioning of the y values in Eq. (9) into
intervals of equal probability analogous to the partitioning of the values of x;, with the corresponding significance
test used to indicate if the distribution of the points (X, Yi) over the resultant cells appearsto be different from what
would be expected if there was no relationship between x; and y. For each statistic, ap-value can be calculated which
corresponds to the probability of observing a stronger pattern than the one actually observed if there is no
relationship between x; and y. An ordering of p-values then provides a ranking of variable importance (i.e., the
smaller the p-value, the stronger the effect of x; on y appears to be). More detail on these and other related
procedures is given in Refs. [68, 69]. Further, the use of tests based on CMNs, CMDs, CLs and Sl is extensively
illustrated in the analyses for the individual test problems.

3. Linear Test Problems

Thefirst linear test problem (Model 1, Ref. [55] ) isdefined by
3
f()=ax x=[x% %], (17)
i=1
with x; U (X -s;,.%5+s;), X = 31 $;=05% fori=1 2, 3, and x:U(a, b) used to indicate that x has a uniform
distribution on [a, b]. Thus, the D;,i =1, 2, 3, in Eq. (4) correspond to uniform distributionsin this test problem.

The distributions assigned to the x; lead to adistribution for f(x), with Latin hypercube sampling tending to
produce more stabl e estimates of this distribution than random sampling (Fig. 1).



For the nLHS = 100, CCs, RCCs, CMNs, CLs, CMDs and Sl al identify x3 as the most important variable; CCs
and RCCs also indicate an effect for x, (Table I). Due to the large size of the p-values (i.e, > 0.05), CMNSs, CLs,

CMDsand Sl do not indicate an effect for xo, and none of the testsindicate an effect for x;.

The division of the x and y values for use in the test for Sl isillustrated in Fig. 2. Thetestsfor CMNsand CLs
only use the indicated divisions of the x-axis. The test for CMDs uses the indicated divisions of the x-axis and an

additional division of the y-axisinto val ues above and below the median.

For nLHS = 1000, CCs, RCCs, CMNs, CLs, CMDs and Sl identify x5 and X, as the two most important variables
(Tablel). Further, CCs, RCCs, CMNs and CLs also indicate an effect for x;. Thus, as might be expected, the larger
sample is leading to more resolution in the sensitivity analysis. However, CCs and RCCs were able to identify the

two most important variables with a sample of size 100.

Examination of scatterplots clearly shows the dominant effect of x5 (Fig. 2). The effect of x, is barely discernible
in the scatterplot for NLHS = 100 but is easily seen for nLHS = 1000. The scatterplotsfor x;, (not shown) indicate no
visually discernible effect for NLHS = 100 and a barely discernible effect for nLHS = 1000.

In addition to various tests of significance (Table 1) and the examination of scatterplots (Fig. 2), various
coefficient values (e.g., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) can also be used to assess variable importance
(Table I1). In Table Il and other similar tables in this presentation, CCs and RCCs are cal culated between individual
pairs of variables, and SRCs and SRRCs are calculated with all sampled variables included in the regression model
(i.e, X1, X2, X3 in this example; see Eq. (17)). In the complete absence of correlations between the sampled variable
values, corresponding CCs and SRCs would be the same and so would corresponding RCCs and SRRCs. As
indicated by the similarity of the values for CCs and SRCs and also for RCCs and SRRCs, there is little correlation
between the sampled variables. Further, because an exact linear model is under consideration, PCCs and PRCCs are
equal to one. Thus, for a linear model, PCCs and PRCCs provide no information on the importance of individual
variables. Because of the linearity of the model, the sample of size nLHS = 1000 gives results almost identical to

thosein Table Il for nLHS = 100.

An alternative summary of the SRCs and SRRCs in Table Il is to present the sensitivity results in the form of a
stepwise regression analysis (Table I11). Then, variable importance is indicated by the order in which the variables
entered the regression model, the sizes and signs of the SRCs or SRRCs, and the changes in R val ues as additional
variables are added to the regression model. Because a linear model is under consideration, the stepwise process
ultimately produces a regression model with an R2 value of 1.00. However, the last variable added to the regression
model (i.e., X;) has little effect and only raises the RZ vaue from 0.99 to 1.00. The regression coefficients do not
provide information on variable importance (i.e., they are all 1.00); rather, it is the SRCs that provide an indication of

variableimportance. Theresultsin Tablelll arefor raw data; use of rank-transformed data produces similar results.

10



When alinear relationship exists between a predicted variable and multiple input variables, stepwise regression
analysis provides more information on variable importance than simply examining CCs. First, the changes in R2
values as additional variables are added to the regression model provides an indication of how much uncertainty can
be accounted for by each variable. For example, the R2 values produced with the addition of each variable to the
regression model in Table Il are 0.89, 0.99 and 1.00, respectively. Thus, the last variable selected (i.e., x1) only
changes the R2 value from 0.99 to 1.00. Second, the F-test for the sequential addition of variables to the regression
model is more sensitive than the test for the significance of asingle CC. For example, the p-value obtained with nLHS
= 100 for the CC associated with x4 is 0.5091 (Table 1); in contrast, the p-value for the entry of x; into the regression
model that already contains x3 and xs is less than 10" 4.

The second linear test problem (Model 3, Ref. [55]) is defined by

G (% -1/2), x =[x, Xp,..., Xp0], (18)

T o

f(x)=

with x; : U(0, 1) andc; = (i - 11)2fori =1, 2, ¥, 22.

Latin hypercube and random sampling produce estimates of similar stability for the CDF for f(x) (Fig. 3). Thisis
different from the first linear function, where Latin hypercube sampling produced more stable estimates (Fig. 1). This
stability probability results from the fact that the model can be written as

10
f(X):sz(Xzz- 1/2)+é G g)ﬁ - 1/2)+(X22-i - 1/2)@, (19
i=1

which tends to smooth the effects of the random sampling owing to eachc; fori =1, 2, ¥4, 10 being multiplied by the

sum of two random values.

For the LHS of size nLHS = 100, CCs and RCCs identify the same variables as affecting f (i.e., Xo2, X21, X1, X20, X3,
X2, X19, X18, X4 With p-values less than 0.05) (Table IV). Similar identifications are also made for CMNs and CLs; in
contrast, CMDs and Sl fail to identify some of the variablesidentified by CCsand RCCs. For the LHS of sizenLHS =
1000, all tests identify more variables as affecting f (Table V). Further, thereis more agreement between the tests on
the most important variables (i.e., smallest p-values). However, a number of variables are not identified as having an
effect on f by any of the tests (e.g., X7, X15, X14, Xg, X9, X12, X13, X11, X10 have p-values greater than 0.05 for most
tests).

Given that a linear model is under consideration, stepwise regression provides a more informative summary of
variable effects than the coefficientsin Table IV (Table V). In particular, the stepwise regression analysis withnLHS
= 100 identifies the effects of all 21 variables that influence the evaluation of f (i.e., all variables except x4 1, which has

11



a coefficient of zero). The results for nLHS = 1000 (not shown) are essentially identical with those for nLHS = 100;
thus, no improvement in the results of the stepwise regression analysis is obtained by increasing the sample size.

Thus, the tests of significance used with the stepwise regression analysis are more effective inidentifying the effects
of individual variables than the tests used in conjunction with Table IV. In particular, the stepwise regression in
Table V correctly identifies the effects of al variables influencing f with a sample of size nLHS = 100; the test based
on CCsin Table IV does not identify the effects of al variables with a sample of size nLHS = 1000 (i.e., some variables
have p-values greater than 0.1).

The cumulative R2 values with the entry of each variable into the regression model are shown in TableV. The
increase in the R2 value with the entry of avariable shows the fraction of the total uncertainty that can be accounted
for by that variable in a linear regression model (e.g., xpq accounts for a fraction 0.36279 - 0.20948 = 0.15331 of the

total uncertainty). Asindicated by theincremental R2 values, no single variable dominates the uncertainty inf.

For perspective, scatterplots for the first two variables selected in the stepwise process (i.e., Xo2, Xo1) are shown
in Fig. 4. Although the patterns are discernible, they are not strong, which is consistent with the incremental R?

values of 0.20948 and 0.15311 associated with xo» and x4 .

Both regression coefficients and SRCs are given in Table V. The SRCs are a better measure of variable
importance because they incorporate the effects of a variable's distribution and also remove the effects of units.
Except for the effects of correlations within a sample, CCs and SRCs are the same; thus, the CCs between the x; and
f(x) are also available from Table V. For example, Fig. IV contains scatterplots with associated CCs of approximately
0.46052 for xoo and 0.38038 for X»1.

4. Monotonic Test Problems

The first monotonic test problem (Model 4, Ref. [55]) isdefined by

f(x)=x+ X3, X =[x, x2], (20)

with x; : U(0, 1) fori =1, 2 (Model 4a), x; : U(0, 3) fori = 1, 2 (Model 4b), or x; : U(O, 5) fori =1, 2 (Model 4c). Thus, fis
the same in Models 4a, 4b, and 4c, but the distributions assigned to the x; change. In the following, Models 4a and

4c will be considered as thisincorporates the two extremesin the behavior of f.

Latin hypercube sampling produces more stable estimates of the CDFs for Models 4a and 4c than is the case for
random sampling (Fig. 5). This stability is particularly noticeable for Model 4c, where the value of f(x) is dominated
by a strong nonlinear relationship involving Xo; in this problem, the stratification associated with Latin hypercube

sampling produces CDF estimates that are much more stabl e than those obtained with random sampling.



Sensitivity analysis for Model 4c is not very interesting due to the dominance of f(x) by x, (Fig. 6), with the
result that all of the sensitivity analysis procedures under consideration identify x, as the dominant variable.
Sensitivity analysisis more interesting for Model 4a as bothx; and x, affect f(x). Therefore, only sensitivity analysis

for Model 4awill be discussed.

All procedures identify xq and x, as affecting f(x) for Model 4a and the sample of size nLHS = 100 (Table VI).
The well-defined effects of xq and x, can be seen in the corresponding scatterplots (Fig. 7). The patterns are better
defined in the scatterplots for nLHS = 1000 but still easily recognizable in the scatterplots for nLHS = 100.

For perspective, various coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) involving X1, Xo and f(x) are
presented in Table VII. As should be the case, CCs and SRCs are similar in size and PCCs are larger than CCs and
SRCs; similar patterns also hold for RCCs, SRRCs and PRCCs. In this example, the coefficients cal culated with raw
(i.e., untransformed) data have values that are similar to those of the corresponding coefficients calculated with rank-
transformed data. Thus, the problem is not as nonlinear over the distributions of x; and x, as might be suggested by
the definition of fin Eg. (20), which is consistent with the linear trends appearing in the scatterplotsin Fig. 7. The use
of samples of size nLHS = 100 and nLHS = 1000 produce similar coefficient values. Thus, the behavior of the function
is being adequately captured with nLHS = 100, and little is gained by using a large sample size (although the
scatterplots are more visually appealing for nLHS = 1000).

The sensitivity results for Model 4a can also be summarized as the outcome of a stepwise regression analysis
(Table VIII). As aready observed in conjunction with Table VII, x4 is identified as having a stronger effect on the
uncertainty in f(x) than x,, and analyses with raw (i.e., untransformed) data and rank-transformed data produce
similar results. Use of the sample of size nLHS = 1000 produces little improvement in the regression analyses, with R2
values for the fina regression model changing from 0.88580 and 0.87966 with raw and rank-transformed data with
nLHS = 100 to 0.88356 and 0.88482 for nLHS = 1000 (regressions not shown). Thus, as previously noted, increasing

the sample size in this example does not improve the results of the sensitivity analysis.

The use of regression analysis with rank-transformed data rather than raw data produced no improvement in the
resultant regression model for Model 4a (Table VIII). However, the potential exists for considerable improvement
when the dependent variable is a nhonlinear but monotonic function of the independent variable(s). For example, a
nonlinear but monotonic relationship exists between x, and f(x) for Model 4c (Fig. 6). Inthe analysis of thismodel, a
regression with rank-transformed data relating f(x) to x, with nLHS = 100 produces a regression model with an R2
value of 0.97574; the corresponding regression with raw data produces a regression model with an R2 value of

0.75003.
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The rank transformation is self-standardizing in the sense that RRCs and SRRCs are essentially equal (Table
VIII), with strict equality holding in the absence of equal (i.e., tied) variable values and approximate equality holding

when equal variable values result in the use of average ranks for the equal values.
The second monotonic test problem (Model 5, Ref. [55] ) is defined by

6 5 6
f(x) :eXpaeé. b g _él(eq '1)/t], x =[x, %, ... %], 1)
i=1 g '=

withby =15 by =bg =" =bg=0.9andx; : U(0, 1) fori = 1, 2, ¥4, 6.

Latin hypercube sampling produces more stable estimates of the CDF for f(x) than does random sampling
(Fig.8). However, the distribution has a long tail to the right, and both sampling procedures show considerable
variation across replicates in the largest observed value for f(x). Thus, if accurate estimates of the upper quantiles of
the CDF were required, then it would be necessary to use a large sample size or possibly switch to an importance
sampling procedure. For functions that are as inexpensive to evaluate asf, it would be wasteful to invest the effort to
design an importance sampling procedure. However, as the cost of evaluating the function (i.e., model) increases, at

some point use of importance sampling may become cost effective.

All tests (i.e,, CCs, RCCs, CMNSs, CLs, CMDs, Sl) identify x; as the most important variable for nLHS = 100
(Table 1X); further, CCs and RCCs identify effects for all six x;. Given the definition of f, x; is the most important
variable with respect to the uncertainty in f(x), and Xo, X3, ¥4, Xg have equal-sized effects on this uncertainty. For
nLHS = 1000, all testsidentify effects for all six x;.

The coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) involving the x; and f(x) are presented in Table X.
The largest coefficients involve Xq; Xo, X3, ¥4, Xg have similar-sized coefficients; CCs and SRCs are essentially equal,
as is the case for RCCs and SRRCs; PCCs and PRCCs are larger than the corresponding CCs and RCCs, respectively;
and all coefficients are positive, which is consistent with the use of the x; in the definition of f(x). Samples of size

NLHS = 100 and nLHS = 1000 produce similar coefficient esimates.

The scatterplots for x4 and X, show discernible, but not particularly strong, patterns (Fig. 1X). Asshould be the
case given the definition of f(x) and the distributions assigned to the x;, the scatterplots for x; show somewhat

stronger patterns than the scatterplots for xo. The scatterplotsfor X3, X4, X5, Xg are similar to those for x,.

The sensitivity results for Model 5 can also be presented as stepwise regression analyses with raw and rank-
transformed data (Table X1). The regression analyses with both raw and rank-transformed data identify the effects
associated with al six x;’s. Further, the regression analyses with rank-transformed data produce models with higher
R2 values than the regression analyses with raw data(i.e., 0.94119 versus 0.74993 for nLHS = 100 and 0.96285 versus
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0.80030 for nLHS = 1000). Thereis little difference in the regression results obtained with nLHS = 100 and nLHS =
1000 (not shown).

5. Nonmonotonic Test Problems

Thefirst nonmonotonic test problem (Model 7, Ref. [55]) is defined by

8
1090 (6). % =[]
- (22)
§|4x-2|+a
RS

witha; =0,a,=1,a3=45a4=9,ag=ag=ay =ag =99, andx;: U0, 1) fori =1, 2, %4, 8.

Latin hypercube sampling produces estimates of the CDF for f(x) that are more stable than those produced by
random sampling (Fig. 10).

Tests based on CCs and RCCs fail to identify any of the x; as affecting f(x) for nLHS = 100 and also for nLHS =
1000 (Table X11). In contrast, tests based on CMNs, CLs, CMDs and Sl identify significant effects for x; and x, for
both nLHS = 100 and nLHS = 1000, with the exception that the Sl test does not identify x» for nLHS = 100. In
addition, smaller effects are indicated for X3 (CMN, CL, CMD) and x4 (CMN, CL, CMD, Sl) for nLHS = 1000. Tests
based on CCs and RCCs fail to identify the effects of xq and X, onf(x) because these effects are both nonlinear and
nonmonotonic (Fig. 11). In contrast, such effects are readily identified by CMNs, CLs, CMDs and SI. All the
coefficients involving f(x) and the x;’s (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) are essentialy zero; similarly,

the regression analyses with raw and rank-transformed data produce no meaningful results.
The second nonmonotonic test problem (Model 8, Ref. [55]) isdefined by

[x /2]

f(x)=h(% )aO 6 (x); (%), (23

where h, ¢; and g; are defined by
() =272 () = (-1f (12)(*%,2). @ baxe) =2 2

and xq1: U(- 1, 1), xo: DU(5), [~] designates the greatest integer function, and x: DU(n) indicates that x hasauniform
distribution over theintegersj =1, 2, %, n.
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Latin hypercube sampling and random sampling produce estimates of the CDF for f(x) that exhibit similar
stability (Fig. 12). This behavior is in contrast to the other examples, where Latin hypercube sampling tends to

produce more stable CDF estimates than random sampling.

For nLHS = 100, tests based on CMNs and Sl identify an effect for x4 (i.e., p-values < 0.05) (Table X111). Thetest
based on CLs with a p-value of 0.0723 aso suggests an effect for x1. None of the remaining tests (i.e., CCs, RCCs,
CMDs) indicates an effect for x41. The test based on Sl with a p-value of 0.0698 suggests a possible effect for xy;
none of the other tests have p-values that suggest an effect for x,. For nLHS = 1000, all tests indicate an effect for
X1, and the test based on S| also indicates an effect for x,.

This example has complex patterns involving x; and X (Fig. 13). These patterns partially emerge for nLHS = 100
and are readily apparent for nLHS = 1000. Of the tests under consideration, the test based on Sl is most effectivein
identifying these patterns. Due to the complexity of the relations involving x4, X, and f(x), none of the previously
considered coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) have values that provide any useful insights
on these relationships. Similarly, stepwise regression analyses with raw and rank-transformed data fail to provide

any useful insights.

The third nonmonotonic test problem (Model 9, Ref. [55]) is defined by
f(x):sinx1+Asin2x2+Bx§sinx1, x:[xl, X2, X3], (24)

withA=7,B=0.1, andx;: U(-p,p) fori =1, 2, 3.

For this example, the CDF estimates obtained with Latin hypercube sampling are more stable than those obtained
with random sampling (Fig. 14).

In sensitivity analyses with nLHS = 100, dl tests identify x4 as affecting f(x) (Table XIV). In addition, the CMNSs,
CLs, CMDs and Sl tests also identify an effect for x,. None of the testsidentifies an effect for x3. For nLHS = 1000,
all tests indicate an effect for xq, and tests based on CMNs, CLs, CMDsand Sl indicate an effect for x,. In contrast,
CCsand RCCsfail to indicate an effect for x,. Further, the test based on S| also identifies an effect for xs.

Examination of scatterplots clearly shows that X1, Xo and x5 have readily discernible influences onf(x) (Fig. 15).
The tests based on CCs and RCCs are completely missing the nonlinear and nonmonotonic patterns induced in f(x)
by X, and x3. Tests based on CCs and RCCs are able to identify a slight increasing pattern in the relationship
between x4 and f(x); but thisisonly part of the patterns appearing in Fig. 15. Tests based on CMNs, CLsand CMDs
identify the pattern associated with x, but fail to identify the pattern associated with x3 that tends to produce similar
means and medians across the entire range of x3. In contrast, this pattern was detected by the test for SI withnLHS

=1000.
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Due to the lack of strong linear or monotonic relationships between X4, X2, X3 and f(x), individual coefficients
(i.e, CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) are close to zero and provide little useful information to help in
determining the effects of x;, xo and x3 on f(x). For the same reasons, stepwise regression analysis with raw or rank-

transferred datais not very informative.

6. Discussion

This presentation uses relatively simple test problems to illustrate sampling-based procedures for uncertainty
and sensitivity analysis. Such simplicity helps in understanding the techniques in use but is not typical of real
problems. Many examples of real, and hence more complex, analyses using sampling-based procedures are

available[1-13, 70-83]

The complexity of many real analysis problems is increased by the presence of both stochastic (i.e., aeatory)
uncertainty and subjective (i.e., epistemic) uncertainty.[24-31] Stochastic uncertainty arises because the system
under study can behave in many different ways and thus is a property of the system. Subjective uncertainty arises
from an inability to specify the exact value of a quantity that is assumed to have a fixed value within a particular
analysis and thus is a property of the analysts carrying out the study. The distinction between stochastic and
subjective uncertainty can be traced back to the beginnings of the formal development of probability theory in the

|ate sixteen hundreds.[84-86]

The test problems in this presentation are assumed to involve subjective uncertainty. The analysis of problems
that involve both stochastic and subjective uncertainty requires careful planning and implementation. Often, event
trees and fault trees are used to represent the effects of stochastic uncertainty, and sampling-based procedures of
the typeillustrated in this presentation are used to represent the effects of subjective uncertainty. Many examples of
analyses involving both stochastic and subjective uncertainty exist, including analyses related to reactor safety,[87-

90] radioactive waste disposal,[ 91-93] environmental risk assessment,[94-100] and petroleum exploration.[101]

Many approaches are available for uncertainty and sensitivity analysis, including differential analysis,[102-115]
response surface methodology,[116-126] the Fourier amplitude sensitivity test (FAST),[127-131] variance
decomposition,[132-141] and fast probability integration.[142-148] Differential analysis involves gproximating a
model with a Taylor series and then using variance propagation formulas to obtain uncertainty and sensitivity
analysis results. Response surface methodology is based on using classical experimental designs to select points for
use in developing a response surface replacement for a model; this replacement model is then used in subsequent
uncertainty and sensitivity analyses based on variance propagation and Monte Carlo simulation. The FAST is based
on using techniques from Fourier analysis to decompose the variance of amodel prediction into the components due
to individual model inputs and is closely related to the other indicated variance decomposition procedures. With the

FAST and other variance decomposition procedures, uncertainty and sensitivity analysis results are based on the
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variance of model predictions and the contribution of individual model inputs to this variance. Fast probability
integration is an uncertainty analysis technique used to estimate the tails of the uncertainty distributions for model

predictions.

Although many approaches to uncertainty and sensitivity analysis exist, a sampling-based approach is usually a
suitable, and quite often the best, approach for various combinations of the following reasons: (i) conceptual
smplicity and ease of implementation (e.g., unlike other methods, there are no requirements for model differentiation,
complex experimental designs and associated response surface construction, or high dimensional integrations), (ii)
dense stratification over the range of each sampled variable, especialy when Latin hypercube sampling is used, (iii)
direct provision of uncertainty analysis results without the use of surrogate models as approximations to the original
model (e.g., Taylor series or response surfaces), (iv) availability of a variety of sensitivity analysis procedures, and
(v) dfectiveness as a model verification procedure (i.e., exploration of the mapping from uncertain inputs to model

results provides a powerful tool for the identification of errorsin model construction and analysisimplementation).

A concern often expressed about sampling-based uncertainty and sensitivity analyses is that the number of
required model evaluations will make the cost of the analysis prohibitive. In practice, thisis usually not the case. In
most analyses, a sample size of considerably less than 1000 is sufficient to obtain useful uncertainty and sensitivity
analysis results. This is certainly the case for the test problems considered in this presentation and has been

demonstrated in a number of real analyses.[69, 92, 149, 150]

Several points need to be kept in mind when considering the computational cost associated with sampling-based
uncertainty and sensitivity analyses. First, high quantiles of distributions representing subjective uncertainty are
typically not needed, and in addition, are usually not meaningful. Specifically, ageneral idea of the uncertainty range
in amodel’s predictions isimportant to have but to know something such as the 0.999 quantile of the distribution is
usually not very useful. Further, in most analyses, the resolution at which the subjective uncertainty in a model’s
inputs can be assessed does not justify ascribing any real meaning to very low or very high quantiles of resulting
uncertainty distributions. Second, the belief that estimates for extreme quantiles is needed often comes from
confusing stochastic and subjective uncertainty. In many analyses, stochastic uncertainty deals with rare events
(e.g., unlikely accidents) that really could happen. In such analyses, the estimation of extreme quantiles isimportant
and istypically carried out with an importance sampling procedure defined and implemented through the use of event
trees. Third, the uncertainty in a given analysis result is usually dominated by the uncertainty in only afew inputs.
As aresult, a large sample size is not needed for an effective uncertainty and sensitivity analysis. The preceding
does not have to be true but is typically true in practice. Fourth, implementation of the other previously indicated
uncertainty and sensitivity analysis techniques can often require as many or more model evaluations as a sampling-
based analysis, and thus, have equal or greater computational cost. Finally, in most analyses, the cost of the human
time to develop the model, characterize the uncertainty in model inputs, and carry out the analysis is much greater

than the cost of the required model evaluations.
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Figure Captions

Fig. 1. Stability of estimated CDF for linear test problem with Moddl 1 (see Eq. (17).

Fig. 2. Scatterplotsfor linear test problem with Model 1 (see Eq. (17)).

Fig. 3. Stahility of estimated CDF for linear test problem with Model 3 (see Eq. (18)).

Fig. 4. Scatterplotsfor linear test problem with Model 3 (see Eq. (18)).

Fig. 5. Stahility of estimated CDFsfor monotonic test problem with Models 4a and 4c (see Eq. (20)).

Fig. 6. Scatterplot withnLHS = 100 for monotonic test problem with Model 4c (see Eq. (20)).

Fig. 7. Scatterplotsfor monotonic test problem with Model 4a (see Eq. (20)).

Fig. 8. Stahility of estimated CDF for monotonic test problem with Model 5 (see Eq. (21)).

Fig. 9. Scatterplotsfor monotonic test problem with Model 5 (see Eq. (21)).

Fig. 10. Stability of estimated CDF for nonmonotonic test problem with Model 7 (see Eq. (22)).

Fig. 11. Scatterplotsfor nonmonotonic test problem with Model 7 (see Eq. (22)).

Fig. 12. Stability of estimated CDF for nonmonotonic test problem with Model 8 (see Eq. (23)).

Fig. 13. Scatterplots for nonmonotonic test problem with Model 8 (see Eqg. (23).

Fig. 14. Stability of estimated CDF for nonmonotonic test problem with Model 9 (see Eq. (24)).

Fig. 15. Scatterplotsfor nonmonotonic test problem with Model 9 (see Eq. (24)).
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Table I. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and Sl for Linear Test Problem
with Model 1 (see Eq. (17))

Sample Size: nLHS =100

Variable cch RCCC cMNd cLe cmDf si9
Name? Rank p-Val Rank p-Val Rank p-Va Rank p-Val Rank p-Val Rank p-Va
X3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
Xo 20 0.0015 20 0.0027 20 0.0502 20 0.0779 20 0.5249 20 0.2954
Xq 3.0 0.5091 3.0 05694 3.0 0.7528 3.0 0.7089 30 0.7358 3.0 0.8392
Sample Size: nLHS = 1000
Variable CC RCC CMN CL CMD S|
Name Rank p-Val Rank p-Val Rank p-Va Rank p-Val Rank p-Val Rank p-Va
X3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
Xo 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
X1 3.0 0.0007 3.0 0.0017 3.0 0.0155 3.0 0.0313 3.0 04748 3.0 0.1164
a8 Variables ordered by p-values for CCs
b Ranksand p-valuesfor CCs
¢ Ranksand p-vaues for RCCs
4 Ranks and p-values for CMNs test with 1° 5 grid (i.e., division of x valuesinto 5 intervals of equal probability and no division of

y values).

¢ Ranksand p-values for CLs (Kruskal-Wallis) test with 1 “ 5 grid (i.e., division of x valuesinto 5 intervals of equal probability and
no division of y values).

f Ranksand p-values for CMDs text with 2 5 grid (i.e., division of x valuesinto 5 intervals of equal probability and division of y
values into 2 intervals defined by the median of the y values).

9 Ranksand p-valuesfor Sl test with 5 5 grid (i.e., division of both x and y valuesinto 5 intervals of equal probability).

Table Il. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs)
and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (17))
Variable ccb SRCP PCcP RccP SRRCP PRCCP
Name? Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value
X3 1 0.9439 1 0.9459 2 1.000 1 0.9466 1 0.9482 2 1.000
X5 2 0.3175 2 0.3156 2 1.000 2 0.3018 2 0.2987 2 1.000
X1 3 0.0660 3 0.1054 2 1.000 3 0.0572 3 0.0976 2 1.000

2 Variables ordered by p-values for CCs.
b Ranks and values for CCs, SRCs, PCCs, RCCs, SRRCs and PRCCs as indicated.

Table IlI. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (17))
Variable? R2b RCC SRcd p-Vaue®
X3 0.89098 1.0000E+00 9.4588E- 01 0.0000E+00
X 0.98891 1.0000E+00 3.1558E- 01 0.0000E+00
X1 1.00000 1.0000E+00 1.0541E- 01 0.0000E+00



a8 Variablesin order of entry into regression model.

b

Cumulative R? value with entry of each variable into regression model.

¢ Regression coefficients (RCs) in final regression model.
Standardized regression coefficients (SRCs) in final regression model.
For variablein row (i.e., xj), p- or a-value for addition of x;j to regression model containing remaining variables.

d

e

Table IV. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SlI for Linear Test Problem
with Model 3 (see Eq. (18))2
Sample Size: nLHS= 100
Variable cC RCC CMN CL CMD
Name Rank  p-vd Rank  p-vd Rank  p-vd Rank  p-vd Rank  p-vd Rank  p-vd
X22 1.0 0.0000 1.0 0.0000 1.0 0.0001 1.0 0.0002 15 0.0009 2.0 0.0208
X21 2.0 0.0001 2.0 0.0002 2.0 0.0004 4.0 0.0018 9.0 0.1074 1.0 0.0086
X1 3.0 0.0002 3.0 0.0003 5.0 0.0024 5.0 0.0043 7.0 0.0289 8.5 0.1137
X20 4.0 0.0003 4.0 0.0005 7.0 0.0070 7.0 0.0131 11.0 0.2311 5.0 0.0615
X3 5.0 0.0015 5.0 0.0016 6.0 0.0064 6.0 0.0086 4.0 0.0103 3.0 0.0239
X2 6.0 0.0028 7.0 0.0037 3.0 0.0006 2.0 0.0012 3.0 0.0051 6.0 0.0791
X19 7.0 0.0037 6.0 0.0025 10.0 0.0699 10.0 0.0445 5.0 0.0123 10.5 0.1785
X18 8.0 0.0238 8.0 0.0197 8.0 0.0318 8.0 0.0294 6.0 0.0146 12.0 0.2202
X4 9.0 0.0444 9.0 0.0289 9.0 0.0399 9.0 0.0295 10.0 0.1991 8.5 0.1137
X17 10.0 0.1095 10.0 0.1135 12.0 0.1476 12.0 0.1515 155 0.4060 10.5 0.1785
X16 11.0 0.1379 11.0 0.1154 20.0 0.7358 18.0 0.6699 13.5 0.3546 4.0 0.0316
X5 12.0 0.2668 12.0 0.3349 4.0 0.0012 3.0 0.0016 15 0.0009 7.0 0.1010
Xg 13.0 0.4991 13.0 0.4195 18.0 0.6822 19.0 0.6835 18.0 0.5249 14.0 0.4186
Xg 14.0 0.5118 18.0 0.6595 17.0 0.3711 16.0 0.4258 18.0 0.5249 15.5 0.4884
X7 15.0 0.5261 16.0 0.5194 19.0 0.7351 20.0 0.7596 15.5 0.4060 18.0 0.5987
Xg 16.0 0.5368 15.0 0.5006 14.0 0.3476 17.0 0.4307 18.0 0.5249 13.0 0.3239
X12 17.0 0.5487 14.0 0.4632 16.0 0.3656 14.0 0.3570 20.0 0.7358 18.0 0.5987
X13 18.0 0.7118 17.0 0.6491 13.0 0.2392 13.0 0.2676 13.5 0.3546 15.5 0.4884
X14 19.0 0.8221 21.0 0.9223 21.0 0.9511 21.0 0.9651 22.0 0.9825 18.0 0.5987
X15 20.0 0.8317 20.0 0.7924 22.0 0.9922 22.0 0.9929 21.0 0.9384 20.0 0.6359
X11 21.0 0.8909 19.0 0.7495 11.0 0.0716 11.0 0.1020 8.0 0.0404 21.0 0.7440
X10 22.0 0.9217 22.0 0.9840 15.0 0.3507 15.0 0.3963 12.0 0.3084 22.0 0.7776
Sample Size: nLHS = 1000
Variable cC RCC CMN CL CMD
Name Rank  p-vad Rank  p-vad Rank  p-vad Rank  p-vad Rank  p-vd Rank  p-vd
X292 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X21 2.0 0.0000 2.0 0.0000 2.0 0.0000 3.0 0.0000 2.0 0.0000 3.0 0.0000
X1 3.0 0.0000 3.0 0.0000 3.0 0.0000 2.0 0.0000 3.0 0.0000 2.0 0.0000
X2 4.0 0.0000 4.0 0.0000 4.0 0.0000 4.0 0.0000 6.0 0.0000 4.0 0.0000
X20 5.0 0.0000 5.0 0.0000 5.0 0.0000 5.0 0.0000 4.0 0.0000 5.0 0.0000
X3 6.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000 5.0 0.0000 6.0 0.0000
X19 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000
X18 8.0 0.0000 8.0 0.0000 8.0 0.0000 8.0 0.0000 8.0 0.0000 9.0 0.0001
X4 9.0 0.0000 9.0 0.0000 9.0 0.0000 9.0 0.0000 9.0 0.0000 10.0 0.0003
X5 10.0 0.0000 11.0 0.0000 10.0 0.0000 10.0 0.0000 10.0 0.0002 8.0 0.0000
X17 11.0 0.0000 10.0 0.0000 11.0 0.0002 11.0 0.0002 12.0 0.0040 12.0 0.0121
X16 12.0 0.0011 12.0 0.0002 12.0 0.0124 12.0 0.0035 11.0 0.0004 13.0 0.1164
X6 13.0 0.0018 13.0 0.0014 13.0 0.0252 13.0 0.0212 13.0 0.0206 11.0 0.0019
X7 14.0 0.0637 14.0 0.0776 14.0 0.0267 14.0 0.0697 16.0 0.1538 14.0 0.1164
X15 15.0 0.0959 15.0 0.0892 22.0 0.6771 20.0 0.5827 21.0 0.7431 21.0 0.6691
X14 16.0 0.2579 18.0 0.3909 18.0 0.4664 19.0 0.5414 18.0 0.4809 15.0 0.1843
Xg 17.0 0.3165 16.0 0.2949 19.0 0.5583 18.0 0.4750 14.0 0.0425 17.0 0.2509
Xg 18.0 0.3907 19.0 0.4178 20.0 0.5701 21.0 0.7113 22.0 0.9437 18.0 0.2899
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X12
X13
X11
X10

19.0
20.0
21.0
22.0

0.4606
0.4625
0.6626
0.7892

17.0
21.0
20.0
22.0

0.3616
0.5867
0.5806
0.7117

16.0
15.0
17.0
21.0

0.3026
0.1438
0.3446
0.6605

16.0
15.0
17.0
22.0

0.1976
0.1348
0.3143
0.7753

15.0
17.0
19.0
20.0

0.1402
0.2792
0.4932
0.5512

16.0
19.0
20.0
22.0

0.1944
0.2954
0.4530
0.9950

& Table structure same asin Table .



Table V.

Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)

Data and Sample Size nLHS = 100 for Linear Test Problem with Model 3 (see Eq. (18))2

Variable R2 RC SRC p-Vaue
X9 0.20948 1.2100E+02 4.6052E- 01 2.7828E- 08P
Xo1 0.36279 1.0000E+02 3.8038E- 01 2.7828E- 08
X, 0.50981 1.0000E+02 3.8141E- 01 2.7828E- 08
X0 0.63339 8.1000E+01 3.0763E- 01 2.7828E- 08
X5 0.73563 8.1000E+01 3.0830E- 01 2.7828E- 08
X3 0.80541 6.4000E+01 2.4338E- 01 2.7828E- 08
Xig 0.86382 6.4000E+01 2.4317E- 01 2.7828E- 08
X18 0.90285 4.9000E+01 1.8642E- 01 2.7828E- 08
Xq 0.93449 4.9000E+01 1.8614E- 01 2.7828E- 08
Xg 0.95728 3.6000E+01 1.3677E- 01 2.7828E- 08
X1 0.97297 3.6000E+01 1.3665E- 01 2.7828E- 08
Xg 0.98146 2.5000E+01 9.5070E- 02 2.7828E- 08
X16 0.98978 2.5000E+01 9.5121E- 02 2.7828E- 08
X15 0.99340 1.6000E+01 6.0789E- 02 2.7828E- 08
X7 0.99710 1.6000E+01 6.0905E- 02 2.7828E- 08
Xg 0.99833 9.0000E+00 3.4256E- 02 2.7828E- 08
X14 0.99950 9.0000E+00 3.4263E- 02 2.7828E- 08
Xg 0.99974 4.0000E+00 1.5206E- 02 2.7828E- 08
Xi3 0.99997 4,0000E+00 1.5225E- 02 2.7828E- 08
X10 0.99999 9.9999E- 01 3.8041E- 03 2.7828E- 08
X12 1.00000 1.0000E+00 3.8018E- 03 2.7828E- 08
X11 1.00000 - 3.0113E- 05 - 1.1426E- 07 2.6792E- 01

2 Table structure same asin Tablelll.

b |dentical values result from lack of resolution in algorithm used in the calculation of very small p-values.

Table VI. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and Sl for Monotonic Test
Problem with Model 4a (see Eg. (20)) and nLHS = 1002
Variable CcC RCC CMN CL CMD Sl
Name Rank p-Va Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va
X1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X5 20 0.0000 20 0.0000 20 0.0000 20 0.0000 20 0.0004 20 0.0000

2 Table structure ssme asin Table .
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Table VII.

Monotonic Test Problem with Model 4a (see Eq. (20))

Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) for

Sample Size: NLHS =100

Vaigble CcP SRC PCCE
Name? p-Vdue Rank Value Rank Value Rank Vaue
X1 0.0000 1.0 0.7367 1.0 0.7401 10 0.9097
X5 0.0000 20 0.5814 20 0.5857 20 0.8662
Varigble RCC® SRRCf PRCC!
Name< p-Vaue Rank Vaue Rank Value Rank Value
X1 0.0000 10 0.7688 10 0.7723 10 0.9122
X5 0.0000 20 0.5322 20 0.5373 20 0.8401
Sample Size: nLHS = 1000
Vaiable CC SRC PCC
Name p-Vdue Rank Vaue Rank Vaue Rank Vaue
X1 0.0000 15 0.7310 1.0 0.7263 10 0.9051
X5 0.0000 15 0.5967 20 0.5910 20 0.8660
Vaiable RCC SRRC PRCC
Name p-Vdue Rank Value Rank Value Rank Vaue
X1 0.0000 15 0.7531 1.0 0.7489 10 0.9108
X5 0.0000 15 0.5692 20 0.5637 20 0.8567

a8 Variables ordered by p-values for CCs.

p-values, ranks and values for CCs.

¢ Ranks and values for SRCs and PCCs as indicated.
4" Variables ordered by p-values for RCCs.

€ p-values, ranks and values for RCCs.
f Ranks and values for SRRCs and PRCCs as indicated.

Table VIII.  Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 4a (see Eg. (20)) and Sample Size nLHS = 1002
Raw Data
Variable R2 RC SRC p-Vaue
X1 0.54273 1.0070E+00 7.4014E- 01 2.7828E- 08
Xo 0.88580 7.9861E- 01 5.8573E- 01 2.7828E- 08
Rank-Transformed Data
Variable R2 RRC SRRCC p-Vaue
X1 0.59099 7.7229E- 01 7.7229E- 01 2.7828E- 08
X5 0.87966 5.3728E- 01 5.3728E- 01 2.7828E- 08
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@ Table structure same asin Table l11.
b Rank regression coefficient (RRC).
¢ Standardized rank regression coefficient (SRRC).

Table IX. Sensitivity Results Based on CCs, RCCs, QMNs, CLs, CMDs and Sl for Monotonic Test
Problem with Model 5 (see Eq. (21))2
Sample Size: nLHS =100

Variable CcC RCC CMN CL CMD Sl
Name Rank p-Vval Rank p-Vval Rank p-Vval Rank p-Vval Rank p-Vval Rank p-Vval
X1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
Xq 20 0.0005 5.0 0.0009 3.0 0.0161 4.0 0.0095 6.0 0.1468 5.0 0.2436
Xg 3.0 0.0007 6.0 0.0029 20 0.0006 20 0.0011 3.0 0.0342 20 0.0156
X5 4.0 0.0041 4.0 0.0007 40 0.0211 5.0 0.0098 20 0.0087 3.0 0.0180
Xg 5.0 0.0051 3.0 0.0004 6.0 0.0840 6.0 0.0184 40 0.0477 6.0 0.4530
X3 6.0 0.0052 20 0.0003 5.0 0.0464 3.0 0.0070 5.0 0.0780 40 0.0540

Variable cc RCC CMN cL CMD Sl
Name Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va
X1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
Xg 20 0.0000 6.0  0.0000 3.0 0.0000 4.0 0.0000 5.0 0.0000 5.0 0.0000
X5 3.0 0.0000 20 0.0000 20 0.0000 20 0.0000 20 0.0000 20 0.0000
Xy 4.0 0.0000 4.0 0.0000 5.0 0.0000 3.0 0.0000 3.0 0.0000 4.0 0.0000
X3 5.0 0.0000 3.0 0.0000 4.0 0.0000 6.0  0.0000 6.0  0.0000 6.0  0.0000
Xg 6.0  0.0000 5.0 0.0000 6.0  0.0000 5.0 0.0000 4.0 0.0000 3.0 0.0000

2 Table structure same asin Table .



Table X. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) for
Monotonic Test Problem with Model 5 (see Eq. (21))2

Sample Size: NLHS =100

Vaiable CcC SRC PCC
Name p-Value Rank Vaue Rank Vaue Rank Vaue
X1 0.0000 10 0.5078 10 0.5223 10 0.7221
Xq 0.0005 20 0.3459 3.0 0.3446 3.0 0.5673
Xg 0.0007 30 0.3371 20 0.3509 20 0.5739
Xo 0.0041 4.0 0.2868 50 0.2952 50 0.5080
Xg 0.0051 5.0 0.2803 6.0 0.2837 6.0 0.4929
X3 0.0052 6.0 0.2793 4.0 0.2973 4.0 0.5108
Variable RCC SRRC PRCC
Name p-Vadue Rank Vaue Rank Vaue Rank Vaue
X1 0.0000 1.0 0.5852 1.0 0.6013 1.0 0.9273
X3 0.0003 20 0.3596 20 0.3763 20 0.8404
Xg 0.0004 3.0 0.3591 3.0 0.3669 3.0 0.8339
X5 0.0007 4.0 0.3405 4.0 0.3456 4.0 0.8183
Xq 0.0009 50 0.3334 50 0.3317 50 0.8071
Xg 0.0029 6.0 0.2992 6.0 0.3142 6.0 0.7912
Sample Size: nLHS = 1000
Vaiable CC SRC PCC
Name p-Value Rank Value Rank Vaue Rank Vaue
X1 0.0000 1.0 0.5259 1.0 0.5217 1.0 0.7594
Xg 0.0000 20 0.3412 20 0.3367 20 0.6017
Xo 0.0000 30 0.3297 4.0 0.3241 4.0 0.5871
Xq 0.0000 4.0 0.3275 3.0 0.3251 3.0 0.5882
X3 0.0000 5.0 0.3274 50 0.3220 5.0 0.5846
Xg 0.0000 6.0 0.3032 6.0 0.3044 6.0 0.5629
Vaiable RCC SRRC PRCC
Name p-Vaue Rank Vaue Rank Value Rank Vaue
X1 0.0000 10 0.5960 10 0.5917 10 0.9508
X5 0.0000 20 0.3624 2.0 0.3558 20 0.8792
X3 0.0000 30 0.3553 4.0 0.3486 30 0.8751
Xq 0.0000 4.0 0.3484 50 0.3462 50 0.8736
Xg 0.0000 5.0 0.3467 3.0 0.3486 4.0 0.8751
Xg 0.0000 6.0 0.3431 6.0 0.3380 6.0 0.8687

a8 Table structure same asin Table VII.



Table XI. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 5 (see Eq. (21)) and Sample Size nLHS = 1002

Raw Data

Variable R2 RC SRC p-Vaue
X1 0.25787 4.4071E+01 5.2230E- 01 2.7828E- 08
Xg 0.37674 2.9727E+01 3.5091E- 01 2.9036E- 08
Xq 0.49249 2.9194E+01 3.4459E- 01 2.9872E- 08
X5 0.58539 2.4960E+01 2.9519E- 01 1.7598E- 07
X3 0.66967 2.5164E+01 2.9734E- 01 1.5130E- 07
Xg 0.74993 2.4008E+01 2.8369E- 01 4.1674E- 07

Rank-Transformed Data

Variable R2 RRC SRRC p-Vaue
X1 0.34245 6.0130E- 01 6.0130E- 01 2.7828E- 08
Xg 0.48424 3.6689E- 01 3.6689E- 01 2.7828E- 08
X3 0.62262 3.7628E- 01 3.7628E- 01 2.7828E- 08
X5 0.73162 3.4561E- 01 3.4561E- 01 2.7828E- 08
Xq 0.84275 3.3165E- 01 3.3165E- 01 2.7828E- 08
Xg 0.94119 3.1419E- 01 3.1419E- 01 2.7828E- 08

@ Table structure same asin Table VIII.
Table XIl. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and S| for Nonmonotonic Test

Problem with Model 7 (see Eg. (22))2

Sample SizenLHS =100

Variable CcC RCC CMN CL CMD Sl
Name  Rank p-Va  Rank p-va  Rank p-va  Rank p-va  Rank p-Va  Rank p-Va
X1 1.0 0.1657 10 0.2382 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X3 2.0 0.4400 3.0 0.4666 3.0 0229 3.0 0.3469 70 0.7358 3.0 0.1010
Xg 3.0 04518 20 0.4090 70 0.7298 8.0 0.7661 70 0.7358 8.0 0.9489
Xg 4.0 0.4566 6.0 0.5905 50 0.6637 6.0 0.7193 45 05918 7.0 0.8666
X7 50 04758 40 05528 8.0 0.7360 70 0.7623 70 0.7358 6.0 0.6728
Xg 6.0 0.6796 50 0.5860 6.0 0.7179 50 04218 45 05918 2.0 0.0698
X5 70 0.7545 8.0 0.9833 20 0.0010 20 0.0055 20 0.0206 4.0 0.1601
Xy 8.0 0.9581 7.0 0.9002 4.0 04531 4.0 0.3902 3.0 0.0916 50 0.5615
Sample SizenLHS = 1000
Variable CcC RCC CMN CL CMD Sl
Name Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va
X7 1.0 0.2089 1.0 0.1838 7.0 0.7123 7.0 0.7153 6.0 0.2873 6.0 0.4153
Xg 20 0.2644 3.0 0.2813 8.0 0.8882 8.0 0.7586 70 06411 8.0 09394
Xg 3.0 0.2943 20 0.2345 6.0 0.6228 6.0 0.4925 8.0 0.7652 70 0.6544
Xy 40 0.3376 4.0 04287 4.0 0.0045 4.0 0.0140 40 0.0224 3.0 0.0156
Xo 50 0.6614 6.0 0.9430 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
X1 6.0 0.7620 8.0 0.9708 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
Xg 7.0 0.8045 7.0 09433 50 04128 50 0.3011 50 0.1712 50 02412



X3 8.0 09197 50 0.7315 3.0 0.0001 3.0 0.0034 3.0 0.0220 40 01178

2 Table structure same asin Tablel.



Table XIlI. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and Sl for Nonmonotonic Test
Problem with Model 8 (see Eq. (23))2
Sample SizenLHS =100
Variable cc RCC CMN cL CMD Sl
Name  Rank p-va Rank p-Va Rank p-Va Rank p-Va Rank p-Va Rank p-Va
X1 10 0.1968 20 0.3458 1.0 0.0346 1.0 0.0723 1.0 0.1468 1.0 0.0003
X5 20 0.2412 10 0.2722 20 0.7078 20 0.7449 20 0.9384 20 0.0698
Sample SizenLHS = 1000
Variable cc RCC CMN cL CMD Sl
Name  Rank p-va Rank p-Va Rank p-Va Rank p-Va Rank p-Va Rank p-Va
X1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X5 20 0.6222 20 0.0659 20 0.9090 20 0.2553 20 0.1847 2.0 0.0000

2 Table structure same asin Tablel|.

Table XIV.  Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test
Problem with Model 9 (see Eg. (24))2
Sample SizenLHS = 100
Variable cc RCC CMN cL CMD Sl
Name Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va
X1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 20 0.0001 1.0 0.0000
X3 20 0.5667 20 0.6361 3.0 0.6917 3.0 05495 3.0 0.9384 3.0 0.0615
X5 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008
Sample SizenLHS = 1000
Variable cc RCC CMN cL CMD Sl
Name Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va Rank p-va
X1 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000
X3 20 0.0162 20 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000
X5 3.0 09799 3.0 0.9999 15 0.0000 15 0.0000 1.0 0.0000 15 0.0000

2 Table structure same asin Tablel|.
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