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1 INTRODUCTION 
The purpose of this document is to provide guidance to food safety risk analysis 

practitioners regarding the application of sensitivity analysis to food safety process risk models, 

particularly those for food-borne microbial pathogens. The purpose of such models is typically to 

provide insight regarding possible risk management strategies. Sensitivity analysis is a 

methodology for identifying the key model inputs that contribute the most to variation in a 

selected model output or to the highest values of the output. Thus, an analyst is often interested 

in identifying which one or subset of potentially many controllable variables is of greatest 

importance with regard to human exposure and risk. Other reasons for performing sensitivity 

analysis include assisting in the process of model development and prioritizing additional work 

aimed at reducing uncertainty in an assessment. 

The key questions that are addressed by this document are listed in Section 1.1. Section 

1.2 provides background on recent work that has lead to the creation of this document. Section 

1.3 provides an overview of the document aimed at assisting the reader in quickly accessing 

information regarding a particular topic. 

1.1 Key Questions 
This document assists the practitioner with regard to the following key questions: 

• When should I perform sensitivity analysis? (Chapter 2) 

• How do I prepare a model to facilitate sensitivity analysis?  (Chapter 3) 

• What are key considerations in the development of scenarios that are the basis for 

sensitivity analysis? (Chapter 4) 

• What are some typical sensitivity analysis methods, and how can I select among them? 

(Chapter 5) 

• How should particular sensitivity analysis methods be applied? (Chapter 6) 

• How should the results of sensitivity analysis be presented and interpreted? (Chapter 7) 

The organization of the document with respect to each of these key questions is illustrated in 

Figure 1-1. 

This document includes a glossary of common terms that are used with respect to 

sensitivity analysis and food safety process risk assessment modeling.   
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1.2 Background 
There has been increasing development and use of quantitative models for food safety 

process risk assessment. These models can be large and complex. Thus, it can be difficult to 

prioritize controllable variables that are most promising with respect to risk management goals.  

As a matter of good practice, it is important to evaluate how a model responds to changes in its 

inputs as part of the process of model development, verification, and validation.  Moreover, 

insight regarding key sources of uncertainty in a model can be used to prioritize additional data 

collection or research in order to reduce uncertainty. 

There are several techniques for sensitivity analysis used by practitioners and analysts in 

numerous fields, including microbial risk assessment. The most commonly used methods are 

those that are built-in features of a particular software tool. An example is the use of sample or 

rank correlation coefficients in software packages such as Crystal BallTM or @RiskTM. However, 

there are other sensitivity analysis methods, including some used in other fields, that may be 

useful if applied to food safety process risk models.   

This document is the product of Phase 3 of a three year, three phase project. An objective 

of this project is to transfer, apply, and adapt sensitivity analysis methods developed in other 

disciplines (e.g. complex engineering systems) to food-safety risk assessment. This work has 

been conducted under a cooperative agreement between the U.S. Department of Agriculture 

(USDA) and North Carolina State University (NCSU). Phase 1 involved the identification and 

preliminary evaluation of promising sensitivity analysis methods, including literature review and 

input from experts and practitioners.  Phase 2 involved an intensive evaluation of approximately 

a dozen sensitivity analysis methods applied to two food safety process risk models.   

In Phase 1, NCSU prepared a literature review of sensitivity analysis methods and 

convened a workshop of sensitivity analysis experts and food safety process risk model 

practitioners. The workshop was held June 11-12, 2001 at NCSU. The workshop addressed three 

key issues pertaining to the application of sensitivity analysis in food safety risk assessment 

including:  (1) key criteria for sensitivity analysis methods applied to food safety models; (2) 

identification of the most promising sensitivity analysis methods for application to food safety 

process risk models; and (3) key needs for implementation and demonstration of sensitivity 

analysis methods. The workshop participants agreed that different methods of sensitivity analysis  
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Figure 1-1.  Flow Diagram of the Organization of the Guidance Document. 
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should be evaluated based upon application to more than one food safety risk model. The process 

of testing methods would help establish a track record for specific methods applied to food safety 

process risk models. The workshop also recommended that a guidance document be developed to 

assist practitioners with regard to the selection of sensitivity analysis methods, their application, 

interpretation, and reporting. 

As a response to the workshop recommendations, in Phase 2 NCSU evaluated several 

sensitivity analysis methods based upon application to two food safety risk assessment models:  

(1) Listeria monocytogenes in Ready-to-Eat (RTE) foods; and (2) E. coli O157:H7 in ground 

beef (Frey et. al., 2003). One of the key outputs of the Phase 2 report is a summary table 

comparing the capabilities of many sensitivity analysis methods with regard to the characteristics 

of food safety process risk models and with regard to analytic objectives. Therefore, the Phase 2 

report provides an experiential basis for the recommendations contained in this document. 

In March 2003, the draft Phase 2 report and a preliminary outline of this document were 

reviewed by an international workshop comprised of food safety risk practitioners.  By 

consensus, the key objectives for this guidance document were identified as follows:  

• Develop guidelines that are not too prescriptive, but that provide useful boundaries 

and principles for selecting, using, and interpreting results from sensitivity analysis 

methods 

• Account for scenario uncertainty, model uncertainty, and model input uncertainty and 

variability 

• Define terminology 

• Identify and compare selected sensitivity analysis methods 

• Identify modeling requirements to facilitate sensitivity analysis, and recommend 

approaches for design and implementation of models. 

In the next section, the role of this document, as envisioned by the participants of the Phase 1 and 

2 workshops, is briefly described. 

1.3 The Role of This Document 
Based upon the recommendations of the June 2001 workshop during Phase 1, and 

confirmed by the March 2003 workshop during Phase 2, there is a need for guidance to 

practitioners regarding selection, application, interpretation, reporting, and documentation of 

sensitivity analysis methods. Considering the wide range of sensitivity analysis methods, a 
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practitioner should clearly understand which methods are appropriate for a specific application. 

A need was expressed regarding guidance on procedures for application for each method in order 

to substantially facilitate sensitivity analysis of a model. A key step of the analysis is to interpret 

and present the results of the analysis based on each method. Thus, this guidance document is 

intended to help practitioners in selecting specific sensitivity analysis methods that are relevant 

to a particular application and to the characteristics of the model. Practitioners can use this 

document to aid in interpreting results from a sensitivity analysis in response to a particular 

modeling objective. Examples of modeling objectives include:  prioritizing controllable sources 

of variability in exposure and risk in order to develop risk management recommendations; 

identification of key sources of variability and uncertainty in order to facilitate model 

development, verification, and validation; or prioritization of key sources of variability and 

uncertainty in order to prioritize additional data collection and research.  

The following paragraphs briefly summarize the content of the remaining chapters. 

When should I perform sensitivity analysis? Chapter 2 discusses several key 

motivations for performing sensitivity analysis, including prioritization of critical control points, 

identification and prioritization of key sources of uncertainty and variability in order to prioritize 

data collection and research, and model refinement. 

How do I prepare a model to facilitate sensitivity analysis?  Chapter 3 discusses the 

key considerations in developing or preparing a model in order to facilitate sensitivity analysis.  

Key issues include model structure, identification and accessing of model inputs, decision-based 

selection of model outputs, specification of the type of probabilistic simulation to be performed, 

and suggestions for how to modify an existing model. Recommendations also are made 

regarding the development of new food safety process risk models. These recommendations 

involve modeling environment, determination of the type of probabilistic simulation, modeling 

strategies, and documentation of models.  

What are key considerations in the development of scenarios that are the basis for 

sensitivity analysis? Chapter 4 discusses key concepts in defining a case scenario as the basis of 

sensitivity analysis. Key concepts include identification of susceptible subpopulations, 

identification of exposure pathways of interest and selected food categories, spatial and temporal 

dimension of the analysis, and the probabilistic features of sensitivity analysis. Clear 

specification of these issues in a scenario makes the analysis transparent. 
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What are some typical sensitivity analysis methods and how can I select among 

them? Chapter 5 overviews typical sensitivity analysis methods and provides guidance in 

selection of an appropriate method for a case scenario, considering factors such as model 

characteristics, objectives or purposes of an analysis, computing resources available and 

simulation properties. Some decision trees also are presented to help practitioners in the process 

of selecting appropriate sensitivity analysis methods. 

How should particular sensitivity analysis methods be applied? Chapter 6 introduces 

procedures for application of selected sensitivity analysis methods to food safety process risk 

models. Procedures presented in this chapter do not depend on application of specific statistical 

software package. 

How should the results of sensitivity analysis be presented and interpreted? Chapter 

7 discusses how to present and interpret sensitivity analysis results for selected methods in 

Chapter 5. For each method, an example is provided illustrating the presentation and 

interpretation of the results of sensitivity analysis. The issue of audience also is discussed briefly 

in this chapter. For different audiences, the ways for presenting and interpreting the sensitivity 

analysis results may be different. 

Appendix A contains summary information on selected less commonly applied but 

potentially useful sensitivity analysis methods in addition to those addressed in the main text. 

Appendix B contains a glossary of technical terms to assist the reader.
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2 GUIDANCE ON WHEN TO PERFORM SENSITIVITY ANALYSIS 
The objective of this chapter is to provide guidance to identify situations in which 

sensitivity analysis of a food safety process risk model is useful. Saltelli (2000) defines 

sensitivity analysis as the study of how the variation in the output of a model can be apportioned, 

qualitatively or quantitatively, among model inputs. Similarly, Cullen and Frey (1999) define 

sensitivity analysis as the assessment of the impact of changes in input values on model outputs. 

Sensitivity analysis of risk assessment models can be used to identify the most significant inputs 

governing exposure or risk as an aid in developing priorities for risk mitigation and management 

strategies. Sensitivity analysis can be used as an aid in identifying the importance of 

uncertainties in the model for the purpose of prioritizing additional data collection or research.  

Similarly, sensitivity analysis can be used to assess key sources of variability and uncertainty.  

Sensitivity analysis is useful for providing insight regarding model verification and regarding the 

robustness of model results when making decisions (Cullen and Frey, 1999). 

The overall assessment objectives should be clearly laid out before the model is built. 

Once the objectives are defined, the model must be designed to address these objectives. For 

example, if the objective is to develop insight into possible risk management strategies, variables 

that can be controlled and variables related to risk management objectives must be incorporated 

into the model. Next, the answers sought from application of sensitivity analysis should be 

clearly listed. The usefulness of sensitivity analysis can then be assessed based on whether the 

available methods of sensitivity analysis can address the questions under consideration in a 

manner that is appropriate to the characteristics of the model.  

This chapter summarizes the situations in which sensitivity analysis of the model is 

recommended. These situations include:  (1) prioritization of potential critical control points; (2) 

identification of key sources of uncertainty and variability; (3) model refinement, verification, 

and validation; and (4) conditional analysis of the model. Conditional analysis includes “what-if” 

scenario analysis and identification of factors contributing to high exposure or risk. Each of these 

situations is briefly discussed in Sections 2.1 through 2.4, respectively. The terms and concepts 

specific to each of these situations are discussed in the following sections. Section 2.5 presents a 

summary of the chapter.   
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2.1 Prioritization of Potential Critical Control Points 
A critical control point (CCP) is defined as a point, step, or procedure at which control 

can be applied, and a food safety hazard can be prevented, eliminated, or reduced to an 

acceptable level (Hulebak and Schlosser, 2002; Seward, 2000). Examples of CCPs include 

cooking, chilling, prevention of cross contamination, and product formulation controls.  

The identification of CCPs is a pre model-building step in risk assessment. If the model 

does not include variables that represent possible CCPs, then it will not be possible to evaluate 

the omitted CCPs when performing sensitivity analysis. Sensitivity analysis helps prioritize the 

possible CCPs that are incorporated into the model. Furthermore, sensitivity analysis can provide 

insight regarding critical limits for a particular CCP in order to develop preventive measures. A 

critical limit is defined as a criterion that must be met for each preventive measure associated 

with a CCP. An example of a critical limit is the maximum allowed food storage temperature. 

CCPs are most often based on process parameters, such as temperature, time, physical 

dimensions, humidity, moisture level, water activity, pH, acidity, and salt concentration. In the 

case that the CCP is a measurable variable in food production, handling, or preparation, the 

insight regarding the critical limit is of direct risk management relevance.  

2.2 Identification of Key Sources of Uncertainty and Variability 
Uncertainty is lack of knowledge regarding the true value of a quantity. Variability refers 

to real differences in values of a quantity among members of a population. Variability is also 

interpreted to refer to the certainty that different individuals have different exposures and 

different risks. In risk assessment, it is often the case that the population distribution of 

variability in exposure or risk is not known. Based upon available data and models, inferences 

are made regarding the unknown population distribution. There is uncertainty regarding the true 

distribution of inter-individual variability in exposure and risk. Both variability and uncertainty 

can be addressed quantitatively using probability distributions. In some models, a distinction is 

made between variability and uncertainty using a “two-dimensional” probabilistic simulation 

framework. In such frameworks, there is uncertainty regarding any statistic of the distribution for 

inter-individual variability. For example, there is uncertainty regarding the mean exposure, and 

regarding the exposures for any selected percentile (e.g., 50th percentile, 95th percentile) of the 

exposed population.   
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In order to prioritize data collection activities, it is useful to prioritize the key sources of 

uncertainty and variability. In many cases, the variability in exposures is influenced by only a 

subset of the model inputs that are subject to variability. Similarly, the uncertainty in a selected 

model output may be influenced by only a subset of the model inputs that are subject to 

uncertainty. It would be a poor allocation of scarce resources to spend an equal amount of time 

developing probability distributions for all model inputs, if the output is sensitive to only a small 

number of inputs. Sensitivity analysis can be applied to a probabilistic risk assessment model to 

provide insight regarding which model inputs contribute the most to uncertainty, variability, or 

both, for a particular model output. This insight can then be used to allocate scarce resources 

preferentially to data collection or research for those inputs that matter the most to the 

assessment.   

In the case of uncertainty, the collection of additional data collection or research is the 

only viable method for reducing uncertainty. Because uncertainty results from lack of 

knowledge, it is necessary to increase the state of knowledge in order to reduce uncertainty.   

In the case of variability, the collection of additional data can be used to develop more 

accurate estimates of variability and potentially to identify subpopulations that could be stratified 

into separate components of an analysis. Acquisition of data with better quality (e.g., improved 

representativeness) based on key sources of variability can reduce uncertainty about potential 

bias in the most important variable inputs. If better quality data are not available, data acquisition 

might only increase the precision of the potentially biased variability estimates if the data are not 

representative. 

In some cases, it may not be feasible to collect additional data. In these situations, 

sensitivity analysis can provide insight regarding the robustness of the model output with regard 

to variation in a model input, whether due to uncertainty, variability, or both.  For example, 

uncertainty in model inputs typically leads to uncertainty in model outputs. For a given 

specification of critical limits for CCPs, there may be uncertainty regarding whether a particular 

risk management objective can be achieved. The selection of critical limits for possible CCPs 

can be based upon a probabilistic criterion for the risk management objective. For example, the 

critical limits can be selected so that the probability of exceeding a particular exposure level for a 

given percentile of the population is less than five percent. Thus, sensitivity analysis can be used 
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to evaluate how robust the risk estimates and management strategies are to model input 

assumptions (Frey and Patil, 2002). 

2.3 Model Refinement, Verification, and Validation 
During the process of developing or refining a model, sensitivity analysis can be used as 

a confidence building measure with regard to model credibility. Quantitative sensitivity analysis 

is increasingly invoked for verification and validation of model-based analysis (Saltelli, 2002a).  

Sensitivity analysis can be helpful in verification and validation of a model. Both 

verification and validation are important parts of quality assurance of a model. Verification is a 

process of checking whether a model is implemented as it was intended to be. In contrast, 

validation typically includes comparison of model predictions to independent empirical data for 

the model output under a known set of conditions.   

Sensitivity analysis is useful for model verification. In particular, the objective of 

sensitivity analysis applied to model verification is to assess whether the model output responds 

appropriately to a change in model inputs. For example, if storage temperature increases, one 

typically expects an increase in the growth of microbial pathogens and, therefore, in exposure. If 

a model responds in an unacceptable way to changes in one or more inputs, then trouble-shooting 

efforts can be focused to identify and correct the source of the problem.  

Sensitivity analysis can assist in the validation process. When validating a model, it is 

typically necessary to specify input values to reproduce a particular scenario for which real-

world data are available for the model output. However, in many cases, the corresponding real 

world values are not known for all of the model inputs. Thus, judgments often must be made 

regarding what values to assign to some model inputs for which empirical data are not readily 

available. In order to determine how accurately a particular input must be estimated, it is useful 

to understand how substantially the model output responds to it. For example, if a model output 

responds by only one percent to a 50 percent change in a particular input, then it may not be 

important to have an accurate estimate for that particular input. In contrast, if a model output 

varies by 50 percent if a particular input changes by only one percent, then it could be critically 

important to specify an accurate value for that input as part of a validation exercise. A glaring 

contradiction in the relative importance of inputs from the analysis and the real world 

understanding indicates possible faults in the modeling. 
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Sensitivity analysis is helpful not only as a critique to model development as part of 

verification and validation, but also to guide model development. For example, when a model is 

developed by a team or in response to suggestion from multiple stakeholders, it is often the case 

that many features incorporated into the model are not essential. The identification of inputs that 

are of insignificant importance to the variation in the output could be used to guide the 

elimination of particular inputs or components of the model. Critical evaluation and reduction of 

the size of the model can help in preventing the model from becoming so large and unwieldy that 

it is no longer practical. For example, there is a tendency when building a model to include many 

features in response to comments, but if too many useless features are incorporated the 

computational resources increase with little meaningful benefit.   

2.4 Conditional Analysis of the Model 
Sensitivity analysis can be used for conditional analysis of a model. Conditional analysis 

features “what-if” scenario analysis of a model and can focus on identification of factors 

contributing to high exposures and risks. In “what-if” scenario analysis, specific goals with 

respect to the risk mitigation can be modeled. Sensitivity analysis provides a tool to evaluate how 

these goals can be achieved by identifying key inputs and model assumptions contributing most 

to the predefined scenario. Through this approach, the analysis can be framed in a way that is 

more responsive to the public’s concerns and interests, thereby facilitating public review of the 

analysis. Furthermore, sensitivity analysis can provide explicit insight into the combination of 

key values and/or ranges of inputs that lead to the worst, or best, outcomes. The identification of 

worst case scenarios with respect to the exposure or risk is important for identifying possible 

approaches to mitigate exposure and/or risk. 

As an example of a ”what-if” scenario, risk managers may be interested in decreasing the 

mean exposure level by a specific amount. The “what-if” scenario may be in the form “what if 

we want to decrease the mean exposure level by one log?” Sensitivity analysis allows risk 

assessors and managers to consider cases where the risk can be reduced by controlling the input 

domains. For example, in order to constrain the mean growth of the pathogen to an acceptable 

level with respect to a particular management strategy it may be necessary to hold storage 

temperature below a specific limit, while holding storage time within a specific range. Deviation 

of storage temperature and storage time from the identified domains may lead to a substantial 
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increase in the number of pathogen organisms due to growth. Thus, constraining the inputs to 

specific ranges can keep the risk within acceptable levels. 

2.5 Summary 
This chapter briefly discussed situations in which the application of sensitivity analysis to 

the food safety process risk models is recommended.  Sensitivity analysis is useful in:  

prioritizing CCPs; specifying critical limits for CCPs; identifying key sources of variability and 

uncertainty; refinement, verification, and validation of a model; and conducting “what-if” 

scenario analysis of a model. The next chapter provides recommendations regarding how to 

prepare food safety process risk models in order to facilitate the application of sensitivity 

analysis. 
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3 GUIDELINES FOR PREPARATION OF EXISTING OR NEW MODELS TO 
FACILITATE SENSITIVITY ANALYSIS  
Prior to application of any sensitivity analysis methods, the model under study should be 

prepared for the analysis. In particular, it is important that the model is coded in a manner such 

that the inputs and outputs are clearly identifiable and accessible. Furthermore, the characteristics 

of the model, such as modularity, binning, aggregation, and probabilistic simulation options, may 

constrain the use of particular sensitivity analysis methods. Sensitivity analysis should be 

included in the list of primary modeling objectives at the time of model development. The 

implementation of specific model development strategies will facilitate sensitivity analysis. For 

an existing model, the practitioner is typically interested in applying sensitivity analysis with 

minimum modification to the model. However, in some situations, if the model has not been 

designed to facilitate sensitivity analysis, substantial modifications may be required (e.g., Patil 

and Frey, 2003). 

Generally, a thorough understanding of the model and its limitations is essential to select 

well-suited sensitivity analysis methods and to determine the scope of sensitivity analysis 

application. The scope of sensitivity analysis may include the entire model or could be focused 

on specific modules or parts of a model. For example, an analyst may focus sensitivity analysis 

on the exposure module, which is a typical part of food safety process risk models. 

This chapter focuses on the preparation of food safety process risk models for sensitivity 

analysis. These models are classified into two categories; (1) existing models; and (2) new 

models. For existing models, discussed in Section 3.1, the key steps prior to application of 

sensitivity analysis methods are given in Sections 3.1.1 through 3.1.5.  

Section 3.2 focuses on modeling strategies and recommendations for development of new 

food safety process risk models in order to facilitate the application of sensitivity analysis 

methods.  

3.1 Preparation of Existing Models for Sensitivity Analysis 
The characteristics of existing models have a direct influence on the choice of sensitivity 

analysis methods and the scope of sensitivity analysis. In some cases, the modelers might not 

have anticipated the application of sensitivity analysis, and hence, the model may not have been 

developed in a manner that facilitates sensitivity analysis. To identify whether the modeling 

methodology used is compatible with application of sensitivity analysis, the model has to be 
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thoroughly reviewed and characterized. The following sections discuss the key features that need 

to be studied in the process of understanding a model. 

3.1.1 Identification of Model Structure 
The identification of model structure helps determine the scope of sensitivity analysis. 

Important model characteristics that are related to model structure include modularity, binning, 

and aggregation. 

A general framework for performing quantitative food safety risk assessment is the 

modular process risk model (MPRM) (Nauta 2001a&b). Modularity is a way of organizing a 

model by breaking the overall model into sub-components. For example, each step or key 

activity in a food safety process risk model can be modeled in a separate module characterized 

by inputs and outputs. An example of modularity in food safety risk assessment is the E. coli 

model in which there are separate modules for processes such as slaughter of cattle and 

preparation of ground beef servings (FSIS, 2001). Conceptually, independent processes or 

components can be modeled as separate modules. Procedures that are repeated within the model 

also can be represented using modules. In a modular framework, an output from a module may 

be an input to other modules. In this manner, modules are connected to each other. For example, 

an output representing the contamination level of meat trim from the slaughter module can be an 

input to the preparation module representing the initial contamination of meat trim when 

modeling the grinding process.  

The ability to apply sensitivity analysis typically depends upon a one-to-one 

correspondence between values of an output and values of an input. Thus, if the existing model 

utilizes a modular structure, in order to apply sensitivity analysis across modules in a framework 

composed of multiple modules, there should be one-for-one mapping of every input value to the 

output values, where the input of interest may be in one module and the output of interest could 

be in a dependent module. In a modular framework, modules can be connected in two ways:  (1) 

serial connection; and (2) parallel connection. Figure 3-1 depicts a conceptual modeling 

framework comprised of three modules in series. Each module has exogenous inputs (i.e., 1X , 

2X , and 3X ). Furthermore, modules that depend upon other modules also have internal inputs. 

The internal inputs are the outputs from the predecessor module (i.e., Y1, and Y2). Thus, a 

module output is influenced directly by internal and exogenous inputs for the immediately 

preceding module, and indirectly by the exogenous  
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Figure 3-1.  Conceptual Example of a Modular Modeling Framework Comprised of Multiple 

Modules in Series. 
 

inputs for each predecessor module. Since the exogenous inputs typically include variability and 

uncertainty of interest to the analyst or decision maker, the typical desired objective of sensitivity 

analysis would be to evaluate the sensitivity of the selected output with respect to the exogenous 

inputs for all of the predecessor modules. A serial model structure that maintains the one-to-one 

correspondence between exogenous inputs and the selected output facilitates sensitivity analysis. 

 Modules can also be in parallel, as illustrated in Figure 3-2. The final model output is 

function of the outputs from each of several parallel modules. The key difference between the 

parallel and series frameworks is that in the parallel framework each module is independent from 

the other modules. This structure permits identification of the module to which the model output 

has the highest sensitivity on a relative basis. Frey et al. (2003) evaluated a case study with the 

E. coli model in which serving contamination, growth effect, and cooking effect modules had a 

parallel connection to the model output. A case study was prepared to prioritize the effect of 

these modules on the final exposure in ground beef serving. For the case study, each module was 

replaced by its corresponding output probability distribution. For evaluation of the priority rank 

of the distributions of outputs with respect to variability in exposure, four cases were examined 

using Monte Carlo simulation. Case Zero represented the situation in which all three variables 

(i.e., serving contamination, growth effect, and cooking effect) varied based on their 

distributions. For each of the other three cases, the output of one of the modules varied based on 

its distribution, while the other two outputs were conditioned at their mean values. Comparison 

of the results for these four cases helped identify which of the four cases had the largest 

maximum contamination or the highest probability of exceeding contamination levels that would 

be considered to be high. Results of the analysis indicated that cooking caused a maximum range 

of variation in the exposure to E.  
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Figure 3-2.  Conceptual Framework of Modules in Parallel. 

 

Coli O157:H7 organisms and that growth resulted in the highest number of consumer exposures 

to E. coli O157:H7 organisms in ground beef. 

Sometimes modelers employ techniques that result in a loss of one-to-one 

correspondence between exogenous inputs to predecessor modules and the output of interest. 

These techniques might have been selected because they offered a computational convenience, 

provided a useful intermediate summary, or facilitated exchange of data between modules. 

Examples of these situations may include:  (1) parameterizing empirical values of internal inputs 

into theoretical distributions; (2) summarizing continuous internal inputs into intervals (i.e., 

binning); and (3) aggregating which leads to many-to-one relationship between input and output 

values. 

The one-to-one correspondence between an output and model inputs may be lost, for 

example, by using the inputs to estimate the parameters of a theoretical distribution that serves as 

an intermediate output for the model. 

Another example leading to loss of one-to-one correspondence between an output of a 

module and its exogenous predecessor inputs is the use of binning for internal inputs. Binning is 

a commonly used summarization technique. For example, in the E. coli model the contaminant 

concentration in beef trimings is simulated as a continuous variable, but subsequently is binned 

by 0.5 log increments from 0 to 8 logs (FSIS, 2001). The estimated contamination for the combo 

bin is rounded to the next upper level. For instance, if the estimated contamination is 0.1 logs, it 

is binned into a range of 0 to 0.5 logs and is quantified as 0.5 logs. Another example where 

binning was used is the exposure module in Listeria model in which several individual meal 

servings were mapped to the same dose bin. After binning, the specific simulated meal serving 
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that resulted in a particular dose cannot be identified. The exposure range is binned into half 

logs. The fraction of serving contained in each bin is calculated (FDA, 2001). 

Figure 3-3 illustrates how the binning approach leads to loss of one-to-one 

correspondence between an output and model inputs. The figure shows a continuous distribution 

of the pre-binned output values. In the binning step, n bins are defined using equal intervals. 

There is a one-to-one correspondence between the pre-binned output values and sampled values 

of the model inputs. For example, a value of yj of the pre-binned output corresponds to a unique 

sample from the distributions of the model inputs. This figure shows that the problem arises 

when binned output values are used instead of the pre-binned output values. For example, if the 

jth bin is selected from the binned output distribution, it is not possible to trace back the values of 

the inputs associated with the selected binned output value. This figure shows that there is a 

range of pre-binned output values associated with the jth bin, and hence, there are not unique 

values of the model inputs associated with the estimated output value. In order to eliminate the 

binning in an existing model, it might be necessary to substantially change the model structure. 

Such a change may be beyond the scope of the analysis. Therefore, under this circumstance, 

modular-based sensitivity analysis may be considered instead. 

Aggregation refers to situations in which multiple numerical values are combined into 

one numerical value. For example, in the E. coli model, the contamination level in a combo bin 

is estimated based upon contamination contributed by individual meat trims from multiple 

slaughtered cattle. Meat trim are from cattle that are slaughtered, dehided, and eviscerated, and 

are the result of a fabrication process. These steps take place in different parts of the slaughter 

plant. Each of these steps can be a source of contamination. The combo bin contamination level 

might be influenced by only a small proportion of the incoming meat trim. The combo bin 

contamination level is calculated based upon sum of the number of organisms from each of the 

possible sources of contamination. This type of situation is challenging to sensitivity analysis 

because there is a many-to-one correspondence between meat trim and the combo bin, whereas 

sensitivity analysis typically considers one-to-one correspondences. Sensitivity analysis could be 

based on one or more summary statistics. For example, the sensitivity of the combo bin 

contamination to the average meat trim contamination, or the most contaminated meat trim could 
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Figure 3-3.  Conceptual Example of the Binning Approach, Leading to Loss of One-to-One Correspondence. 
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Figure 3-4.  Possible Classifications of Inputs in Food Safety Process Risk Models. 

 

be assessed. However, this would result in some loss of information. A simpler option is to 

perform sensitivity analysis only on internal inputs that depend on the model output of interest 

(e.g., the aggregated combo bin contamination levels), This would exclude consideration of 

inputs prior to the aggregation in the sensitivity analysis. For example, the original code in the E. 

coli slaughter module was modified to introduce a new composite animal that represents the 

characteristics of all contaminated cattle contributing to contamination in a combo bin. This 

composite animal has the total contamination from different contamination sources, and hence 

contributes the total number of E. coli organisms to a combo bin. Sensitivity analysis for combo 

bin contamination was performed with respect to the characteristics of the composite animal 

(Frey et. al., 2003). 

3.1.2 Identification of Inputs 

To perform sensitivity analysis, the inputs of interest must be identified. Inputs can be 

classified in different ways. Figure 3-4 shows a possible classification of inputs in food safety 

process risk models. The inputs may be of direct or indirect importance to management decisions 

(e.g., serving size versus sanitation control). Some inputs may be controllable and others not 

(e.g., storage temperature versus lag period). Also, the degree of control may vary from one input 

to another. Inputs may be qualitative (categorical) (e.g., ground beef consumption types) or 

quantitative (e.g., storage temperature). Quantitative inputs can be continuous (e.g., storage time) 
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or discrete (e.g., number of infected animals in a truck). Some quantitative inputs may be 

described by empirical distributions, while other inputs may be represented by parametric 

distributions. The implications of the type of input with regard to the choice of sensitivity 

analysis method are discussed in Chapter 5 (see Table 5-1). 

Model inputs may represent variability, uncertainty, or both in a probabilistic simulation. 

The manner in which uncertainty is modeled may vary among inputs. In some cases, uncertainty 

may be considered in the parameters of the variability distributions. For example, a triangular 

distribution may be used to represent variability in storage temperature. A triangular distribution 

is defined by three parameters representing minimum, most likely, and maximum values of the 

distribution. The most likely value of this distribution may be uncertain. A uniform distribution 

may be considered to represent the uncertainty for the most likely value. In contrast, uncertainty 

can be incorporated in an input as a choice of alternative variability distributions. For example, 

in a case of laboratory data for initial concentration of a pathogen, a few parametric distributions 

may be good fits to available data. There may exist uncertainty in selecting which parametric 

distribution better represents the data. Uncertainty can be addressed for the input by weighting 

fitted variability distributions and randomly selecting each variability distribution proportional to 

its weight during simulation. For example, four parametric distributions are considered for 

representation of variability in the initial concentration of the Listeria monocytogenes pathogens 

(FDA, 2001). These distributions include Beta, Weibull, Triangular, and Lognormal. Each 

parametric variability distribution is selected randomly in alternative realizations of uncertainty 

of the model to represent the uncertainty in the choice of a variability distribution. 

3.1.3 Selection of a Model Output for Sensitivity Analysis 
The selection of a model output for sensitivity analysis depends on the assessment 

objectives. For example, the output of interest may be different when objective varies from 

reduction in the risk of mortality in the population to reduction in the risk of mortality per 

serving. The relative importance of inputs is likely to vary according to the choice of output. An 

analyst should clearly determine the type of management objective that is expected before 

selecting the output of interest. Frey et al (2003) investigated case studies with the E. coli model 

in which the relative importance of inputs varied based upon the selection of output related to the 

risk reduction strategies. For example, when the number of contaminated ground beef servings 

was considered as the output of interest, the cooking effect and related inputs, including cooking 
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temperature and pre-cooking handlings, were identified as key. In contrast, when the amount of 

contamination in ground beef servings was selected as the output of interest, growth and related 

inputs, including storage times and temperatures, were characterized as key.  

3.1.4 Simulation Design 
Performing a simulation is a prior step to application of any sensitivity analysis method. 

Results obtained from sensitivity analysis are directly related to the characteristics and the scope 

of the simulation. An analyst should consider the following when designing a simulation:  (1) 

efficiency; (2) coverage of rare events; and (3) burden-of-disease issues. These concepts are 

briefly discussed. 

A simulation should be efficient. Apart from wasting computational resources, inefficient 

simulations also waste sensitivity analysis resources and undermine their ability to detect 

significant inputs. Many simulations are designed to provide exhaustive simulation of an event 

space even when the modeler is (or should be) fully aware that the level of risk in large portions 

of the event space is minimal in comparison to others. Examples of this include detailed 

simulation of temperatures below which there is certainly no growth, and detailed coverage of 

regions with very high lethality treatments where a disproportionate share of the risk is 

predictably concentrated in the regions of low lethality. Many of these situations would be 

greatly improved by partitioning the inputs to explore high-risk regions in more detail. 

A well designed simulation should cover rare events. For most foods, the number of 

servings that result in illness will be a very small fraction of the total number of servings in the 

simulation space. The simulation can be partitioned to give greater coverage to these rare events.  

The implications of such a strategy for sensitivity analysis are that the simulation may be 

conditional on the probabilities associated with such rare events. 

For many microbial pathogens, a large share of the burden of disease is borne by highly 

susceptible subpopulations. As a result, the simulation, and by extension the sensitivity analysis, 

should be focused on the important predictors of risk in these particular individuals.  Thus, an 

implication is that the simulation should focus on subpopulations that are of special concern.  

3.1.5 Probabilistic Simulation and Implications for Sensitivity Analysis  

The scope and detail of inferences drawn from sensitivity analysis depend on the choice 

of probabilistic simulation dimensions. The presence or absence of variability and uncertainty 

dimensions in the modeling process should be identified prior to selection of a sensitivity  
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Figure 3-5.  Alternative Frameworks for Food Safety Process Risk Models and Selection of the 

Probabilistic Dimension for Sensitivity Analysis Based on the Assessment Objective. 
 

analysis approach. Food safety process risk models typically have one-dimensional or two-

dimensional probabilistic frameworks incorporating variability, uncertainty, or both in the 

simulation. The selection of the specific probabilistic dimension of a model for sensitivity 

analysis depends on the assessment objective. Figure 3-5 shows a schematic diagram of 

alternative assessment objectives that are appropriate for the two modeling framework. The 

assessment objectives in this figure include:  (1) variability only; (2) uncertainty only; (3) 

variability for different realizations of uncertainty; (4) uncertainty for different realizations of 

variability; and (5) co-mingled variability and uncertainty. The insights regarding sensitivity that 

can be obtained from these assessment objectives are discussed in Section 4.4. 

For food safety process risk models that have a one-dimensional probabilistic framework, 

a practitioner may select variability only, uncertainty only, or co-mingled variability and 

uncertainty analysis. For example, Patil and Frey (2003) evaluated case studies with the FDA 

Vibrio (CFSAN, 2001) model that has a one-dimensional probabilistic framework considering 

only variability in the model inputs, and hence, sensitivity analysis was focused on variability. 

A two-dimensional framework may be used to quantify variability and uncertainty 

simultaneously. When analyzing the results, the analyst may prefer to focus on characterizing the 

range of uncertainty regarding estimated distributions for inter-individual variability in exposure 

and risk, or to focus on quantifying uncertainty in the exposure or risk for a particular fractile or 
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statistic from the variability dimension. In a two-dimensional framework, it is also possible to 

accommodate one-dimensional cases such as for variability only, uncertainty only, or co-mingled 

variability and uncertainty. For studies with major policy-based consequences, a practitioner may 

need to apply comprehensive sensitivity analyses that fully distinguish between variability and 

uncertainty depending on decision criterion. For example, when the decision criterion is to 

provide specific confidence that selected percentile in the exposed population falls below a 

threshold of concern, a practitioner would typically need to fully distinguish between variability 

and uncertainty. In contrast, for preliminary studies a practitioner may decide to focus only on 

variability or uncertainty.  

Available resources also may affect the selection of the number of dimensions of the 

probabilistic simulation when performing sensitivity analysis. Two-dimensional sensitivity 

analysis is generally resource intensive. It demands computational resources both during the 

creation of datasets and the application of sensitivity analysis. The two dimensional analysis may 

not be practicable for sensitivity analysis methods that cannot be automated. In contrast, a one-

dimensional analysis often requires fewer resources. Although application of sensitivity analysis 

on a single probabilistic dimension of the model is substantially easier, the credibility and 

robustness of the insights obtained with respect to the sensitivity may be reduced because the 

one-dimensional analysis often assumes that the other probabilistic dimension of the model can 

be replaced with deterministic values. For example, case studies performed by Frey et al. (2003) 

in which variability and uncertainty were fully differentiated show substantial ambiguity in ranks 

of key variability sources when uncertainty is considered. Quantifying the degree of ambiguity in 

the ranks of inputs helps in making management decisions that are robust to uncertainty.  

3.1.6 Modification of Models  

In some situations a model must be modified to apply sensitivity analysis. Some common 

modifications are discussed in this section. These modifications often demand changing data 

storage procedures, including model inputs, outputs, and internal inputs. Additional 

modifications may be required for some specific models.  

3.1.6.1 Storage of Input and Output Values  

In order to perform sensitivity analysis, a dataset including values generated during the 

probabilistic simulation for each input and corresponding output values should be available. As a 

common practice in programming, generated values of each input are stored dynamically in the 
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model. Typically, old values of an input from a previous iteration are replaced with new values 

to conserve the memory space and run time. Thus, it may be necessary to modify the model in 

order to store these values for future reference. Based upon the modeling environment, these 

values can be stored in a separate data file, spread sheet, or inside the model in an array. The 

software package used for application of sensitivity analysis may influence the format that would 

be used for data storage. For example, SAS© can read formats such as comma-separated values 

(.csv).  

3.1.6.2 Storage of Intermediate Values  

Storage of intermediate values estimated during the simulation of a model is useful in 

some cases. For example, in situations in which values of an internal input are binned before 

using in other parts of the model, it is helpful to store individual values of the intermediate input 

prior to binning. If the output of interest is calculated in the original model based upon a binned 

internal input, then the model should be modified, as discussed in Section 3.1.1, so that the 

output is calculated for individual values of the internal input. 

3.2 Preparation of New Models for Sensitivity Analysis 
To facilitate the application of sensitivity analysis when developing a new model, it is 

essential to consider the proper use of modeling techniques and model implementation. Good 

software engineering practices in general help application of sensitivity analysis (Frey et al, 

2003). This section discusses some measures that can be used to facilitate sensitivity analysis 

when building a new model. These measures involve modeling environments, different 

approaches for characterizing variability and uncertainty, modeling strategies, and model 

documentation, which are discussed in Sections, 3.2.1 through 3.2.4, respectively. 

3.2.1 Modeling Environments 
Modeling environments involve:  (1) the format of data storage; (2) the use of add-in 

software packages; (3) programming environments; and (4) aggregation and binning. More 

details about these issues are given in Sections 3.2.1.1 through 3.2.1.4, respectively. 

3.2.1.1 Format of Data Storage 

 It is desirable to store data as pairs of inputs and outputs to facilitate the application of 

sensitivity analysis. The stored format should be compatible or easily convertible to the formats 

accepted by software packages commonly used for sensitivity analysis. Examples of such 

formats are comma separated values (.csv) and free text format (.txt).  
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 Storing data as pairs of inputs and outputs may not be an optimal solution, especially for 

models with an extensive number of inputs and outputs or a large number of iterations during 

probabilistic simulations. As an alternative storing approach, application of relational databases 

is recommended. Using a database for storing the results of the analysis can facilitate the process 

of managing and retrieving the information in the form of outputs and corresponding inputs. A 

well-defined database can decrease the required storage space and increase the speed of 

retrieving data. An example of this strategy to store data for performing sensitivity analysis is the 

Environmental Protection Agency (EPA), Stochastic Human Exposure Dose Simulation, 

(SHEDS) Pesticide model (Zheng and Frey, 2003). 

3.2.1.2 When and Where to Use Add-In Software Packages 

 “Add-in” is a term used, especially by Microsoft, for a software utility or other program 

that can be added to a primary program. Examples of add-in software packages are Crystal 

BallTM or @Risk, which are applicable to Microsoft Excel. The use of add-in software packages 

helps reduce the amount of programming. However, the add-in software packages typically do 

not provide access to the code used to perform the various operations, and thus restrict the 

flexibility of the model with respect to possible modifications for sensitivity analysis. Performing 

the operations inside spread sheets using add-in software packages makes it accessible to those 

without knowledge of the programming language, but may make it difficult to audit the model. 

For complex and large models coded in Excel sheets, it becomes very difficult to understand the 

flow of the model and connection between different parts and modules inside the model.  

3.2.1.3 Programming Environments  

 The choice of programming environments depends on the skill of the modeler, use of 

add-ins, and the scope of the analysis. For models that are extensive and that will be used for 

multiple analyses, a programming language environment and good software engineering 

practices are recommended. The choice of modeling environment should account for a trade-off, 

if any, between the skills of the analyst, resources, anticipated needs for future model 

refinements, and desired flexibility with regard to sensitivity analysis. The codes for most of the 

operations used in food safety process risk models, such as Monte Carlo simulation, are available 

as open source codes on the internet that can be downloaded free of charge. Open source codes 

of other available codes, such as R are also available that could be used for sensitivity analysis. 

The use of object-oriented or modular codes to perform various operations facilitates 
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modification and enhancement of models. Also, well-documented codes can be easier for a 

knowledgeable analyst to audit compared to the add-in software. 

3.2.1.4 Handling Binning and Aggregation in the Model 

 If there is some rationale for application of binning in a model, it should be provided as 

an extra functionality. The user should be able to access the actual numerical values of an output 

before binning without having to modify the model itself. Hence, pre-binned values should be 

stored. Aggregation results in similar restrictions for application of sensitivity analysis as does 

binning. If aggregation is part of a real food safety process under study, such as the aggregation 

of meat trims to combo bins in slaughter plants, then the aggregation may be unavoidable. In 

some cases, aggregation is done because of lack of information about individual processes and 

insufficient understanding of what is exactly happening from a biological viewpoint. Hence, 

different processes in the continuum of bringing food from farm-to-table may be aggregated into 

a black box. In these cases it may be practical to refrain from aggregation by collecting more 

detailed data regarding the process under study.  

3.2.2 Characterizing Variability and Uncertainty in the Probabilistic Simulation 
The choice of probabilistic dimensionality depends on the assessment objective. If the 

objectives include characterizing inter-individual variability in exposure or risk, or identifying 

key sources of controllable variability in order to inform risk management decisions, a 

probabilistic simulation of variability should be included. If the objectives include quantification 

of uncertainty due to lack of knowledge, evaluation of the robustness of risk management 

options, or identification of key sources of uncertainty, then a probabilistic simulation of 

uncertainty should be included. If the assessment objective motivates inclusion of both 

variability and uncertainty, then a choice can be made between a one-dimensional simulation in 

which variability and uncertainty are co-mingled versus a two-dimensional simulation in which 

they are distinguished. The former may be interpreted as treating variability as a source of 

uncertainty about a representative member of a population, while the latter is typically preferred 

if the objective includes characterizing exposure or risk to different member of a population. 

Although the number of dimensions of probability simulation for a food safety risk assessment 

model depends on specific problems under study, ideally, both variability and uncertainty should 

be characterized since the explicit separation of variability and uncertainty helps analysts or 

decision-makers to understand how model outputs might improve.  
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When both variability and uncertainty dimensions are incorporated into a model, special 

attention should be paid to the modeling strategies to make the separation of variability and 

uncertainty practical. When distinguishing between variability and uncertainty, an analyst may 

be interested in quantifying the range of uncertainty regarding the population distribution of 

variability and/or key sources of uncertainty for specific fractiles of the variability distribution of 

the output. The former is easily addressed in a two-dimensional simulation framework in which 

there are multiple realizations of the distributions of inter-individual variability. The latter case 

requires that the set of random numbers associated with the variability dimension of each model 

input remain constant in multiple realizations of uncertainty. Section 4.4.4 provides further 

discussion regarding the latter case. An example of a food safety process risk model following 

this modeling strategy is the Listeria model in RTE foods (CFSAN, 2003). In this model, the set 

of random numbers generated for sampling from variability distributions of inputs are stored. At 

each uncertainty realization of the model, the model used the stored random numbers for 

sampling from variability distributions of inputs. 

3.2.3 Modeling Strategies 
A basic strategy in building a new model is to develop independent modules to facilitate 

sensitivity analysis. An independent module is one that does not share inputs or internal data 

with its predecessor or successor modules, and hence, the module is self-sufficient for 

calculation of its output. This modeling strategy is most easily achieved when using modules in 

parallel, as shown in Figure 3-2. For modules in series, as shown in Figure 3-1, as long as the 

one-to-one correspondence can be preserved, it is possible to attribute variation in the output to 

the inputs of one or more modules. 

The main functionalities in a model should be implemented in separate modules. For 

example, there might be separate modules for random number generation, core model 

simulation, simulation result summarization and presentation, sensitivity analysis module, and 

others. An example of the use of such a strategy is the C++ version of the EPA/SHEDS/Pesticide 

model (Zheng and Frey, 2003). A modular framework can easily incorporate future additions of 

new functionalities simply by adding new modules without requiring extensive modification of 

the original model. 



 

 28

3.2.4 Model Documentation 
Good documentation of the model structure and implementation is necessary to facilitate 

future application or modifications of a model. Good documentation includes: 

• Introducing the model and its probabilistic framework 

• Explaining of the model equations 

• Introducing the model inputs and corresponding probability distributions 

• Introducing the model outputs 

It is necessary to introduce a model clearly and in detail, including mathematical 

equations used to describe the model and how the model was implemented in a computer 

program. Good documentation will also help the application of sensitivity analysis.  For 

example, it will help an analyst to better understand a model including its inputs and outputs, and 

to select appropriate methods to perform sensitivity analysis. Good documentation requires that 

the model structure, the composition of model components, assumptions used, and software 

structure design implementing the model be clearly presented.  For example, each module in a 

model should be clearly explained regarding its purpose, associated assumptions, its interior 

functional relationships, and its inputs and outputs. Each input should be clearly described 

regarding its type (e.g., probability distribution, numerical value or logical decision variables, 

and quantitative versus qualitative), values, and associated variability and/or uncertainty 

dimensions.  

3.3 Summary 
This chapter presented guidance on how to facilitate sensitivity analysis when working 

with an existing model or a new model, with a focus on food safety process risk models.  For an 

existing model, in order to determine appropriate methods and scope for performing a sensitivity 

analysis, it is necessary to clearly identify model structure, model inputs, internal inputs used in 

models associated with binning and aggregation of model output of interest, and the type of 

probabilistic simulation.  For a new model, recommendations that can facilitate sensitivity 

analysis are presented.  These recommendations involve the modeling environment, design of the 

probabilistic simulation, modeling strategies, and documentation of models.  

The next chapter provides guidance on how to define a case scenario in order to apply 

appropriate methods to perform sensitivity analysis. 
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4 DEFINING SENSITIVITY ANALYSIS SCENARIOS 
The objective of this chapter is to provide guidance regarding how to define a case 

scenario as the basis for performing sensitivity analysis. A scenario is a set of assumptions about 

the nature of the problem to be analyzed (Cullen and Frey, 1999). A case study scenario for a 

food safety process risk model is comprised of a set of assumptions. These assumptions may be 

based upon recommendations from food safety experts, stakeholders, risk managers, or 

combinations of all three. The scenario should be relevant to the assessment objectives.  

The definition of the most relevant or important scenarios is especially crucial in 

situations for which there are limitations of time and other resources with respect to performing 

sensitivity analysis. Thus, it is important to identify scenarios that are the highest priority for 

evaluation. A well defined case scenario will help concentrate the sensitivity analysis on the 

areas that are of more interest to risk managers and decision makers.  

  Figure 4-1 shows a schematic diagram of the case study scenario components for 

sensitivity analysis of food safety process risk models. This figure shows that issues such as the 

specific pathogen under study, susceptible subpopulations, pathways of exposure, temporal 

dimension, geographic extent of the analysis, and food categories considered in the analysis 

should be clearly specified in the case scenario.  Furthermore, the probabilistic dimensions that 

are intended to be the focus of sensitivity analysis should be clearly specified in a case scenario. 

In the following sections, the major components of a typical study scenario are explained. 

These components are classified into four categories including:  (1) identification of the 

pathogens of interest and susceptible subpopulations; (2) identification of pathways of interest 

and selected food categories; (3) spatial and temporal dimensions of the model simulation; and 

(4) probabilistic features. Sections 4.1 through 4.4 provide discussions for these topics, 

respectively. 

A scenario that does not fully address all of the attributes relevant to a particular study 

objective could lead to incorrect or incomplete insights regarding exposure and risk.  For 

example, a scenario may not include all important food groups that might lead to high exposures 

to a particular pathogen. The failure to include a relevant attribute of the scenario is an error of 

omission. Errors of omission could either bias the total exposure and risk estimates, creating a  
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Figure 4-1.  Components of a Scenario for a Microbial Pathogen Risk Assessment. 

 

systematic error in the case scenario results, or for the cases that the model is calibrated 

incorrectly, an inability to attribute exposure to the correct pathways. The uncertainty associated 

with mis-specification of a scenario is discussed in Section 4.5. Section 4.6 provides a summary 

for the chapter. 

4.1 Identification of Susceptible Subpopulation 
In practice, many food safety risk assessments focus on a single pathogen. A pathogen of 

concern is typically identified because of a history of a high incidence of sporadic cases, known 

prevalence, or anticipation of future prevalence and possible outbreaks. Examples of assessments 

for individual pathogens include Listeria monocytogenes (CFSAN, 2003), E. coli O157:H7 

(FSIS, 2001), Vibrio parahaemolytics (CFSAN, 2001), and Salmonella (FSIS, 1998). A typical 

focus in these types of assessments is on acute illness associated with short term exposure to 

perhaps only one contaminated serving. The choice of pathogen will typically have implications 

regarding the selection of target subpopulations for exposure assessment, since only those 

subpopulations that consume a particular type(s) of food would be exposed. 

The scope of the risk assessment is typically on specific population groups in which the 

risk of adverse effect due to exposure to the hazard is expected to be significant. For a particular 

pathogen, there may be multiple susceptible subpopulations because different groups of people 
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are exposed to a particular type of contaminated food. Susceptible subpopulations can be 

incorporated in the model using alternative dose-response relationships. Furthermore, exposed 

subpopulations could be differentiated by age classes with respect to food consumption patterns. 

Two examples are described here to illustrate how susceptible subpopulations can be addressed. 

One example is based upon the Listeria risk assessment model for selected ready-to-eat foods, 

and the other example is based upon the E. coli O157:H7 process risk model for ground beef. 

The Listeria risk assessment model considers three susceptible subpopulations based on 

age (CFSAN, 2003), including perinatal, elderly, and intermediate age. The perinatal group 

includes pregnancy-associated cases in which exposure occurs most often in utero as a result of 

foodborne L. monocytogenes infections of mothers during pregnancy. The elderly group includes 

individuals who are 60 or more years old. This group is thought to have higher susceptibility to 

Listeriosis due, in part, to physiological changes associated with the natural aging process. The 

intermediate age group is the remaining population, inclusive of healthy individuals and specific 

subpopulations highly susceptible to Listeriosis, such as AIDS patients or those taking drugs that 

suppress immune systems. Adjustment factors were used in order to incorporate available 

epidemiologic data into estimated dose-response functions specific to each group. Because of the 

availability of three groups in the model as part of the scenario definition, it is possible for an 

analyst to choose to focus on one group. For example, an analyst may decide to focus the scope 

of sensitivity analysis on perinatal subpopulation and identify key contributors to probability of 

risk of death or illness due to exposure to L. monocytogenes. 

The E. coli O157:H7 food safety process risk model for ground beef classifies the 

exposed population into four age categories. These age categories include: (1) 0 to 5; (2) 6 to 24; 

(3) 25 to 64; and (4) above 65 years of age. For each age category, different consumption data 

regarding the serving size in grams are provided in the model (FSIS, 2001). Although people in 

any age category are susceptible to infection with E. coli O157:H7, the greatest concern has most 

often been with respect to children under 5 years old and elderly people above 65. Thus, an 

analyst may decide to select these two subpopulations as the focus for sensitivity analysis. 

If sensitivity analysis is focused on a subset of the subpopulations included in the 

scenario and the model, consideration should be given as to whether the insights regarding key 

critical control points, suggested critical limits, key sources of variability, or key sources of 

uncertainty are representative of other groups. If there is reason to believe that these insights 
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would differ among different subpopulations (e.g., because of differences in serving size, 

frequencies of servings, dose response, etc.) then it will typically be appropriate to perform 

sensitivity analysis separately for each subpopulation of most concern. 

4.2 Identification of Pathways of Interest and Selected Food Categories 
In order to adequately characterize total exposures, a scenario may need to consider 

multiple pathways of exposure. For food safety process risk models, the exposure pathway of 

most interest is typically ingestion associated with consumption of foods. Therefore, in defining 

a scenario, a choice must be made regarding which types of food to include.   

As an example, the Listeria monocytogenes model includes 20 RTE categories.  Not all 

of these categories contribute equally to exposure and risk. In fact, only a few contribute 

substantially to total exposure. Therefore, sensitivity analysis can be focused on a subset of the 

food categories. 

The identification of priorities for scenarios involving food categories may be based upon 

a variety of factors. For example, hotdogs could be selected since it is the most important source 

of Listeriosis based upon survey data (CSFII, 1996 and DHHS, 1998). Milk might be of concern 

because it has a high consumption rate even though the prevalence of Listeria monocytogenes is 

low. The prevalence in smoked seafood is high. The largest outbreak of Listeriosis in the US was 

attributed to fresh soft cheese (CFSAN, 2003). These examples illustrate possible rationales for 

choosing to focus on a smaller set of food groups with regard to sensitivity analysis.  

4.3 Identification of Spatial and Temporal Dimensions of Case Study 
A risk assessment scenario includes spatial and temporal dimensions. The spatial 

considerations for a scenario could include the geographic area relevant to the farm-to-table 

continuum for each included food. Furthermore, the size and location of specific subpopulations 

may be of concern. Depending upon the level of model detail, it may be necessary to incorporate 

multiple scales of geographic information. For example, with regard to farming or processing 

plants, it may be necessary to consider local factors that could lead to contamination of food 

(e.g., infection for a particular feedlot of cattle). However, it also may be necessary to consider 

the throughput at a national or other scale in order to support estimation of the total number of 

exposures that lead to health effects in a population. There may be variability in the prevalence 

of foodborne pathogens with regard to geographic location because some regions may have more 

favorable conditions for growth and prevalence than others.  
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The temporal considerations for a scenario typically include:  (1) the time for each major 

step in the farm-to-table continuum, in order to estimate the growth or inactivation of pathogens 

at each step; (2) the activity patterns of consumers with regard to frequency of consumption of 

particular types of foods; (3) “temporal dynamics” effects, whether at a short time scale (e.g., 

daily, weekly) or a longer scale (e.g., monthly, seasonal, annual); and (4) the time period 

associated with occurrence of illness as a result of one or more exposures. For example, 

pathogens may be more prevalent or more easily spread in one season than others. Implicit in a 

dose-response relationship is an averaging time over which an exposure produces a health effect. 

For example, a model may deal only with acute effects of the most recent exposure, whereas in 

other cases consideration might be given to cumulative exposures that result from multiple 

contaminated servings. 

As an example of temporal considerations, the E. coli model considers the effect of 

seasons on the estimation of the E. coli organism prevalence within animals in a feedlot or a 

herd. Two alternative seasons are considered, including a high prevalence season (summer) and a 

low prevalence season (winter). The fact that prevalence of the E. coli organisms is higher in 

summer suggests that the case study scenario for sensitivity analysis in the model should focus 

on this time period. 

4.4 Probabilistic Approaches 
A scenario will typically include variability in exposures among different members of a 

population, unless the scenario is for a single individual. Regardless of whether the scenario is 

for a population or for a single individual, there will typically be uncertainty in the inputs to a 

model. Therefore, as a part of defining the scenario that is the basis for a risk assessment, it is 

important to define whether the assessment will explicitly incorporate variability, uncertainty, or 

both. Furthermore, there are alternative methods for dealing with variability and uncertainty. The 

choice of an appropriate method should be made taking into account the assessment objectives, 

the data quality objectives, the availability of data, and the importance of the assessment. 

For purposes of providing guidance regarding the choice of the probabilistic component 

of a scenario, we consider five cases:  (1) variability only; (2) uncertainty only; (3) variability for 

different realizations of uncertainty; (4) uncertainty for different realizations of variability; and 

(5) co-mingled analysis of variability and uncertainty. The applicability of each of these 

situations is briefly discussed. 
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4.4.1 Variability Only Analysis 
The purpose of an analysis of variability only is to quantify inter-individual variability in 

exposure and risk. Variability only analysis also can be use to characterize a frequency or rate of 

occurrence in a group (e.g., the U.S. population) or series (e.g., a production line). Such an 

analysis is typically predicated on the assumption that the range of variability is much larger than 

the range of uncertainty; therefore, a judgment is made that uncertainty can be neglected. The 

appropriateness of this assumption will depend upon the specific problem and the objectives of 

the analysis. Variability can include controllable or explainable sources of variation (e.g., 

differences in refrigerator temperatures among a population of refrigerators) or stochastic 

sources of variability (e.g., differences in susceptibility to illness among individuals). In some 

cases, an analyst may prefer to stratify the analysis into each of several subgroups rather than 

perform one analysis in which distributions of variability are assigned to account for the presence 

of multiple subgroups. 

For analysis of variability only, probability distributions that describe the variability in 

each model input are specified and can be propagated through the model using Monte Carlo 

simulation or similar techniques. Sensitivity analysis applied to the results of a probabilistic 

simulation of variability only can provide insight regarding the key contributors to variability in 

the model output of interest, such as exposure or risk. Information regarding key sources of 

variability that are controllable can be used to prioritize potential CCPs and to identify critical 

limits. Information regarding key sources of variability that are uncontrollable might imply 

priorities for data collection or research to improve the characterization of variability. 

As a practical matter, it is unlikely that uncertainty is small relative to variability, at least 

for some model inputs. Therefore, the variability only approach may not be applicable in most 

situations. 

4.4.2 Uncertainty Only Analysis 

An analysis of only uncertainty may be appropriate if the range of uncertainty for each 

model input is large compared to the range of variability, or if the analysis is for a scenario in 

which the values of variable inputs are fixed. The latter might be the case, at least approximately, 

if the analysis is stratified. For example, an analysis could focus on one set of conditions in a 

scenario (e.g., one type of pathogen, one type of food, a specific serving size, a particular class of 
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individuals, etc.). An uncertainty analysis allows the use of incomplete information without 

producing a result that may appear to be misleadingly certain. 

Typically, an uncertainty analysis is performed by specifying probability distributions for 

each uncertain input, propagating the distributions through a model using Monte Carlo 

simulation or related methods, and quantifying the uncertainty in a model output. Sensitivity 

analysis can be applied to the results of an uncertainty analysis in order to identify key sources of 

uncertainty. Knowledge of key sources of uncertainty can be used to prioritize additional data 

collection or research in order to improve the state of knowledge, and thereby reduce uncertainty.  

The results of an uncertainty only analysis with regard to exposure or risk are conditional on the 

fixed values of the variable inputs. If uncertainty is truly much larger in magnitude than inter-

individual variability, then it will be difficult or impossible to make a distinction among 

individuals regarding exposures and risk.   

The uncertainty only situation could arise in practice depending upon the assessment 

objectives or the state of knowledge (e.g., availability of data) pertaining to the assessment.   

4.4.3 Variability Analysis for Different Uncertainty Realizations 
Variability and uncertainty may both be of importance to an assessment. There are a 

variety of ways to account for both variability and uncertainty in a probabilistic analysis. In this 

section, the focus is on quantification of variability conditional on different randomly selected 

values from uncertain quantities. In the next section, the focus is on quantification of uncertainty 

for different fractiles of variability. Section 4.4.5 deals with an analytic approach in which both 

variability and uncertainty are included, but co-mingled. The reader interested in more detail 

regarding two dimensional approaches for dealing with variability and uncertainty is referred to 

Cullen and Frey (1999), Nauta (2000), and Vose (2000). 

In variability analysis for different uncertainty realizations, the objective of analysis is to 

distinguish between variability and uncertainty. The focus of sensitivity analysis in this approach 

is to identify the key inputs for each realization of uncertainty. A realization refers to one model 

simulation based upon one randomly sampled value for each probabilistic input. Application of 

sensitivity analysis to this kind of case study provides insight regarding whether the 

identification of the key sources of variability is robust with respect to uncertainty. Figure 4-2 

shows a schematic diagram of a case study scenario for application of sensitivity analysis to 

identify key sources of variability for different uncertainty realizations of a model. Each dataset  
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Figure 4-2.  Case Study Scenario for Application of Sensitivity Analysis to Variability Analysis 
for Different Uncertainty Realizations of a Model. 

 

in this figure includes randomly generated values from variability distributions of each model 

input for a given uncertainty realization and the corresponding model output values. In this case, 

sensitivity analysis is applied separately to each uncertainty realization. For each realization, the 

key sources of variability, critical limits, or both, are identified. This process is repeated n times 

to arrive at different sensitivity rankings for variability inputs in which n refers to the number of 

uncertainty realizations. The distribution of the rankings estimated based upon the n realizations 

can be used to assess whether an input is unambiguously important with respect to variability. 

Figure 4-3 shows an example of such a dataset for a model that has k inputs and the number of 

variability iterations is m. When performing two-dimensional Monte Carlo simulation, it is 

preferable to invest more iterations in the variability dimension than the uncertainty dimension, 

since the extreme tail of inter-individual variability in exposures is of interest. 

To the extent that the sensitivity analyses yield similar results about the rank ordering of 

key inputs regardless of uncertainty, an analyst or decision maker will have greater confidence 

that the results of the analysis are robust to uncertainty. If the ranking of key inputs changes 

substantially from one realization of uncertainty to another, the identification of key inputs 

would be uncertain. Additional data collection or research may reduce this ambiguity.  

Frey et al. (2003) evaluated a few case studies with the E. coli model featuring sensitivity 

analysis applied to variability for different uncertainty realizations. For example, this approach 

was applied to the growth estimation part in the E. coli model. Results of the analysis showed  
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Figure 4-3.  Dataset Including Generated Input Values from Variability Distributions and 
Estimated Output Values for a Specific Uncertainty Realization of a Model. 

 

that selected inputs were consistently identified in the group of most important inputs in different 

uncertainty realizations of the model. Those inputs included storage times and temperatures at 

retail stores and homes. A few other inputs were identified that had wide ranges of ranking in 

different uncertainty realizations of the model. For example, the relative importance of storage 

temperature during the transportation step varied between a high ranking and ranking that was 

not statistically significant. The ambiguity in the true rank of storage temperature at 

transportation step was attributed to uncertainty in the input. 

4.4.4 Uncertainty Analysis for Different Variability Iterations 
The uncertainty analysis for different variability iterations is substantially similar to the 

probabilistic approach discussed in Section 4.3.3, except that this type of analysis focuses on the 

identification of key contributors to the uncertainty in the model output conditional on different  
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Figure 4-4.  Case Study Scenario for Application of Sensitivity Analysis to Uncertainty Analysis 
for Different Variability Iterations of a Model. 

 

values for quantities that are subject to variability. Results of this analysis will provide insight 

regarding how key sources of uncertainty for exposure or risk differ for different combinations of 

values for variable inputs. 

Figure 4-4 shows a schematic diagram of a case study scenario for application of 

sensitivity analysis to uncertainty for different variability iterations. Datasets are shown on the 

far left for randomly generated values from variability distributions of each model input for each 

of n uncertainty realizations and for the corresponding model output values. Each dataset is 

similar to the example shown in Figure 4-3. In each dataset, there are m rows representing 

randomly sampled values from m fractiles of variability distributions. For a dataset, each row 

corresponds to a unique fractile of a variability distribution of model inputs. Prior to application 
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of sensitivity analysis, the n datasets should be reorganized into up to m new datasets. Each of 

the new datasets includes all of the uncertainty realizations corresponding to a specific fractile of 

the variability distributions. For example, the first new dataset shown in the figure includes n 

rows that hold randomly sampled values from the ith fractile of the variability distributions and 

corresponding output values from each of the n original datasets. The variation between the 

values of rows in a new dataset is due to uncertainty in that specific fractile of the variability 

distributions.  

In the next step, sensitivity analysis is applied to the new datasets and inputs are ranked 

based upon the sensitivity analysis results. Each set of rankings represents the key sources of 

uncertainty for a specific fractile of the variability. Comparison of the rankings for different 

variability fractiles can lead to key insights regarding sources of uncertainty. For example, the 

key sources of uncertainty in exposures for individuals who tend to have higher exposures may 

be different compared to those for individuals who tend to have lower exposures because of 

differences in the frequency or size of meal servings. If the ranking of the key sources of 

uncertainty substantially changes for different variability fractiles, decision-makers could focus 

on the key sources of uncertainty for the fractiles of most interest. For example, key sources of 

uncertainty can be identified for the upper 5 percent of the population exposed to the risk. 

Application of sensitivity analysis to a case scenario using this type of probabilistic 

approach is informative for situations in which there is substantial uncertainty, especially 

regarding estimates of highly exposed individuals. A risk manager may prefer to make a choice 

of CCP or critical limits taking into account uncertainty for a particular portion of the most 

exposed subpopulation. However, if time and resources permit, knowledge of key sources of 

uncertainty for the most exposed or at risk portion of the population can be used to prioritize 

additional data collection or research that could reduce uncertainty. The assessment can be 

revised based upon new information, and a decision could be made at a later time based upon the 

reduced uncertainties. 

4.4.5 Co-Mingled One Dimensional Variability and Uncertainty 
There may be situations in which it is preferred to incorporate but not distinguish 

between variability and uncertainty.  For example, during the process of model-building, the 

analyst may want to estimate the widest range of values that might be assigned to each model 

input for purposes of verifying the model and evaluating the robustness of the model to large  
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Figure 4-5.  Case Study Scenario for Application of Sensitivity Analysis to the Co-mingled 
Variability and Uncertainty Analysis of a Model. 

 

perturbations in its inputs.  As a preliminary step in prioritizing data collection or the 

development of distributions for model inputs, an analyst may wish to assess the key sources of 

variation regardless of whether they represent variability or uncertainty.  In some cases, an 

analyst may make a judgment that it is difficult to separate variability from uncertainty (e.g,. 

Nauta, 2000) or that a two-dimensional probabilistic approach is impractical or not necessary 

based upon the assessment objectives.  However, if the assessment objective requires 

characterizing uncertainty associated with specific fractiles of the exposed population, then a 

two-dimensional approach is appropriate. Finally, if the assessment objective is focused on a 

randomly selected individual, rather than on specific fractiles of the exposed population, this 

type of probabilistic approach may be useful or appropriate to achieve the assessment objective.   

Figure 4-5 shows a schematic diagram of a case scenario in which the probabilistic 

approach selected for sensitivity analysis is co-mingled variability and uncertainty. There are n 

datasets generated in n uncertainty realizations of the model. Each dataset is similar to the 

example shown in Figure 4-3, and hence, it includes m rows of randomly generated samples 

from variability distributions and the corresponding output values. Prior to application of 

sensitivity analysis, these datasets are appended together to form a single dataset with n×m rows. 

Sensitivity analysis is then applied to the co-mingled dataset and a set of ranking is obtained. By 

co-mingling variability and uncertainty in a single dimension, one typically would obtain wider 

ranges of values generated for model inputs during the model simulation compared to the 

situations in which only uncertainty or only variability had been characterized. 
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4.4.6 Selecting a Sample Size for the Probabilistic Approaches 
In a probabilistic analysis that is implemented using a numerical method such as Monte 

Carlo simulation or related methods (e.g., Latin Hypercube sampling), it is necessary to specify a 

simulation sample size. The simulation sample size is the number of pseudo-random numbers 

that are generated for each model input according the probability distribution assigned to the 

input. The sample size represents the number of variability and/or uncertainty iterations used in a 

numerical simulation. Two constraints should be taken into account when selecting a sample size 

for a numerical simulation:  (1) limitations of computer software, hardware, and time that impose 

an upper bound on the sample size; and (2) the acceptable degree of confidence or precision for 

model results, which impose a lower bound on the sample size (Cullen and Frey, 1999). 

The sample size depends on the numerical simulation technique used in the model and 

the model output of interest. For example, typically a larger sample size is required when using 

Monte Carlo simulation as a sampling technique compared to Latin Hypercube sampling. If the 

central tendency of the output distribution is of more interest for analysts, a smaller sample size 

may be acceptable than if the focus is on the upper tail of distribution for a model output. For 

outcomes with a low probability of occurrence, it may be necessary to use large sample sizes or 

to stratify the analysis to focus only on situations that could lead to the outcome of concern. For 

example, there may be a very small probability that a food serving will be contaminated. If a 

small sample size is used, possibly no contaminated samples would be simulated. A large sample 

size may be required to obtain a sufficient number of simulated contaminated servings. 

Alternatively, the analysis could be stratified to focus only on contaminated servings. In 

such a case, the results of a simulation would be conditional on the existence of contamination. A 

smaller sample size could be used since all samples would be contaminated. However, in order 

to assess the likelihood of exposure, the results of a conditional analysis would have to be 

multiplied by the probability of contamination. 

4.5 Scenario Uncertainty 
Because a scenario may fail to consider all of the factors and conditions contributing to 

variation in the output, uncertainty can be introduced. This source of uncertainty is known as 

scenario uncertainty (Cullen and Frey, 1999) and typically results in a bias. The sources of 

scenario uncertainty include descriptive errors, aggregation errors, errors in professional 

judgment, and incomplete specification of the scenarios (EPA, 1997).  
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Descriptive errors represent incorrect or insufficient information regarding a scenario. 

Sometimes, quantitative data regarding activity patterns leading to exposure is a convenience 

sample or represents only those producers who are required to file reports with the government 

under a particular regulation. For example, animal health surveillance systems should be updated 

using reports from farms in the region of study. Major farms that have substantial number of 

animals kept in feedlots or herds substantially contribute to the process of data collection. These 

farms are usually equipped with private veterinarians with sufficient laboratory equipment for 

better data collection. In contrast, small farms with a limited number of animals may not 

contribute to the surveillance system as they typically do not have regular sampling and testing 

procedures due to budgetary limitations. In the case that there is a large number of small farms in 

the region, descriptive error may be introduced into the scenario. In this case, the estimated 

infection rate in animals would fail to reflect animals from small producers that do not report 

adequate information. 

Aggregation errors arise as a result of approximations or assumptions used in food safety 

risk models to simulate the process of bringing food products from the farm to the table. For 

example, assumptions regarding homogeneity of the consumer populations, temporal 

approximations such as assuming that the prevalence of the selected pathogen does not vary in 

different seasons, and spatial approximations such as assuming that the prevalence of the 

pathogen or consumption rate does not vary in different regions lead to scenario uncertainty in 

the analysis in the form of aggregation errors. Aggregation error can be considered as a source of 

systematic error in which bias may be introduced in the results of analysis. 

Errors in professional judgment can affect every aspect of the exposure and risk 

assessment process. This type of scenario uncertainty may arise from failure to properly define 

exposure scenarios and select appropriate models for the analysis. Judgment errors also may be 

introduced because of limited knowledge of analysts. As an example, there may be a situation in 

which scientists assume that a pathogen under study can only be spread mechanically by the 

movement of animals, persons, vehicles and other pathways, and hence these pathways are 

incorporated in the model. Further research may reveal that airborne spread is a significant 

dispersal mechanism. Errors due to professional judgment introduce bias in the results.  

Incomplete specification of a scenario is a source of uncertainty. For example, an analyst 

may neglect an important exposure pathway due to lack of information, or may fail to consider a 
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specific susceptible subpopulation in the analysis. For example, although an analyst knows that 

the chilling process in slaughter plants is a key step in contamination of carcasses with the E. coli 

organisms, lack of representative data and information of the real process of contamination in the 

chilling step may lead the analyst to neglect the simulation of this step in the model. Incomplete 

analysis will also introduce bias in the results. 

The analyst should carefully review possible sources of scenario uncertainty specific to 

the assessment. All key assumptions that are the basis of the scenario should be clearly stated. 

Known descriptive errors and aggregation errors should be described. These errors may be 

unavoidable because of lack of data upon which to more fully describe categorical information or 

to disaggregate further. If possible, a qualitative or quantitative judgment regarding how much 

such errors may bias the assessment should be given. Errors in professional judgment would 

typically be uncovered if the work is exposed to review and comment. There may be professional 

disagreement regarding the importance of possible pathways not addressed in the assessment; if 

so, such disagreement should be acknowledged and a rationale for not including a particular 

pathway (or other possible component of an analysis) should be offered. The rationale could 

include a judgment regarding the magnitude of systematic or random errors associated with the 

omission. As new information becomes available, the key assumptions upon which the scenario 

is based should be revisited to determine whether the scenario should be revised. 

4.6 Summary 
This chapter provided suggestions on how to define a case scenario for performing 

sensitivity analysis. Key concepts were introduced and discussed as essential attributes of a 

scenario for a microbial risk assessment. An analyst should clearly define attributes such as 

susceptible subpopulations, geographic extent of the analysis, pathogen under study, exposure 

pathways, and the probabilistic simulation approach. Failure to sufficiently address these 

attributes may introduce error in the results of sensitivity analysis in the form of scenario 

uncertainty. Furthermore, the analyst should document the assumptions underlying the scenario 

and acknowledge possible sources of error. 

The specification of a scenario can be done before a model is developed, in which case 

the model should incorporate all key elements of the scenario. If an existing model is to be used 

for a newly defined scenario, then consideration should be given to whether the model must be 

modified in order to accurately represent the desired scenario. 
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The setup of case study scenarios provides a basis for choosing appropriate sensitivity 

analysis methods. The next chapter introduces the available methods used to perform sensitivity 

analysis and provides guidance on how to choose appropriate methods based upon different 

situations. 
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5 SELECTION OF SENSITIVITY ANALYSIS METHODS 
The objective of this chapter is to:  (1) identify the key questions that should be addressed 

when selecting a sensitivity analysis method (Section 5.1); (2) provide a decision framework for 

making choices among alternative sensitivity analysis methods (Section 5.2); and (3) briefly 

review typical sensitivity analysis methods (Section 5.3). Section 5.3 focuses on the selected set 

of the most popular or accessible methods. Several additional methods that are promising but not 

yet widely used are discussed in more detail in Appendix A. 

There are different ways of classifying sensitivity analysis methods. For example, these 

methods may be broadly classified as mathematical, statistical (or probabilistic), and graphical 

(Frey and Patil, 2002). Mathematical methods typically assess sensitivity of a model output to 

the range of variation of an input, and they typically involve calculating the output for a few 

values of an input within their possible ranges or for a small perturbation (e.g. Salehi et al., 

2000). Statistical methods involve running simulations in which inputs are assigned probability 

distributions, and the effect of variance in inputs on the output distribution is assessed (e.g. 

Andersson et al., 2000). Graphical methods present sensitivity in the form of graphs, charts, or 

surfaces. Generally, graphical methods are used to give a visual indication of how an output is 

affected by variation in inputs (e.g., Geldermann and Rentz, 2001). We adopt this classification 

scheme as the basis for the brief review of methods in Section 5.3.   

Alternatively, methods can be classified as screening, local, and global. Here, we explain 

the alternative classification scheme because it also provides a useful conceptual framework for 

comparing methods. 

Screening methods are typically used to make a preliminary identification of the most 

sensitive model inputs. However, such methods are often relatively simple and may not be robust 

to key model characteristics such as nonlinearity, thresholds, and interactions.   

Local sensitivity analysis focuses on relatively small perturbations near a fixed point in 

the model domain. For example, the sensitivity of various inputs for a particular fractile of the 

exposed population (perhaps representing a particular individual) could be the subject of a local 

sensitivity analysis. For small perturbations of the inputs, a linear approximation may be 

reasonable even if the model response over a larger variation of the inputs would be nonlinear.   

Global sensitivity analysis methods must have the following two properties:  (1) the 

sensitivity estimates of individual inputs take into account the effect of the range and the shape 
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of the probability distribution for each input; and (2) the sensitivity estimates of individual inputs 

are obtained while all inputs vary simultaneously (Saltelli, 2000).  

This chapter is comprised of three sections. Section 5.1 presents a set of key questions for 

method selection. Answering those questions will help an analyst select an appropriate 

sensitivity analysis method for a particular case study. Section 5.2 presents procedures to guide 

the practitioner through the decision process of selecting a particular method. Section 5.3 

provides brief background information for some of the most commonly used sensitivity analysis 

methods. Section 5.4 provides a summary for this chapter. 

Key assumptions of this chapter are that the reader has already determined the reason for 

performing sensitivity analysis (Chapter 2), prepared the model for sensitivity analysis (Chapter 

3), and defined the case study scenario (Chapter 4). Thus, there should be a clearly defined 

decision-relevant model output(s), a set of inputs of greatest interest, a well-defined scenario 

relevant to the assessment objective, and an appropriately structured model. Collectively, these 

issues comprise the problem definition for a particular analysis. The characteristics of the 

problem definition must be taken into account when selecting a sensitivity analysis method. 

5.1 Key Questions for Selection of Sensitivity Analysis Methods 
The selection of an appropriate sensitivity analysis method for a particular case study 

depends on the characteristics of the model and the case study. This section provides a series of 

eight key questions that the practitioner should consider before choosing a method. For each 

question, there is a brief discussion regarding the insight that an analyst may gain by addressing 

the question. These questions should be considered a starting point for selecting a method. The 

analyst should consider whether there are additional considerations in a particular case study 

beyond the issues addressed here. These questions are listed here and discussed in Sections 5.1.1 

to 5.1.8. 

• What are the objectives of sensitivity analysis? 

• Based upon the objectives, what information is needed from sensitivity analysis? 

• What are the characteristics of the model that constrain or indicate preference 

regarding method selection? 

• How detailed is the analysis? 

• What are the characteristics of the software that may constrain selection of methods? 

• What are the specifications of the computing resources? 
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• Can “push-button” methods adequately address characteristics of interest in the 

analysis? 

• Is the implementation of the selected sensitivity analysis method post-hoc? 

5.1.1 What are the Objectives of the Sensitivity Analysis? 
As the first step in selecting an appropriate method, an analyst should clearly define the 

objectives of sensitivity analysis with regard to the case study of interest. Knowledge of the 

objectives helps an analyst efficiently allocate the available time and resources to select an 

appropriate sensitivity analysis method that can provide relevant information and insight. Some 

common objectives of sensitivity analysis are:  (1) rank ordering the importance of model inputs 

(e.g., critical control points); (2) identifying combination of input values that contribute to high 

exposure and/or risk scenarios; (3) identifying and prioritizing key sources of variability and 

uncertainty; (4) identifying critical limits; and (5) evaluating the validity of the model.  Some of 

these objectives, such as (3) and (5), might primarily be research issues, while others are 

typically associated with risk management or regulatory decision-making. 

Rank ordering the model inputs based on their contribution to the variation in the output 

of interest is often considered as a basic objective of sensitivity analysis of a food safety process 

risk model. An analyst can provide recommendations for model refinement through further data 

collection to improve model input distributions using the insight from rank ordering the inputs. 

As shown in the case studies explored by Frey et al. (2003), mathematical and statistical 

sensitivity analysis methods provide quantitative ranking of model inputs. Graphical sensitivity 

analysis techniques typically do not provide quantitative rankings of inputs.  

An analyst may be interested in identifying ranges of key inputs that lead to high 

exposure and/or risk in food safety process risk models. For example, decision makers and 

regulatory agencies may be interested in identifying conditions responsible for high 

contamination levels in the process of bringing foods from the farm to the table. Some statistical 

methods, such as classification and regression tree (CART) and analysis of variance (ANOVA), 

can be used to identify combinations that lead to high exposures and risk (Frey et al., 2003).  

Objectives based upon identification and prioritization of key sources of variability and 

uncertainty in a probabilistic model are typically fulfilled using statistically-based sensitivity 

analysis methods. In addition, the analyst typically prefers that the sensitivity analysis method 

should provide quantitative measures of sensitivity for ranking key sources of variability and 
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uncertainty. Depending upon the assessment objectives with regard to whether and how 

variability and uncertainty should be distinguished, sensitivity analysis can be applied in a one-

dimensional or two-dimensional probabilistic simulation framework. For example, if the 

assessment objective includes distinguishing between inter-individual variability in exposure 

versus uncertainty, then a two-dimensional probabilistic simulation framework would typically 

be employed. In such cases, sensitivity analysis can be applied to identify key sources of 

variability subject to multiple realizations of uncertainty, or vice versa. Ideally, in such situations 

the process of sensitivity analysis should be automated because of the potentially large number 

of model iterations required. As an example, Frey et al (2003) demonstrated the capabilities of 

regression analysis, correlation analysis, and ANOVA to identify key sources of variability and 

uncertainty when applied to two-dimensional food safety risk assessment models.   

If the objective is to identify critical limits for controllable inputs, it is often necessary to 

use relatively sophisticated sensitivity analysis methods. This is particularly the case if the model 

has substantial nonlinearity, interactions, or thresholds. These methods often involve a 

probabilistic simulation (e.g., Monte Carlo simulation). Critical limits are sometimes associated 

with saturation points or thresholds in the input domain. A saturation point is a value for a model 

input above which there is no change in the output, but below which there can be substantial 

variation in the output. For example, there is an intrinsic upper limit on microbial pathogen 

growth rate. In contrast, a threshold is a value of a model input below which there is no change 

in the output. For example, if temperature is low enough, then the growth of a microbial 

pathogen may be essentially zero. Sensitivity analysis methods based upon linearity assumptions 

are not well-suited for identification of these kinds of limits. However, some statistical (e.g., 

ANOVA, CART) and graphical methods (e.g., scatter plots) can provide useful insights in these 

situations (Frey et al., 2003). 

If the objective is to evaluate the validity of the model, then the analyst is typically 

interested in:  (1) qualitative characteristics of how the output responds to changes in one or 

more inputs; and/or (2) how the output varies quantitatively as a result of varying inputs. 

Qualitative characteristic can include:  (a) does the output increase or decrease if an input 

increases?; (b) does the output vary in a linear, monotonic, or non-monotonic manner; (c) are 

there threshold or saturation effects, or other characteristics of specific interest (e.g., inflection 

points, singularity points); and (d) are there interactions between two or more inputs that vary 
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simultaneously?. With regard to each of these characteristics, or perhaps others, the analyst will 

typically assess whether the model output is responding in an appropriate or explainable manner. 

If so, then confidence in the model tends to increase. If not, then corrective measures with 

respect to the model structure and assumptions are indicated. Sources of errors in a model 

response could include incorrect specification of the inputs or a problem with the analytical 

model or the computer code. 

Quantitative characteristics are also useful to evaluate. For example, a key question is 

whether the range of the model output is appropriate with respect to variation of particular input. 

Perhaps the model seems to be far too sensitive to an input that was previously thought to be 

unimportant. Is this because of a mistaken prior perception, or did an error in the input data or 

the coded model produce an incorrect result? Does the model seem to be producing values far 

too high or low compared to what was expected? Perhaps there is a units conversion problem, 

data entry mistake, errant constant or parameter in the model or other mistake (e.g., incorrectly 

formulated or coded equation). The process of doing sensitivity analysis often helps the analyst 

gain critical insights into problems with the model or input data. Thus, sensitivity analysis should 

be done as part of model development to allow sufficient time to identify and correct possible 

problems. 

5.1.2 Based Upon the Objectives, What Information is Needed from Sensitivity 
Analysis? 

The analyst should decide prior to analysis as to what information is of most interest.  

Examples of information that could be useful, depending upon the objectives, include the 

following: 

• Qualitative or quantitative ranking of inputs 

• Discrimination of the importance among different inputs 

• Grouping of inputs that are of comparable importance 

• Identification of inputs that are not important 

• Identification of critical limits 

• Identification of inputs and ranges that produce high exposure or risk 

• Identification of trends in the model response 

Graphical sensitivity analysis methods typically provide qualitative insights regarding the 

importance of model inputs, whereas mathematical and statistical methods typically produce 
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quantitative measures of the sensitivity of an input. The analyst will typically want to be able to 

distinguish whether an input is of high, moderate, low, or no importance with regard to a 

particular output. Therefore, it is often useful to be able to discriminate regarding whether one 

input is more important than another input, even if the output is sensitive to both. Some statistical 

methods provide measures of whether one input is significantly more sensitive than another 

input. It is sometimes the case that several inputs will have comparable importance with regard 

to a particular output. The analyst may wish to group inputs that are of comparable importance 

based upon similar sensitivity index values. Similarly, the analyst may wish to identify inputs 

that are not important to the assessment. Information regarding unimportant inputs is useful 

because it is typically not necessary to devote additional resources to refining the assumptions 

for such inputs.  Such resources can be prioritized to other inputs. 

In order to identify critical limits in a model, the selected sensitivity analysis method 

should have the capability of comparing the model responses for different intervals for one or 

more model inputs. Similarly, if the objective is to identify high exposures, the selected 

sensitivity analysis method should identify the inputs and their ranges that are responsible for 

such exposures. Methods such as CART or ANOVA have capabilities to provide these kinds of 

insights.  

Many sensitivity analysis methods provide information regarding trends in the model 

output, such as linear versus non-linear, ranges of variation, existence of thresholds, and other 

characteristics (e.g., does the output increase or decrease with respect to increase in a particular 

input). Graphical, mathematical, and statistical methods can provide a varying range of these 

kinds of insights.  

5.1.3 What are the Characteristics of the Model that Constrain or Indicate 
Preference Regarding Method Selection? 

Food safety process risk models typically have specific characteristics that may constrain 

the application of sensitivity analysis methods. These characteristics include:  (1) nonlinearities; 

(2) interactions; (3) thresholds and saturation points; and (4) categorical inputs (Frey, 2002).   

An ideal sensitivity analysis method should be model independent. Specifically, a 

sensitivity analysis method should not require any assumptions regarding the functional form of 

the risk model and should be applicable to different model formulations. Some methods are 

considered to be global and model-independent. An example is CART. However, some methods, 

including many commonly used methods, are based upon assumptions regarding the functional 
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form of the model. For example, sample correlation analysis or linear regression are based upon 

the assumption of a linear model. However, the model might not actually be nonlinear.  In some 

cases, a linearizing transformation could be made, such as a log transformation, in order to have 

a more nearly linear model response to changes in inputs. Thus, with appropriate 

transformations, sometimes it is possible to apply these techniques. Rank correlation coefficients 

or rank regression are based upon the assumption of a monotonic model. If a sensitivity analysis 

method based upon an assumed functional form of a model is applied to a model with different 

characteristics, then the results of the sensitivity analysis may not be valid. For example, if 

method based upon linearity, such as nominal range sensitivity analysis (NRSA) or sample 

correlation analysis, is applied to a nonlinear or non-monotonic model, then the insights 

regarding sensitivity could be inaccurate or invalid.     

Because interaction between inputs is often one of the common characteristics of food 

safety process risk models, an analyst should typically select a sensitivity analysis method that 

can deal with interactions. The most commonly used mathematical sensitivity analysis methods 

(e.g., NRSA, differential sensitivity analysis (DSA)) are not able to capture any interaction 

effects between model inputs. However, many statistical methods, such as ANOVA, CART, or 

appropriately specified regression approaches, can identify interactions between model inputs. 

Graphical methods may provide insights regarding interaction effects; however, the use of 

graphical methods typically requires expert judgment based upon visual inference and therefore 

is a qualitative approach to sensitivity analysis.  

Identification of thresholds and saturation points that have substantial effect on the model 

output (e.g., exposure or risk) is useful because they may imply critical limits. Sensitivity 

analysis methods that enable an analyst to compare variation of the model output in different 

regions of an input domain are appropriate for identification of these model characteristics. Such 

methods include ANOVA, CART and some graphical sensitivity analysis methods. ANOVA 

provides direct statistical measures for tracking thresholds and saturation points. The 

interpretation of the results from CART is typically based upon visualization of regression trees 

in order to identify critical limits. Graphical sensitivity analysis methods provide visual insight 

regarding possible thresholds or saturation points in an input domain. For example, scatter plots 

can assist in identification of thresholds and saturation points taking into account simultaneous 

variation of other inputs. Graphical analysis based upon conditional sensitivity analysis can also 
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help identify thresholds and saturation points for an input conditional on point values from other 

inputs.   

Categorical or qualitative inputs are commonly used in food safety risk assessment 

models. Examples include food categories, season, consumer age, eating location, and 

consumption type. Mathematical methods such as NRSA and DSA do not accomodate these 

types of inputs. However, an analyst could simply run the model with different values of such an 

input while other inputs are held constant and assess the range of variation in the model output 

compared to that obtained when each of several other inputs are varied individually. Among 

statistical sensitivity analysis methods, ANOVA and CART can deal with categorical inputs. 

Regression analysis can deal with categorical inputs by using dummy variables (Neter et. 

al.,1996, Frey el. al., 2003). Graphical sensitivity analysis methods can be used to visualize the 

variation of model output versus different categorical values of inputs. 

5.1.4 How Detailed is the Analysis? 
Screening or refined sensitivity analyses can be conducted based upon the objectives of 

an analysis. The choice between the two is typically governed by resource availability, the 

importance of the analysis, and the stage of the assessment. Screening analyses require less 

resource than refined analyses. A screening analysis might be used in the early stages of model 

development to help refine the model and its inputs and to assess model validity. A refined 

analysis might typically be used in the later stages of analyses with a model that has undergone 

previous screening analyses. A refined analysis is preferred if the results will be used to make 

decisions regarding commitments of large amounts of resources for further model development, 

data collection for model inputs, or risk management strategies. Screening and refined methods 

can be applied as appropriate to one- or two-dimensional probabilistic simulations, although 

typically additional refinement of the sensitivity analysis would be accompanied by refinement 

in the risk analysis. 

Screening and refined analysis can be used together. The time and effort to execute a 

refined analysis often depends on the number of inputs that are included in the analysis.  

Therefore, it is often useful to use a screening method to identify model inputs that are not 

important with regard to variation in the output of interest. The refined analysis can then be 

applied to a smaller set of inputs for which there is reason to believe that the model output has at 

least some sensitivity.  
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Typical screening analysis methods include local mathematical methods such as DSA or 

NRSA, as well as so-called “push-button” techniques that are readily available in commercial 

software packages. Examples of the latter include sample or rank correlation coefficients 

available in Microsoft Excel add-ins such as Crystal BallTM. The “push-button” methods for 

sensitivity analysis are further discussed in Question 7.   

From case studies in Frey et al. (2003), it appears to be the case that if an input is 

identified as unimportant using a screening method, in practice it is often also identified as 

unimportant when using a refined method. When applying a screening analysis method, the 

analyst should keep in mind that there are several potentially critical limitations of such methods, 

including:  (1) screening methods are often not model-independent, and therefore the insights 

may be inaccurate if the model structure deviates significantly from the theoretical basis of the 

method; (2) some screening methods are local, and cannot adequately account for simultaneous 

variation in multiple inputs; and (3) for local screening methods, it may not be possible to 

identify the inputs and ranges that lead to the highest risk or to gain useful insight regarding 

critical control points. Thus, it is preferable to confirm results from a screening method with a 

different method or to follow-up with a refined analysis. 

5.1.5 What are the Characteristics of the Software that may Constrain Selection of 
Methods? 

As a practical matter, analysts do not typically have the resources to develop computer 

code to implement sensitivity analysis methods and, therefore, will typically rely on readily-

available software packages for this purpose. If the sensitivity analysis is to be conducted with an 

existing risk model, then the analyst may be forced to accept the constraints imposed by the 

existing software environment. In contrast, if the analyst is developing a new risk model, then the 

choice of programming environment should be made taking into account the anticipated needs 

with regard to sensitivity analysis, as discussed in Chapter 3. 

For probabilistic models that are implemented in a spreadsheet environment such as MS 

Excel, the probabilistic capability may be available via a commercial add-in such as Crystal 

BallTM or @RiskTM, or via macros that have been developed by the analyst or others. Built-in 

sensitivity analysis methods, such as sample or rank correlation coefficients, are often included 

in these types of packages and are referred to here as “push-button” methods. Typically, there is 

a limited degree of automation of such methods. For example, it is usually possible to apply 
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push-button methods in a one-dimensional probabilistic simulation but it may be more 

challenging to apply them in separate dimensions of a two-dimensional probabilistic simulation. 

In order to apply other sensitivity analysis methods, and especially refined methods, if a 

spreadsheet-based risk model is being used, it will typically be necessary to export to another 

software package sample values for the model inputs and outputs. For example, if the analyst 

wishes to make extensive use of regression methods, or to use methods such as ANOVA or 

CART, then it may be preferred to perform the analysis in specialized software such as SAS©, 

STM, S-PLUSTM, or R. The first three are examples of commercial packages. Such packages can 

be expensive in terms of licensing fees as well as with regard to training and skill level 

requirements on the part of the user. The latter is a publicly available statistical package. In 

addition, there are software packages such as SIMLAB that include a variety of sensitivity 

analysis methods (SIMLAB, 2000).  

If a new risk model is being developed, then the model can be designed to include 

sensitivity analysis methods as an integral part of the model or to export data in the format 

required by other software packages so that sensitivity analysis can be performed. For a highly 

refined analysis, the ideal situation is to include the preferred sensitivity analysis methods as 

features of the risk model to facilitate automated application of the method. 

5.1.6 What are the Specifications of the Computing Resources? 
The computing resources required for a given sensitivity analysis method are usually 

proportional to the resources necessary to perform a typical simulation with the model but also 

depend on the characteristics of the method. For mathematical methods, such as DSA and 

NRSA, it will typically be necessary to perform a number of model runs proportional to the 

number of inputs to be included in the sensitivity analysis. For statistical-based methods, 

sensitivity analysis can be performed based upon a typical probabilistic simulation. In this case, 

the number of model runs is determined by the data quality objective of the probabilistic 

simulation (e.g., the precision with which statistics of the model output should be simulated) 

taking into account the data quality of the model inputs. Computing constraints can include clock 

time, CPU time, data storage, other hardware issues, and software limitations.   

Clock time refers to the total elapsed time from the start to finish of an analysis. CPU 

time refers to the actual amount of processor time required to conduct a simulation. Since most 
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risk models are implemented on desktop personal computers, the clock time is typically of more 

concern than the CPU time. 

Data storage is a design consideration when selecting or developing a model, or when 

choosing a hardware platform upon which to run a model. Especially for two-dimensional 

probabilistic simulations, the analyst may have to be selective regarding which data to save in 

order not to overwhelm available data storage and handling capabilities. Thus, as described 

earlier, it can be helpful if a less resource intensive screening method can be used to focus a 

refined analysis on a limited set of model inputs.    

Depending upon how the risk model is designed, it may be possible to allocate the 

computing task to several computers operating in parallel, such as in a distributed network. The 

use of such networks has been demonstrated for Monte Carlo simulations of a variety of model 

types, and leads to a reduction in clock time necessary to complete a probabilistic simulation. 

The ability to distribute the computing task among multiple computers will depend on the 

capabilities of the available network and availability of software to manage the parallel 

computing tasks. Depending upon the scope and importance of the analysis, it may be 

worthwhile to involve computer experts in the design and operation of a distributed network. 

5.1.7 Can “Push-Button” Methods Adequately Address the Characteristics of 
Interest in the Analysis? 

As described in previous sections, some sensitivity analysis methods are built-in features 

of commonly used software tools such as @RiskTM and Crystal BallTM and are referred to here as 

“push-button” methods. Under pressure of deadlines and faced with constraints of an existing 

model, an analyst may prefer to use these methods rather than attempt to implement more refined 

techniques. However, a key question is whether such methods are adequate for the intended case 

study. 

Push-button methods typically include sample (Pearson) and rank (Spearman) correlation 

coefficients applied in the context of a one-dimensional probabilistic simulation. These methods 

are applicable to global sensitivity of linear or monotonic models, respectively. Sample 

correlations are not a robust method for dealing with thresholds or interactions and may not 

provide useful insights when applied to categorical inputs. Rank correlations are more robust 

than sample correlations with regard to thresholds but are not capable of providing insight 

regarding the existence of a threshold or the value of the threshold. If an analyst chooses to 

proceed with a push-button method whose theoretical basis differs from the key characteristic of 
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the model to which it is applied, then the accuracy and robustness of the results cannot be 

assured.   

In the long-run, it will be helpful to the food safety risk community if add-ins can be 

developed, either as shareware or commercially, that incorporate sensitivity analysis methods 

that are more compatible with the characteristics of the models.  

5.1.8 Is the Implementation of the Selected Sensitivity Analysis Method Post Hoc? 
A sensitivity analysis method is referred to as post hoc if it is applied to previously 

prepared results from probabilistic or deterministic simulation of a model but is not included as a 

component of the model itself. Therefore, the application of a post hoc sensitivity analysis 

method does not contribute to the process of model simulation, but it may impose requirements 

regarding the type and format of data that should be stored from the simulation. For example, 

regression analysis can be applied to a dataset of randomly generated values of the inputs and 

corresponding output values. In these cases, it is possible for the sensitivity analysis to be 

performed in a different software environment and by different personnel compared to the 

simulation modeling. Examples of methods that can be applied post hoc include sample and rank 

correlations, regression analysis, ANOVA, CART, and graphical techniques. 

In contrast, some methods require a different simulation strategy and therefore may have 

to be programmed differently or implemented manually or interactively. Some of this will 

depend upon how the model is structured. For instance, to use NRSA, an analyst may need to 

change the values of an input to extreme values while holding the other inputs at their point 

estimates. However, if a model has been structured so that the process of varying one input at a 

time can be automated, then it could be possible to generate a dataset necessary for NRSA 

automatically and to analyze the data set post hoc. 

Among statistical methods for sensitivity analysis, Sobol’s method, Fourier amplitude 

sensitivity test (FAST), and mutual information index (MII) typically are not post hoc. These 

methods require approaches to model simulation different than the conventional Monte Carlo 

methods and therefore must be incorporated into the simulation process. The application of these 

kinds of methods typically requires more advance planning and coding than do the post hoc 

methods. Although these are powerful methods that offer advantages over push-button methods, 

their widespread practical application is limited until software becomes available by which these 

methods can be easily incorporated into a risk model.  Alternatively, a risk model can be 
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incorporated into a sensitivity analysis framework such as SIMLAB in order to make use of 

some these methods. The recoding of a risk model into SIMLAB may involve trade-offs between 

SIMLAB compatibility and desirable features of the model (e.g., Patil and Frey, 2003). 

5.2 Decision Framework to Assist in Selecting Sensitivity Analysis Methods 
The goal of this section is to provide practical guidance regarding how to select a specific 

sensitivity analysis method depending upon the level of analysis to be done (i.e. screening versus 

refined) and the objective of the sensitivity analysis.   

This section introduces two decision trees summarizing the discussions presented in 

Section 5.1 for selecting an appropriate sensitivity analysis method. The decision frameworks are 

shown in Figures 5-1 and 5-2. The sensitivity analysis methods used in these frameworks are 

briefly explained in Section 5.3.  

Figure 5-1 shows that the first step in selecting an appropriate sensitivity analysis method 

is to decide the level of detail expected from sensitivity analysis. This figure presents two levels 

of sensitivity analysis:  (1) screening analysis; and (2) refined analysis. For screening analysis, 

the choice of sensitivity analysis method depends on the simulation approach of a model. If a 

deterministic approach is selected for screening analysis, particularly for local sensitivity 

analysis, then mathematical sensitivity analysis methods are recommended. For probabilistic 

approaches, push-button techniques including sample and rank correlation coefficients are listed 

as appropriate methods. In contrast, if a practitioner decides to perform a refined analysis, the 

choice of a method depends on the objective of sensitivity analysis. Three objectives are listed in 

the decision framework for refined analysis:  (1) model refinement; (2) identifying key sources 

of variability and uncertainty; and (3) identifying high exposure scenarios. For the latter 

objective, two classes of methods are introduced. Class A introduces methods that provide 

explicit measures for addressing high exposure scenarios. CART is the only method introduced 

in this class capable of addressing high exposure scenarios directly (Frey et. al., 2003). Methods 

introduced in Class B (including ANOVA, conditional sensitivity analysis, and scatter plots) 

require judgment of an analyst for interpretation of the results and identification of inputs 

responsible for high exposure scenarios. The decision framework for method selection 

considering the first two objectives is illustrated in Figure 5-2. 
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Figure 5-1.  Decision Framework for Selecting an Appropriate Sensitivity Analysis Method. 
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When the objective of sensitivity analysis is either model refinement or identifying key 

sources of variability and uncertainty, the choice of an appropriate method for sensitivity 

analysis depends on the characteristics of the model under study. Figure 5-2 considers four 

characteristics for a food safety model:  (1) non-linearity; (2) interaction; (3) categorical inputs; 

and (4) threshold and saturation points. 

  For non-linear models, the choice of a method first depends on whether or not the model 

is monotonic. The decision framework is further classified based upon the condition of whether a 

sensitivity analysis method is post hoc or integrated with software. Post hoc methods potentially 

can be integrated into the software framework, but need not be. 

For models with interactions, the selection of method depends on whether the 

implementation of the selected method is post hoc. Post hoc methods are classified as of Class C 

or D. Methods in Class C directly take into account interaction between model inputs, while the 

results of methods in Class D involve analyst judgment in order to address interaction between 

inputs. Methods appropriate for models with categorical inputs are classified into two categories 

based upon post hoc or integrated implementation. 

When the model under study has thresholds or saturation points, sensitivity analysis 

methods are classified based on whether they explicitly address such characteristic. Methods in 

class C including ANOVA and scatter plots (SP), which explicitly handle possible thresholds or 

saturation points in a model, while methods in Class D including CART and conditional 

sensitivity analysis, which require analyst judgment for quantifying available thresholds and 

saturation points. 

With the help of the decision frameworks provided here, it is possible for an analyst to 

select an appropriate sensitivity analysis method for an application. For example, for a food 

safety model with many inputs, an analyst may decide to narrow the scope of sensitivity analysis 

by selecting a subset of inputs that control much of the output variation. Figure 5-1 presents 

recommended methods for screening level analysis. If an analyst prefers a deterministic 

approach to screening analysis and wants to account for the extreme values of inputs, NRSA is a 

good method to choose. After selecting a subset of inputs, an analyst may want to continue 

sensitivity analysis by identifying key sources of variability and uncertainty. For example, if the 

model is non-linear and monotonic, post hoc techniques could be used. Figure 5-2 recommends 

five methods for sensitivity analysis. If the model has non-linear and monotonic characteristics  
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Figure 5-2.  Decision Framework for Selecting Appropriate Sensitivity Analysis Method for Identifying Key Sources of Variability 

and Uncertainty and Model refinement as Key Objectives of the Analysis. 
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and contains categorical inputs and interactions between inputs, ANOVA and sample regression 

analysis are appropriate methods. An analyst may decide to apply both methods and compare the 

results to obtain more robust insights with respect to identification of key sources of variability 

and uncertainty in the model. 

Table 5-1 summarizes key characteristics addressed by selected sensitivity analysis 

methods. These methods are evaluated by case studies performed by Frey et al (2003) and Patil 

and Frey (2003). Twelve characteristics listed in the table were evaluated based on those case 

study scenarios. 

Ideally, a sensitivity analysis method should respond to the effects of simultaneous 

variation in all inputs. The methods were evaluated to determine if they address the 

nonlinearities in response to an input. The identification of the presence or absence of threshold 

in the model response was evaluated. The ability of sensitivity analysis methods to identify and 

provide detailed insights regarding the existence of interaction among inputs is considered as 

critical for food safety process risk models. Some methods handle only quantitative inputs and 

other can address both quantitative and categorical inputs. 

Because high exposure cases are often of special interest, methods that can help identify 

and characterize conditions leading to high exposures may be preferable. The ability to address 

uncertainty about importance of inputs via two-dimensional analysis provides robustness and 

confidence in the control measure applied based upon insights from the analysis.  Some methods 

are easier to apply in practice than others. The ease of application may often constrain the 

feasibility of a method. A method is typically easier to implement when software tools for 

implementing the method already exist, especially if they have user-friendly interfaces. For 

example, Pearson correlation coefficients are easy to implement for users of Crystal BallTM. Of 

course, ease of implementation will be a function of software availability and programming skill 

level. 

The ability to produce quantitative rankings and the ability to evaluate the statistical 

significance of the rankings are useful to identify the relative importance of inputs and the 

confidence that should be imputed to the rankings. Some methods produce more useful measures 

by which to discriminate the importance among similarly ranked inputs. Finally, although each 

method has a different theoretical basis, the bottom line for practical use of the methods is  
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Table 5-1.  Summary of Key Characteristics of Selected Sensitivity Analysis Methods 

Sensitivity Analysis Method 
Correlation Regression Characteristic NRSA DSA Sample Rank Linear Rank ANOVA CART FAST Sobol RSM MII SP CSA 

Simultaneous 
Variation No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Non-linearity No No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Threshold No No No No No No Yes c Yes No No No No Yes Yes 
Interaction No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Qualitative vs. 
Quantitative inputs No No No No Yes No Yes Yes Yes Yes Yes No Yes Yes 

High Exposure No No No No No No Yes Yes No No No No Yes Yes 
Two-Dimensional 

Analysis No No Yes Yes Yes Yes Yes No Yes Yes Yes Yes No No 

Ease of 
Implementation No Yes Yes Yes Yes Yes No No No No No No Yes No 

Quantitative 
Ranking of Inputs Yes Yes Yes Yes Yes Yes Yes Noa Yes Yes Yes Yes No No 

Measure of 
Statistical 

Significance 
No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

Discrimination of 
Important Inputs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No b No 

Robust in Practice No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
a A method for ranking the input based upon the contribution of each input to reduction in total deviance was explored and is promising for future 
development 
b Can be based upon expert judgment 
c Depends on proper definition of factor levels 

NRSA: Nominal Sensitivity Analysis    DSA: Differential Sensitivity Analysis    ANOVA: Analysis of Variance     CART: Classification & Regression Tree 
CSA: Conditional Sensitivity Analysis  RSM: Response Surface Method              MII: Mutual Information Index     SP: Scatter Plots 
FAST: Fourier Amplitude Sensitivity Test    
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whether they produce reasonable results even if there are departures from key assumptions of the 

method. 

5.3 Available Methods for Sensitivity Analysis 
This section presents a brief discussion regarding available methods for sensitivity 

analysis which can be applied to food safety risk assessment models. Frey et al. (2003) and Patil 

and Frey (2003) demonstrated the application of selected sensitivity analysis methods to three 

food safety process risk models. These methods are briefly discussed in the following, and key 

advantages and disadvantages for each method are highlighted. These methods include nominal 

range sensitivity analysis (NRSA), differential sensitivity analysis (DSA), standardized 

regression analysis, rank regression, analysis of variance (ANOVA), sample and rank correlation 

coefficients, classification and regression tree (CART), scatter plots, and conditional sensitivity 

analysis (CSA). These techniques are classified into three categories, which are mathematical, 

statistical, and graphical sensitivity analysis methods. The three categories are explained in 

Sections 5.3.1 through 5.3.3, respectively. Four other statistical sensitivity analysis methods that 

are not commonly applied to food safety process risk models are discussed in Appendix A. These 

methods include FAST, response surface method (RSM), MII, and Sobol method. Appendix A 

provides a discussion regarding description, application, and interpretation of results for each of 

the four methods. 

An additional category of sensitivity analysis methods that may be of interest to 

practitioners is Bayesian methods.  Such techniques are complex and beyond the scope of this 

document. The interested reader is referred to Saltelli et al (2000) for more information.  

5.3.1 Mathematical Methods for Sensitivity Analysis 
Mathematical methods typically address the local or linear sensitivity of the output to 

perturbations or ranges of individually varied inputs. These methods do not address the variance 

in the output due to the variance in the inputs (Morgan and Henrion, 1990). These methods are 

helpful in screening the most important inputs (e.g., Brun et al., 1997). Among several 

mathematical methods discussed by Frey and Patil (2002), two mathematical methods were 

selected and applied to the case studies defined for selected food safety process risk models 

(Frey et al., 2003). The two methods are nominal range sensitivity analysis (NRSA) and 

differential sensitivity analysis (DSA). The two methods are briefly discussed in Sections 5.3.1.1 

and 5.3.1.2. 
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5.3.1.1 Nominal Range Sensitivity Analysis Method 

NRSA is known as local sensitivity analysis or threshold analysis (Cullen and Frey 1999; 

Critchfield and Willard, 1986). This method is applicable to deterministic models. A typical use 

of NRSA is as a screening analysis to identify the most important inputs in a model in a 

probabilistic framework (Cullen and Frey, 1999).  

NRSA is used to evaluate the effect on a model output of varying only one of the model 

inputs across its entire range of plausible values, while holding all other inputs at their nominal 

or base-case values (Cullen and Frey, 1999). The difference in the model output due to the 

change in the input is referred to as the sensitivity to the particular input (Morgan and Henrion, 

1990). The sensitivity analysis can be repeated for any number of individual model inputs. 

The results of NRSA are most valid when applied to a linear model.  In such cases, it 

would be possible to rank the relative importance of each input based upon the magnitude of the 

calculated sensitivity indices as long as the ranges assigned to each input are accurate. For 

models with interaction terms, the sensitivity of the output to a given input may depend on 

interactions with other inputs. NRSA cannot characterize such interactions. Thus, for models 

with interactions, NRSA may not provide a reliable rank ordering of key inputs.   

5.3.1.2 Differential Sensitivity Analysis Method 

DSA is a local sensitivity analysis method. It calculates the sensitivity of the output to 

small deviations in the point estimate of an input (Frey et al., 2003). DSA is performed with 

respect to some point in the domain of the model. A small perturbation with respect to the point 

value of each model input on an individual basis, such as a change of plus or minus one percent, 

can be used to evaluate the corresponding change in the model output.  

DSA is conceptually easy to apply. The computational time is proportional to the number 

of inputs. DSA is especially useful when a high degree of confidence is attributed to a point 

estimate and thus the variation in the output need only be tested for small variations around the 

point estimate. 

DSA presumes a linear model response and deals only with small perturbations. DSA 

may provide unreliable insights if the range of variation among inputs varies disproportionately 

to their local sensitivity or if the model response is not linear over the domain of interest. 
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5.3.2 Statistical Methods for Sensitivity Analysis Methods 
An advantage of statistical methods is that they can identify the effect of simultaneous 

interactions among multiple inputs. Distributions for model inputs can be propagated through a 

model using a variety of sampling techniques, such as Monte Carlo simulation, Latin Hypercube 

sampling, and other methods (Cullen and Frey, 1999).  

Among several statistical methods discussed by Frey and Patil (2002), five methods were 

selected and applied to two food safety process risk models (Frey et al., 2003). FAST, RSM, and 

MII were evaluated by Patil and Frey (2003).  The methods summarized here in Sections 5.3.2.1 

to 5.3.2.4 include:  (1) sample and rank correlation analysis; (2) sample and rank linear 

regression; (3) ANOVA; and (4) CART, respectively. As a caveat, the terminology used here for 

sample correlation analysis and sample regression analysis methods are not necessarily 

universally accepted usage. These terms are used as a convenient way to distinguish analyses 

based upon the sample values from analyses based upon the ranks of sample values. 

5.3.2.1 Sample and Rank Correlation Analysis 

The correlation coefficient method is typically classified into two types:  (1) sample or 

Pearson; and (2) rank or Spearman. The sample (Pearson) correlation analysis evaluates the 

strength of linear association between paired input and output values. The rank (Spearman) 

correlation analysis is based upon ranks of sample data, and is a measure of the strength of the 

monotonic relationship between two random variables. Thus, it can account for monotonic 

nonlinear relationships (Gibbons 1985, Siegel and Castellan 1988, and Kendall 1990).  

Both sample and rank correlation coefficients can range from -1 to +1. A value of zero 

represents a lack of correlation (Edwards, 1976). The statistical significance of sample and rank 

correlation coefficients can be evaluated based upon the use of an inverse Fisher transformation 

(Steel et. al., 1997). 

A disadvantage of correlation coefficient methods is that the existence of correlation does 

not imply causation. In addition, sample coefficients are inaccurate for nonlinear models, and 

rank coefficients are inaccurate for non-monotonic models. Neither sample nor rank coefficients 

can capture complex dependencies such as thresholds or directly deal with interactions among 

inputs. 
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5.3.2.2 Sample and Rank Regression Analysis 

Regression analysis can be employed as a probabilistic sensitivity analysis technique as 

demonstrated by Iman et al. (1985). Two types of regression analysis are considered here:  (1) 

sample regression analysis; and (2) rank regression analysis. Sample regression involves fitting a 

model to a dataset that includes input values and corresponding output values. Typically, the data 

for each input and output are standardized to remove the effects of scale. Rank regression is 

based upon the ranks for the inputs and the output (Neter et. al., 1996). Rank regression is 

especially useful when there is high amount of variance or noise in the data or if the model is 

non-linear but monotonic.  

For both sample and rank regression analysis, the effect of variation of inputs on the 

variation in output can be evaluated using regression coefficients, standard errors of regression 

coefficients, and the level of significance of the regression coefficients (Devore and Peck, 1996; 

Steel et al., 1997; Sen and Srivastava, 1990). For a linear model, a standardized regression 

coefficient provides a measure of the relative importance of each input (Devore and Peck, 1996; 

Neter et al., 1996; Iman et al., 1985). Similarly, rank regression coefficients, which are 

independent of scale, can be used to rank the inputs. Rank regression coefficients cannot be 

transformed back to obtain sensitivities in terms of the original ranges of an input.  

The 95 percentile confidence intervals for both sample and rank regression coefficients 

can be used to evaluate the degree of ambiguity of estimated ranks (Frey et al., 2003). The 

adequacy of the regression model can be assessed using the coefficient of multiple 

determination, R2, which is a measure of the amount of variance in the dependent variable 

explained by the model in the regression analysis (Draper and Smith, 1981). In rank regression 

analysis, a high R2 value indicates a monotonic relationship. 

The key potential drawbacks of regression analysis include:  (1) possible lack of 

robustness if key assumptions of regression are not met; (2) the need to assume a functional form 

for the relationship between an output and a selected input; and (3) potential ambiguities in 

interpretation. Because regression analysis is not model independent, a proper characterization of 

interactions and non-linearities requires a priori specification of an appropriate model.  

5.3.2.3 Analysis of Variance 

ANOVA can be applied to models that are linear, non-linear, monotonic, or non-

monotonic. ANOVA can address both qualitative and quantitative inputs (Steel et. al., 1997).   
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An input is referred to as a “factor” and specific ranges of values for each factor are 

considered as factor “levels” in ANOVA. In ANOVA a “treatment” is a specific combination of 

levels for different factors. An output is referred to as a “response variable”. A “contrast” is a 

linear combination of two or more factor level means. For example, a contrast can be specified to 

evaluate the mean growth of pathogen organisms when the storage temperature varies between 

high and low levels for a specific storage time. 

ANOVA tests the hypothesis that the means among two or more input levels are equal, 

under the assumption that the output for each of the input levels is normally distributed with the 

same variance (Neter et. al., 1996). ANOVA uses the F test to determine whether there exists a 

significant difference among treatment means or interactions between factors. The F values can 

be used to rank the factors based on their relative magnitude (Carlucci, 1999). The higher the F 

value for a factor is, the more sensitive the output is to the factor. Therefore, factors with higher 

F values are given higher rankings. 

In a probabilistic setting, the F value is estimated based upon a random sample of values 

for factors. Hence, the F value may be treated as a random variable. In order to discern whether 

the relative importance of different factors can be discriminated, uncertainty in estimated F 

values should be quantified. The method of bootstrap simulation can be used to generate 

sampling distributions of uncertainty for F values. Bootstrap simulation is a numerical method 

for estimating confidence intervals of statistics (Efron and Tibshirani, 1993). Quantifying the 

uncertainty in F values identifies the magnitude of difference in F values of two factors that 

indicates a clear difference in rankings (Frey et. al., 2003). 

5.3.2.4 Classification and Regression Tree (CART) 

CART is a method for partitioning the output values based on classification rules that 

depend on cut-off values of selected inputs. CART produces partitioned datasets with 

statistically significantly different mean values for an output. Hence, CART can provide insight 

into conditions that lead to high exposure or risk. CART is applicable to linear or non-linear 

models, including models with interactions and thresholds. 

CART uses dendritic terminology. In tree-based models, there are branches, branch splits 

or internal nodes, and leaf or terminal nodes (Washington et al., 1997). The components of a 

regression tree are shown in Figure 5-3. A node refers to a cut-off value. Nodes can be a root 
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Figure 5-3.  Schematic Diagram of a Classification and Regression Tree Illustrating Rout Node, 

Intermediate Nodes, and Terminal Leaves. 
 

node, intermediate nodes, or leaf nodes. A root node is the node at which the data is first split. 

Intermediate nodes are the nodes at which the data is successively split. Leaf nodes represent the 

penultimate data split. Branches are the conditions on the input variables that determine the 

classification rules. A set of conditions on the input variable from the root node leading to a root 

node is called a path or classification rule. 

Inputs selected in a regression tree have significant effects on the response variability. As 

an indication of priority among selected inputs in a regression tree, inputs can be prioritized 

based upon their position in the tree. Typically those inputs in the top nodes are more important 

than inputs in the lower nodes. Another indication of input importance is if it is selected 

repeatedly at multiple levels within the tree.  

An alternative sensitivity index is the total contribution of selected inputs to reduction in 

the total dataset deviance can be used. Hence, the higher the contribution of the input to the 

reduction of the total deviance, the higher is the rank (Frey et al., 2003). 

There are several advantages to CART.  CART is a nonparametric method that does not 

require assumptions of a particular distribution for the error term. CART is more resistant than 

other methods to the effects of outliers since splits usually occur at non-outlier values (Roberts et 

al., 1999).  Unless there is a collinearity problem, a regression tree selects only the most 
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important inputs and values of these inputs that result in the maximum reduction in deviance 

(Hallmark et al., 2002). Moreover, application of discrete, continuous, and also qualitative inputs 

is possible in CART. 

There are some disadvantages to CART.  Because CART is not a standard analysis 

technique, it is not included in many major statistical software packages (Levis, 2000). 

Moreover, there are alternative ways to prioritize inputs based on the results of the CART, which 

requires judgment on the part of the analyst. 

5.3.3 Graphical Methods for Sensitivity Analysis 
Graphical methods can be used as a screening method to identify the existence of 

complex dependencies between inputs and outputs in order to help select appropriate statistical 

sensitivity analysis methods (e.g., McCamly and Rudel, 1995). Graphical methods can be used as 

a complement to mathematical and statistical methods to better interpret sensitivity analysis 

results (e.g., Stiber et al., 1999; Critchfield and Willard, 1986). 

Two graphical methods -scatter plots and conditional sensitivity analysis- are briefly 

discussed in Sections 5.1.3.1 and 5.1.3.2, respectively. 

5.3.3.1 Scatter Plots 

Scatter plots are used for visual assessment of the influence of individual inputs on an 

output (Cook, 1994; Galvao et al., 2001). A scatter plot is often used to explore patterns between 

inputs and outputs of a probabilistic simulation.  Scatter plots are also often used as a first step in 

other analyses, such as regression analysis and response surface methods. The scatter plot 

displays paired sample values for an input and output and can enable an analyst to gain insight 

into the general trend between them. 

A key advantage of scatter plots is that they may reveal potentially complex 

dependencies, such as non-linearity, interactions, or thresholds. A potential disadvantage of 

scatter plots is that they may be tedious to generate if there are a large number of inputs and 

outputs, unless an applicable software package is used to automatically generate multiple scatter 

plots. In addition, the interpretation of scatter plots is often qualitative, and may rely on judgment 

of an analyst. 

5.3.3.2 Conditional Sensitivity Analysis Method 

Conditional sensitivity analysis is considered to be a graphical method since the results 

from the method are often presented in form of graphs. Conditional sensitivity analysis involves 
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evaluating the effect of changes in a subset of model inputs while other inputs are held at fixed 

values.  The motivation for using this technique is that the effect of variation in any input on the 

output in a non-linear model cannot be adequately captured by mathematical methods such as 

NRSA. 

Conditional sensitivity analysis can deal with multiple combinations of point values 

among the inputs. The response is calculated for point values of the selected input variable at 

arbitrarily spaced intervals or for randomly generated points. The purpose of conditional 

sensitivity analysis is to cover the full scope of the variation of the selected variables. A graph is 

plotted from these data points showing the response curve for a specific variable conditional on 

the fixed values of remaining variables (e.g., minimum, mean, and maximum values). The 

process is repeated for other values of the other input variables.  

Non-linearity, saturation points and thresholds can be identified based upon conditional 

sensitivity analysis. These insights are under assumptions that other variables are fixed at 

particular values. The drawback for the method is that the response curve may provide 

insufficient information to rank inputs. For example, if two inputs have non-linear response, it 

may be difficult to tell which one has a higher degree of variance. 

5.4 Summary 
The selection of sensitivity analysis methods depends on factors such as objective of the 

analysis, characteristics of the model under study, amount of detail expected from sensitivity 

analysis, characteristics of the software used for sensitivity analysis, and available computing 

resources. This chapter provided a series of key questions and brief discussions regarding the 

insight that an analyst may gain by addressing those questions. A practitioner should provide 

answers to those questions before choosing a method. Based on the key questions and 

discussions provided in this chapter, decision frameworks summarizing the discussions regarding 

selection of appropriate sensitivity analysis methods were introduced. Finally, this chapter gave a 

brief review of available sensitivity analysis methods that can be used in the food safety process 

risk models. Additional methods are summarized in Appendix A. 

 The next chapter introduces the procedures for implementing the selected sensitivity 

analysis methods. 
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6 PROCEDURE FOR APPLICATION OF SENSITIVITY ANALYSIS METHODS 
The objective of this chapter is to provide procedures for application of selected 

sensitivity analysis methods to food safety risk assessment models. An assumption here is that 

the dataset required for sensitivity analysis has been generated or that the sensitivity analysis 

method is available as an integral part of the model. Hence, the application of the selected 

sensitivity analysis method can be either post hoc or an integral part of the analysis, as 

appropriate to the method.   

For each sensitivity analysis method, the procedure for application is provided, typically 

in the form of a flow diagram. Furthermore, a discussion is presented for each method 

highlighting key considerations regarding application of the method.  

This chapter describes procedures for application of the following sensitivity analysis 

methods:  (1) NRSA; (2) DSA; (3) sample and rank correlation; (4) sample and rank regression; 

(5) ANOVA; (6) CART; (7) scatter plots; and (8) conditional sensitivity analysis. Appendix A 

provides a brief description of other sensitivity analysis methods that are less commonly used but 

that are potentially useful for application to food safety risk assessment models. These methods 

include FAST, Sobol’s method, MII, and RSM. 

The procedures for most of the methods included here are based upon case studies by 

Frey et al. (2003) for the E. coli and Listeria food safety risk assessment models. As described in 

previous chapters, the methods are grouped into three categories:  mathematical, statistical, and 

graphical methods. The procedures for application of these methods are presented in Sections 

6.1, 6.2, and 6.3, respectively. Section 6.4 provides a summary for the chapter. 

The procedures introduced in this chapter for implementing sensitivity analysis methods 

are independent of any specific statistical software package. The only exception is that the 

procedure presented for CART in Section 6.2.4 is based on the S-PLUSTM software package. 

6.1 Procedure for Application of Mathematical Sensitivity Analysis Methods 

In this section, the procedures for application of DSA and NRSA are presented. The 

procedures are similar for both methods.  These two methods are described in Section 5.3.1 and 

have been evaluated by Frey et al (2003).  

Figure 6-1 is a schematic diagram of the procedure for application of NRSA and DSA. 

Because DSA and NRSA are local sensitivity analysis methods, the first step is to identify the  
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Figure 6-1.  Schematic Diagram for Procedure of Application of NRSA and DSA. 
 

point values for all model inputs that will be the basis of the analysis. The selection of a nominal 

point is dependent upon the assessment objectives. A nominal point could be intended to 

represent the mean, median, minimum, maximum, or a particular percentile of a distribution for a 

given input. NRSA differs from DSA primarily in that a wider range of variation is evaluated for 

each input when performing the sensitivity analysis. Thus, the nominal point chosen for NRSA is 

typically a central value such as a median or mean. However, this is not a requirement of the 

method, but a convention. 
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In DSA and NRSA, the ranges for the inputs are treated as perturbations or intervals 

rather than distributions. Thus, if these methods are applied to a model for which probability 

distributions have been assigned to inputs, the choice of a nominal point can be based upon the 

distributions. For NRSA, the choice of ranges of variation for each input might typically be 

based upon a 95 percent probability range. Other ranges, such as the difference between the 

maximum and minimum values may be used. However, this is not a requirement but a matter of 

preference by the analyst. For those inputs that incorporate both variability and uncertainty in a 

two-dimensional probabilistic framework, the selection of minimum and maximum values could 

be based upon collapsing all of the randomly simulated values in the two-dimensions into a 

single dimension, and then choosing endpoints based upon the desired (based upon the analyst’s 

preference) proportion of simulated values that should be enclosed by the interval.  

For DSA, once the nominal values are obtained for each input, a choice should be made 

regarding the perturbations that should be made to each input. A strict application of DSA would 

involve calculating the first partial derivative for each input. A practical alternative is to specify 

some small percentage variation for each input, such as one percent change, as the basis for 

estimating the corresponding change in the model output. An analyst could vary the percentage 

(e.g., for 1% to 5%) to test the accuracy of the approximation and sensitivity of the results to the 

perturbation level. 

For NRSA, each input is varied one at a time over its specified range. The range of 

variation of the inputs for NRSA is typically larger than that for DSA. For both methods, the 

corresponding range of variation in the output is estimated. Typically, the range of variation in 

the output is divided by the nominal value of the output to arrive at a normalized measure of 

sensitivity with regard to each input.   

6.2 Procedure for Application of Statistical Sensitivity Analysis Methods 
In this section, the procedure for application of statistical sensitivity analysis methods is 

presented. These methods include:  (1) regression analysis; (2) correlation analysis; (3) ANOVA; 

(4) CART. The procedures for application of these methods are described in Sections 6.2.1 to 

6.2.4, respectively. Each of these methods has been briefly described in Section 5.3.2. 

6.2.1 Regression Analysis 
 In this section the procedure for application of regression analysis is introduced. Two 

types of regression analysis are considered here: (1) sample regression analysis; and (2) rank 
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regression analysis. Because the procedures for the two methods are similar, a single flow 

diagram shown in Figure 6-2 is provided. This figure provides procedures for a practitioner to 

apply either sample or rank regression analysis methods. 

The key assumption for application of regression analysis is that a dataset, including 

values from model inputs and corresponding output values is available. For the case of rank 

regression, both output and input values are rank ordered before the regression analysis is 

implemented. For a one-dimensional analysis incorporating only variability or uncertainty, or for 

a scenario that variability and uncertainty are co-mingled into a single dimension, a single 

dataset should be constructed for regression analysis. In contrast, when an analyst wants to fully 

distinguish between variability and uncertainty multiple datasets should be constructed in a two-

dimensional probabilistic approach. Specifically, the multiple datasets could represent variability 

for different uncertainty realizations or uncertainty for different variability iterations. Alternative 

probabilistic approaches (i.e., one-dimensional versus two-dimensional) are discussed in Section 

4.4.  

 In Figure 6-2, m refers to the number of datasets constructed in a probabilistic 

simulation. For a one-dimensional analysis m is equal to one, while m is the number of 

uncertainty realizations or variability iterations for a two-dimensional analysis.  

As shown in Figure 6-2, the first step is to choose between sample and rank regression 

analysis. If rank regression is selected, each dataset should first be rank-ordered. Some statistical 

software packages can rank the dataset automatically (e.g., SAS©); otherwise, the analyst may 

have to assign ranks by performing the calculations with the assistance of a spreadsheet or other 

software. If sample regression analysis is selected, the dataset should be normalized. A dataset is 

typically normalized based upon the mean and standard deviation of the data. There are 

alternative normalization techniques, and the one used by Frey et al. (2003) is documented by 

Neter et al. (1996). 

The next step is to select a functional form for the regression model. A practitioner may 

choose a linear model as a starting point and change the functional form of the regression model 

later following the procedure provided below. There are also standardized procedures such as 

forward, backward, and stepwise selection of input variables in a regression model that can be 

used (Neter et al., 1996). The regression model also may include interaction terms and higher 

order terms  
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Figure 6-2.  Schematic Diagram for Procedure of Application of Regression Analysis. 
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initially (e.g., quadratic, and cubic terms) based upon judgment and characteristics of the model 

that are already known. 

After determining the functional form of a regression model, the next step is to apply 

regression analysis to estimate the coefficient of determination, R2. The R2 value indicates the 

percent of variation in the model response that is explained by the inputs considered in a 

regression model. R2 can be used as a diagnostic to evaluate the goodness-of-fit for a fitted 

regression model. A high R2 value implies that the assumption for the functional relation 

between the output and inputs is substantially valid. In contrast, low R2 values indicate that the 

underlying assumption may not be valid and the fitted model is not good enough. Interactions 

and higher order terms, such as quadratic, and cubic terms may be necessary to improve the 

goodness-of-fit. An alternative approach for improving the goodness-of-fit is the application of a 

linearizing transformation of the dataset (Neter et al., 1996). The drawback of the transformation 

technique is that the results of the analysis will be based on the transformed dataset and not the 

original untransformed dataset.   

For one-dimensional cases, it is practical to modify the regression model form until a 

satisfactory value for R2 is obtained. However, for two-dimensional probabilistic frameworks, 

the same functional form of the regression model should be applied since it is not practical to 

develop separate regression models for each realization of uncertainty or variability. 

Alternatively, an analyst can apply the functional form selection process to one of the m datasets 

selected in random, and evaluate the distribution of R2 obtained from applying regression 

analysis with the selected functional form to the other m-1datasets. 

 A regression coefficient is estimated for each input considered in the regression model. 

A test statistic can be calculated to evaluate whether each estimated coefficient is statistically 

significant. Details of calculation of the regression coefficients and test statistics are given in 

Frey et al. (2003). Estimated regression coefficients for standardized inputs can be reported as 

sensitivity indices for rank-ordering the importance of the inputs. Specifically, the inputs can be 

prioritized based upon the relative magnitude of statistically significant coefficients. As an 

alternative approach, the amount of explained variability corresponding to an input effect, 

including simple and interaction effects can be used as a sensitivity index (Rose et al., 1991). 
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6.2.2 Correlation Analysis 
This section introduces a procedure for application of correlation coefficients for 

sensitivity analysis. Two types of correlation analysis are considered here:  (1) sample (Pearson) 

correlation coefficients; and (2) rank (Spearman) correlation coefficients. Since the procedures 

for both methods are similar, a single flowchart presenting the procedures is provided in Figure 

6-3. A key assumption for application of correlation analysis is that a dataset including paired 

output and input values is available. For rank correlation analysis, the inputs and outputs are 

rank-ordered before applying the method. Some statistical software packages can rank the 

dataset automatically (e.g., SAS©); otherwise, the analyst may have to assign ranks by 

performing the calculations with the assistance of a spreadsheet or other software packages. 

The correlation analysis may be applied to a one-dimensional or two-dimensional 

probabilistic framework. Thus, a practitioner may have a single dataset obtained from a one-

dimensional simulation or multiple datasets representing either variability for multiple 

realizations of uncertainty, or uncertainty for multiple realizations of variability. For each 

dataset, the correlation coefficients and corresponding P value can be calculated. The calculated 

statistic can be used to test the hypothesis that the true (population) correlation coefficient is 

different from zero, indicating whether the coefficient is statistically significant. For one-

dimensional frameworks, a single correlation coefficient and corresponding P value would be 

calculated for each input. For two-dimensional frameworks multiple correlation coefficients and 

corresponding statistics would be calculated for each input for each realization of the model. 

6.2.3 Analysis of Variance 
This section introduces a procedure for application of ANOVA for sensitivity analysis. 

Figure 6-4 presents a procedure for using ANOVA as a sensitivity analysis method.  

As shown in Figure 6-4, the first step for application of ANOVA is to identify whether 

any of the factors are continuous and to determine the levels for factors if continuous factors 

exist. If an input is categorical, the nominal values are treated as factor levels. For continuous 

inputs, generated values for each input in a probabilistic simulation can be partitioned into 

defined intervals to create factor levels (Kleijnen et al., 1999). Frey et al. (2003) demonstrated 

three approaches for defining factor levels for continuous inputs:  (1) equal intervals; (2) equal 

percentiles; and (3) visual inspection of the cumulative distribution function (CDF) for each  
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Figure 6-3.  Schematic Diagram for Procedure of Application of Sample and Rank Correlation 
Coefficient Methods. 
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Figure 6-4.  Schematic Diagram for Procedure of Application of ANOVA. 
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Figure 6-5.  Definition of Levels for Lag Period Based Upon Equal Percentiles. 
 

input. 

For the equal intervals approach, each input domain is classified into equal ranges. For 

the equal percentiles, the CDF of the generated values for an input can be used for defining 

factor levels at equal percentiles. A practitioner can use visual inspection of the CDF for 

generated values of an input in order to define boundaries for each factor level corresponding to 

percentiles of the CDF that indicate a substantial change in the shape (e.g., inflection point). 

These methods are further explained with some examples. 

Figure 6-5 shows an example in which factor levels are defined for lag period at home, which is 

a continuous input, using equal percentiles. In this figure, five intervals are arbitrarily defined 

using equal percentiles corresponding to 20th, 40th, 60th, and 80th percentiles of the CDF. The 

original number of samples generated from probability distribution of lag period was 10,000. 

Hence, approximately 2,000 samples lie within each factor level. The number of samples 

simulated affects the statistical significance tests. Criteria for minimum required number of 

samples in each level are discussed by Giesbrecht and Gumpertz (1996). The number of factor 

levels also impacts the results of ANOVA and computational effort. 

Figure 6-6 shows an example in which factor levels are defined through visualization of a 

CDF. Generally, defining factor levels through visualization of a CDF is a matter of practitioner 

judgment rather than a specific procedure. For example, a practitioner may distinguish three 

different intervals in the lag period CDF, as the CDF shows a change in the slope at the  
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Figure 6-6.  Definition of Levels for Lag Period Based Upon Visual Inspection of CDF. 
 

boundaries of these intervals. These intervals correspond to the lower tail, middle range, and 

upper tail of the lag period variation domain. The levels may contain unequal sample size. Here, 

the middle level contains approximately 70 percent of generated values. 

A key criterion for selecting number of levels for each input is with respect to the number 

of data points that lie within factor levels. The number of data points in each factor level directly 

affects the power of statistical tests for the analysis. Hence, there is always a trade-off between 

selecting higher number of factor levels and getting statistically significant results from 

ANOVA. However, there is also a trade-off between the desired number of iterations (e.g., in a 

Monte Carlo simulation), that are used to populate factor levels, and the computational time.   

The methods suggested here for defining factor levels have some advantages and 

disadvantages. Defining levels with equal intervals helps identify possible thresholds in the 

model response using contrasts. With an increase in the number of levels for each factor and the 

use of similar intervals, thresholds can be estimated with more accuracy. A trade-off of this 

approach is the decrease in the number of data points within each level as the number of levels 

increases leading to lack of statistical power for estimated statistics. Using equal percentiles for 

definition of levels guarantees an equal number of data points in each level, thereby leading to a 

balanced experiment, which simplifies statistical analyses. Using visualization of the CDF for 

defining factor levels facilitates the evaluation of the model response in the lower or upper tail of 
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an input distribution. For example, ANOVA can compare the mean output values for lower and 

upper tail values of an input, if lower tail and upper tail are defined as separate factor levels. 

After determining the factor levels, the next step is to choose the terms to include in the 

ANOVA model. The terms may include main effects of factors and interaction effects between 

factors. Based on the objectives of the analysis, a practitioner might choose only main effects in 

the ANOVA model for simplicity. Similar to regression analysis, the coefficient of 

determination, R2, provides insight regarding whether the selected effects adequately capture 

variability in the output. A practitioner can use the R2 value to determine whether additional 

terms are needed in the ANOVA model. A high R2 value implies that a substantial amount of 

output variation is captured by the terms included in the ANOVA model. A high value of R2 

implies that results are not compromised by inappropriate definition of the levels for a factor. If 

the R2 value is not satisfactory based upon the analyst’s judgment, incorporation of more 

interaction terms between factors, adding higher-order interaction terms (e.g., three-way 

interactions), redefining factor levels, or transformation of the response variable may improve 

the R2 value.  

For two-dimensional probabilistic frameworks, it is preferable to use the same terms, 

including main effects of factors and interactions between factors, in each realization in order to 

facilitate the comparison of results among the realizations. Alternatively, an analyst can define 

factor levels and specify the effects to be investigated based upon analysis of one dataset selected 

at random (e.g., representing one realization of uncertainty), and use these same factor levels and 

effects to investigate all other random samples (e.g., representing all other realizations of 

uncertainty) to arrive at distributions of R2 values. The evaluation of the R2 distribution can 

reveal whether selected factor levels are appropriate, and whether terms included in the ANOVA 

model sufficiently explain the output variability. 

After the analyst is satisfied with the model, the next step is to apply ANOVA to perform 

sensitivity analysis. The results from ANOVA include F values for each effect and the R2 value. 

The details for the calculations of these values in ANOVA are given in Frey et al. (2003). In 

ANOVA, F values are used as sensitivity indices for ranking factors (Carlucci, 1999). As an 

alternative approach, the amount of explained variability corresponding to a factor effect, 

including simple and interaction effects, can be used as a sensitivity index (Rose et al., 1991). 
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For probabilistic inputs, the F value is estimated based upon random samples from the input 

distributions. Hence, the F value is itself a random variable.  

When an analyst is satisfied with the ANOVA model, additional insights regarding the 

sensitivity of the output to individual variation of each factor or simultaneous variation of factors 

can be achieved using contrasts. A contrast should be formed for factors or interaction effects 

that have a statistically significant effect. For example, a contrast can be built to evaluate the 

difference in mean pathogen growth when the storage temperature varies between high and low 

levels for a specific storage time. 

A key question in using F values as sensitivity indices is regarding how much the F 

values of two factors must differ in order to discriminate their relative importance. Each 

simulation of a model may include multiple variability iterations and/or uncertainty realizations. 

Each simulation of a model obtains an estimated set of F values for factors. Therefore, 

simulation modeling can be used to estimate the sampling distribution of the F statistic. When 

compared with uncertainty in the F values for other inputs, it is possible to infer whether the 

rankings of the sensitivity of each factor would be unambiguous. 

In some applications, it maybe impractical to run the model for hundreds of simulations 

as each simulation may take a few hours. Alternatively, bootstrap simulation can be used to 

generate sampling distributions of uncertainty for F values. Bootstrap simulation is a numerical 

method for estimating sampling distributions of statistics (Efron and Tibshirani, 1993). There are 

several variants of bootstrap simulation such as empirical bootstrap and parametric bootstrap. 

The empirical bootstrap method is suggested for using in estimating uncertainty of an F value. In 

the empirical bootstrap approach, an alternative randomized version of the original Monte Carlo 

simulation is obtained by sampling with replacement from the original set of random values.  

This procedure is computationally faster than generating new random samples from the original 

specified probability distributions of the model inputs (Efron and Tabshirani, 1993; Frey and 

Rhodes, 1998). ANOVA is applied to each of the bootstrap samples to produce a distribution of 

F values. A case study example is provided by Frey et al (2003).   

As the final step of using ANOVA, estimated F values for the main effects of factors and 

interaction effects should be reported. Furthermore, the R2 value or a distribution of R2 values 

should be reported as a diagnostic check. If contrasts are used for further analysis of output 

variation, results of such analyses should also be included in the final report.  
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6.2.4 CART 
This section introduces a procedure for application of CART for sensitivity analysis. 

CART is not included in available commercial statistical software packages; hence, the 

procedure presented here is based upon the S-PLUSTM statistical software package that was used 

by Frey et al. (2003). A key point in the procedure is that it relies heavily on visual recognition 

of patterns in the regression tree. As a result, CART is typically favored for application to one-

dimensional probabilistic simulations. Application of CART for two-dimensional probabilistic 

simulations may be impracticable, if visualization of the regression tree is relied on to assess 

importance. However, the automation of CART can be facilitated by defining an alternative 

quantitative sensitivity index (e.g., some of deviance reduction associated with each input) as 

described later. Figure 6-7 presents a schematic diagram of the procedure for using CART as a 

sensitivity analysis method.  

Assuming that a dataset is available for sensitivity analysis, the first step for a practitioner 

in applying CART is to define the characteristics of inputs in the dataset. As an example, an 

input in the dataset may represent a continuous variable, categorical variable, or a logical 

variable that can only hold true or false values. At each node in a regression tree, CART selects 

an input and a value within the range of variation of the input to split the dataset into stratified 

data subsets. The selected split-point of an input forms a condition on the input that determines 

which data values are assigned to each stratum. The appropriate specification of the 

characteristics of each input ensures that the selected split-points at a given node are plausible. 

For example, if input A is a discrete input with integer values of 1, 2, and 3, then a split-point 

could be anyone of these values but not 1.3. 

As shown in Figure 6-7, the next step is to specify the criteria that govern how many 

times the data will be stratified. These criteria include:  (1) minimum number of available 

observations before the splitting the dataset; (2) minimum sample size in a terminal node; and (3) 

minimum node deviance. For example, specifying a value of 100 for the first option means that 

CART requires at least 100 data points before a stratum of data at an internal node can be further 

split. The second option specifies the minimum sample size in a terminal node, which follows 

the final split in a regression tree. For example, a value of 50 for the minimum terminal node  
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Figure 6-7.  Schematic Diagram for Procedure of Application of CART. 
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sample size means that there must be at least 50 data points in each terminal node. The third 

option specifies a criterion with respect to the deviance of the stratified datasets. The deviance in 

each node represents the deviance of all data contained in the strata at a terminal or intermediate 

node. A minimum deviance of 0.1 for a terminal node indicates that the data would be split into 

stratified datasets such that terminal dataset has deviance of 0.1. The lower the minimum 

deviance, the further the dataset would be stratified. 

The next step is to specify the branch size of the regression tree. The branch size 

represents the length of the vertical line that connects each node to its predecessor or successor 

node. This option determines the way that a regression tree is visualized. S-PLUSTM provides 

two options regarding the branch size of a tree:  (1) proportional to the reduction in deviance; 

and (2) uniformly sized. When the former option is used, the length of the vertical lines in a 

regression tree between nodes will be displayed proportional to the reduction in deviance 

between two consecutive splits. This option should be selected for cases in which a practitioner 

not only wants to consider the order in which inputs are selected in a tree as a measure of 

sensitivity, but also wants to determine the contribution of each input to reduction of the total 

deviance over the entire tree. For example, if an input is selected at a node followed by a long 

vertical line before the next split, it indicates that splitting the dataset based on the selected input 

at the specified cut points substantially reduces the total deviance in the dataset. Further 

discussion regarding this issue is provided in Section 7.3.4. Regression trees displayed using 

branches proportional to the deviance require a large graphical display area when a large number 

of inputs are selected in the tree. In these cases, using branches of uniform length facilitates 

graphical display and visual inspection of the regression tree. If this option is selected for 

drawing a tree, a practitioner can only use the information regarding selected inputs and the order 

of selection in a tree to infer insights regarding sensitivity. 

The last step in the procedure of application of CART is the summarization of the results. 

A practitioner can summarize the results of CART based on either visualization of the regression 

tree or by summarizing the contribution of each input to the reduction in the total deviance. If a 

practitioner relies on visualization, reported information include the order in which inputs are 

selected in a tree, the number of times that each input is selected in a tree, and classification rules 

provided in each node of a tree. A classification rule is a set of conditions that lead to a specific  
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Figure 6-8.  Schematic Diagram for Procedure of Application of Scatter Plots. 
 

terminal node (i.e., the node with the highest mean exposure). S-PLUSTM provides an output file 

regarding the amount of deviance in the data at each node of a regression tree. A practitioner can 

use this information to estimate an alternative sensitivity index based upon the amount of 

contribution of each input to the reduction of the total deviance. 

6.3 Procedure for Application of Graphical Sensitivity Analysis Methods 

In this section, the procedure for application of graphical sensitivity analysis methods is 

presented. Two methods are discussed in this section including:  (1) scatter plots; and (2) 

conditional sensitivity analysis. The procedures for application of the two methods are described 

in Sections 6.3.1 and 6.3.2, respectively. Each of the two methods has been briefly described in 

Section 5.3.3.  

6.3.1 Procedure for Application of Scatter Plots 
This section presents a procedure for application of scatter plots for sensitivity analysis. 

A key assumption for application of scatter plots is that a dataset including estimated output 
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values and sampled values from probability distributions of inputs is available. Figure 6-8 

presents an application procedure for scatter plots.  

Scatter plots can be presented in two or three dimensions, depicting variation of the 

output versus variation of one or two inputs. In order to prepare a scatter plot, as shown in Figure 

6-8, the first step is to select the inputs of interest. A practitioner may select model inputs for 

based upon the results from other sensitivity analysis methods.  

The next step in drawing the scatter plot is to specify the number of data points to display 

in the scatter plot. The number of data points displayed in a scatter plot should be dense enough 

to observe the appearance of any pattern, but not so dense that the variability within the scatter is 

difficult to observe (Vose, 2000). A practitioner may need to consider a transformation on output 

and input values before application of scatter plots. For example, a log transformation may be 

used to better reveal specific functional relationships between output and input values. The scale 

of the axes can influence the appearance of scatter plots to facilitate the interpretation and 

identification of possible patterns and relationships between the output and the selected inputs.  

At the final step, a practitioner should graph output values versus the input values. 

Available software packages support the analysis of multivariate cases using matrix scatter plots 

(Saltelli, 2000). A matrix scatter plot is a rectangular array of scatter plots. Each element of the 

matrix is an individual scatter plot. Using this technique, hundreds of plots can be generated 

quickly and easily with an appropriate software. 

6.3.2 Procedure for Application of Conditional Sensitivity Analysis 
This section presents a procedure for application of conditional sensitivity analysis. As 

shown in Figure 6-9, the first step in the application procedure of conditional sensitivity analysis 

is to identify nominal values for the model inputs. Nominal values for the model inputs can be 

identified using the approach explained in Section 6.1 for NRSA. 

The next step in the application procedure is to select an input for conditional sensitivity 

analysis. A practitioner may select model inputs based on the results from other sensitivity 

analysis methods.  

After determining the input of interest, the next step is to perform a probabilistic 

simulation of the model in which samples are drawn from the probability distribution of the 

selected input, while other model inputs are fixed at their nominal values (e.g., minimum, mean, 

or maximum). 
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Figure 6-9.  Schematic Diagram for Procedure of Application of Conditional Sensitivity 
Analysis. 

At the next step, a practitioner should prepare a scatter or line plot that shows the variation of the 

output values versus generated values of the selected input in each of several cases, such as when 

other inputs are fixed at minimum, mean (or median), and maximum values. 

6.4 Summary 
This chapter introduced the application procedures for selected sensitivity analysis 

methods that were briefly described in Chapter 5. Each application procedure was presented in 

the form of a flowchart showing the key steps that a practitioner should follow when applying a 

sensitivity analysis method.  

The presentation and interpretation of sensitivity analysis results are another important 

issue in sensitivity analysis. The next chapter describes how to present and interpret sensitivity 

analysis results for each selected method. 
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7 PRESENTATION AND INTERPRETATION OF RESULTS 
Presentation and interpretation of the sensitivity analysis results are of high importance. 

An analyst should have good understanding of the theory underlying specific sensitivity analysis 

method in order to correctly interpret results. Good presentation of the results facilitates the 

interpretation step. A misinterpretation of the results may lead to ineffective decisions regarding 

risk management and control strategies. This chapter describes effective presentation and 

interpretation of results for each of the selected methods discussed in Chapter 6.   

Section 7.1 discusses general principles for presenting and interpreting the sensitivity 

analysis results. Sections 7.2 through 7.4 discuss the interpretation and presentation of results 

based upon mathematical, statistical, and graphical sensitivity analysis methods, respectively. 

Each section provides examples from case scenarios presented by Frey et al (2003). Section 7.5 

is a summary for this chapter.  

7.1 General Principles in Presentation and Interpretation of Sensitivity Analysis Results 
The general principles for presentation and interpretation of sensitivity analysis results 

include:  (1) clearly identify the target audience, and tailor the presentation to that audience; (2) 

explicitly convey the objectives of the analysis; (3) describe the scenario so that the scope of the 

analysis is clear; (4) describe the model at an appropriate level of detail for the target audience; 

(5) describe the rationale for the selected sensitivity analysis methods; and (6) clearly present the 

results of the sensitivity analysis. Each of these general principles is briefly described in Sections 

7.1.1 to 7.1.6, respectively.  

7.1.1 Identify the Target Audience 
The purpose of communicating the sensitivity analysis results to an audience is to ensure 

the proper and effective exchange of information and insights from the results of the analysis. 

The audience may include analysts, stakeholders, media, decision-makers, or some combination 

of these. The audience may include representatives of government agencies, private companies, 

non-profit organizations, academic institutions, or other organizations. Furthermore, the audience 

may include persons with a range of academic backgrounds and experience, including (for 

example) liberal arts, food science, microbiology, toxicology, sociology, economics, medicine, 

engineering, law, or others. Thus, there may be substantial variability in the background and 

perspectives among members of the intended audience.   
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The methods for presenting and interpreting results may be different for different 

audiences. Therefore, a basic principle for communicating sensitivity analysis results is that the 

audience should be clearly identified. For example, when presenting the sensitivity results to an 

audience with a limited scientific background, extensive information regarding the technical 

details of the methodology is probably not helpful or could be counter-productive. The time 

available with such an audience could be better spent conveying the objectives, scenarios, 

general characteristics of the model, general approach used for sensitivity analysis, and 

presentation of the sensitivity analysis results in plain language with the use of some supporting 

graphics. Qualitative information may be more useful than quantitative information for such 

audiences. If the objective is to provide insight into priorities for CCP and the selection of 

critical control limits, then the presentation could convey the relative importance of each possible 

CCP in either qualitative terms or using a simplified sensitivity index.   

If the target audience is primarily other analysts, or persons with a strong technical 

background, then it is necessary to provide the most important technical details regarding the 

methods used, the models used, input assumptions, and interpretation of results, in addition to the 

basic qualitative information regarding objectives and scenarios. Moreover, the results of the 

analysis must be reproducible. However, the use of jargon should be with care. Even for a 

technical audience, it is likely that not everyone is familiar with the same jargon because each 

person may have a different technical background. Thus, any terminology unique to sensitivity 

analysis should either be avoided or will need to be clearly defined for the benefit of the 

audience. 

7.1.2 Convey the Objectives of the Analysis 
An analyst should ensure that the primary objectives of the sensitivity analysis are clearly 

communicated to the target audience. As a rhetorical device, it is often helpful to state the 

objectives in the form of key questions that will be answered by the results of an analysis. For 

example, one can state that the objective of the analysis is to answer one or more of the 

following key questions:   

• Which controllable model inputs contribute the most to variation in exposure and 

risk? 

• Which of the potential critical control points are the highest priorities in terms of 

avoiding the highest exposures?   
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• What critical limits are likely to achieve the specified risk management 

objectives? 

• What are the key sources of uncertainty in the analysis? 

• Which uncertainties are the highest priorities for reduction based upon additional 

data analysis or research? 

• How well or appropriately does the model respond to changes in input values? 

7.1.3 Describe the Scenario of the Analysis 
As described in Chapter 4, a scenario is a set of assumptions about the nature of the 

problem to be analyzed. It is necessary to clearly describe the scenario of the sensitivity analysis 

when presenting the results to audience since the results may be specific to the particular 

assumptions made in a scenario. Clear introduction to the scenario will help the audience 

understand the implications of the results. For example, audience may determine whether the 

insights from the sensitivity analysis results can be generalized. 

   The presentation of a scenario should include the following components: (1) pathogens 

and populations analyzed; (2) pathways of interest identified and selected food categories; (3) 

spatial and temporal dimensions of the model simulation; and (4) probabilistic features. The 

details for the components are given in Chapter 4. 

7.1.4 Describe the Model Used for the Analysis 
Introductions to a model used for the sensitivity analysis are informative for the audience. 

Summarization of the key characteristics of a model can help the audience better understand the 

reasons for application of the selected sensitivity analysis methods and evaluate the credibility of 

the sensitivity analysis results. The presentation of the model used for sensitivity analysis should 

include:  (1) model characteristics; and (2) model inputs and the output of interest. Model 

characteristics include linearity, thresholds, interactions, and information regarding the 

probabilistic framework of the model. Probability distributions of the inputs should be provided 

including specification of whether the input represents variability, uncertainty, or both. Model 

outputs should be clearly presented to the audience. 

7.1.5 Describe the Rationale for the Selection of Sensitivity Analysis Methods 
Selection of particular sensitivity analysis methods depends on model characteristics, 

available resources, or objectives of a sensitivity analysis. Presentation of the rationale for 

selection of the sensitivity analysis method(s) will help to establish the credibility, relevance, and 
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validity of the analysis. For example, when a model is non-linear and non-monotonic, the analyst 

can justify why ANOVA was selected while other sensitivity analysis methods such as 

correlation analysis were not used. Chapter 5 provides further discussion regarding the 

considerations in sensitivity analysis method selection. 

7.1.6 Presenting Sensitivity Analysis Results  
Sensitivity analysis results can be expressed in a variety of forms, such as using point 

estimates or average ranks of inputs, probability distributions of ranks under uncertainty, and 

graphs. When several sensitivity analysis methods are applied to a model, the results may be 

presented in different forms. Understanding of the results of sensitivity analysis by an audience 

strongly depends on a clear and informative presentation of the results. Tables and graphs are 

two common ways to present the sensitivity analysis results. Tables summarize the results of 

sensitivity analysis, while graphs can give the audience visual insights regarding the sensitivity 

analysis results.     

Sections 7.2 to 7.4 discuss the presentation of the sensitivity analysis results using tables 

and graphs for selected methods. 

7.2 Mathematical Sensitivity Analysis Methods  
This section discusses the presentation and interpretation of sensitivity analysis results 

based upon NRSA and DSA. A brief description of the two methods is presented in Section 

5.3.1.  Because the presentation and interpretation of results from the two methods are similar, 

the discussion below is applicable to both methods.  

Sensitivity analysis results from NRSA and DSA are expressed as sensitivity indices.  

Sensitivity indices are a set of numerical values used to indicate the magnitude of sensitivity of a 

given model output to each model input. The calculation of sensitivity indices based upon the 

two methods is given in Frey et al. (2003). The sensitivity indices can be negative or positive 

values based upon the model responses at nominal values of the model inputs. Model inputs can 

be prioritized or ranked based upon the relative magnitude of the sensitivity indices.  

Two options are suggested for use in presenting mathematical sensitivity analysis results. 

One is to summarize the sensitivity indices and corresponding ranks for model inputs, as shown 

in the Table 7-1. Another is to use tornado graphs as shown in Figure 7-1. The summary table, 

graph, and the interpretation of the results are based on an example of the application of NRSA 

to the exposure part of the Listeria model (Frey, et al., 2003).   
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Table 7-1.  Results of Application of Nominal Range Sensitivity Analysis to the Listeria 
monocytogenes Exposure Module for Deli Salad (Source: Frey et al., 2003) 

Model Inputs Nominal Range 
Sensitivity Index 

Rank Within the Food 
Category 

Serving Size (g) 71.0 2 
Initial LM Concentration (log cfu/g) 94.7 1 
Storage temperature (0C) 31.7 3 
Storage time (days) 7.1 5 
Growth at 5 0C (log cfu/day) 13.5 4 

 

As shown in Table 7-1, the summary table has columns of names of model inputs, 

nominal range sensitivity index, and corresponding ranks. The column of names of mode inputs 

lists inputs of interest; The column of nominal range sensitivity index shows the calculated 

sensitivity indices for the corresponding model inputs. The column of corresponding ranks 

display the rank order of the sensitivity of a given model output to each of the model inputs. A 

rank of 1 is considered to be the highest rank. A higher rank order indicates that the 

corresponding model inputs have larger individual contributions to variation in model output.  

For example, the input “Initial LM Concentration” has a rank of “1”, implying that it is the most 

important input.  

Tornado graphs are similar to bar graphs in which the abscissa holds sensitivity index 

values, while the ordinate shows inputs. In tornado graphs, a bar with a larger absolue value 

index indicates that the corresponding model input has a larger contribution to the variation in 

the model output. For example, in Figure 7-1, input B has the highest index value among all 

inputs to the model output, while the output shows lowest sensitivity to input C. 

Both options introduced above can effectively communicate sensitivity analysis results 

from mathematical methods to the audience. Selection of either of them or both depends on the 

type of the audience. For the general public, a graphical presentation may be the most 

appropriate. 

Because DSA does not consider the full range of variation in an input, the results may 

differ from those obtained from NRSA. Therefore, a comparison of results of DSA and NRSA 

can provide insight into whether the range of variation in the input contributes to sensitivity of 

the output to individual inputs. 
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Figure 7-1.  Tornado Graph for the Results of NRSA. 

7.3 Statistical Sensitivity Analysis Methods 
This section discusses the presentation and interpretation of sensitivity analysis results 

based upon statistical methods. A key feature of statistical sensitivity analysis methods is that 

they often involve one or two-dimensional probabilistic simulation of a model. The presentation 

and interpretation of the results may differ depending on the simulation approach and sensitivity 

analysis method. This section illustrates the presentation and interpretation of results for 

alternative probabilistic simulations of a model for the statistical methods discussed in Chapter 5. 

These statistical methods include sample and rank correlation coefficient methods, sample and 

rank regression analysis, ANOVA, and CART. Details regarding the presentation and 

interpretation of the results from these methods are provided in Sections 7.3.1 through 7.3.4, 

respectively. 

7.3.1 Correlation Analysis 
Correlation analysis measures the strength of a linear or monotonic relationship between 

an output and each of the model inputs, depending upon whether sample or rank correlations are 

used. Correlation coefficients have numerical values varying between -1 and 1. Larger absolute 

values of correlation coefficients indicate higher sensitivity of the output to the model input. 

Because the manner of presenting and interpretation of the results are similar for sample and 

rank correlation methods, the discussions below are applicable to both methods. 
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Table 7-2.  Summary of the Pearson Correlation Coefficient Results for Two-Dimensional 
Variability Simulation for 100 Uncertainty Realizations (Source: Frey et al., 2003) 

Model Input (a) 
Mean 

Correlation 
Coefficient 

95% 
Probability 

Range of 
Coefficients 

Frequency  Mean 
Rank 

Range of
Rank 

Temperature 1 0.269 (0.030,0.525) 93 4.3 1-13 
Temperature 2 0.008 (-0.070,0.102) 7 10.9 5-13 
Temperature 3 0.466 (0.290,0.624) 100 1.6 1-6 
Time1 0.252 (0.051,0.478) 95 4.7 1-10 
Time2 -0.005 (-0.064,0.061) 2 10.9 8-13 
Time3 0.339 (0.123,0.491) 98 3.9 1-13 
Maximum Density 0.027 (-0.052,0.095) 10 10.6 6-13 
Lag Period 1 -0.169 (-0.317,-0.022) 83 7.0 3-13 
Lag Period 2 -0.009 (-0.104,0.071) 7 10.8 5-13 
Lag Period 3 -0.311 (-0.45,-0.146) 100 4.8 2-8 
Generation Time 1 -0.168 (-0.328,0.00) 79 7.1 2-13 
Generation Time 2 -0.006 (-0.092,0.065) 7 10.7 6-13 
Generation Time 3 -0.339 (-0.496,-0.162) 100 3.8 2-8 

(a) 1 = Stage 1 (i.e., retail); 2 = Stage 2 (i.e., transportation); and 3 = Stage 3 (i.e., home). 

Tables and graphs can be used for presentation of the results from sample and rank 

correlation coefficient methods. However, based upon the type of probabilistic simulation, the 

contents of the table may differ. For example, for one-dimensional analyses, the table used for 

summarizing the results could be similar to Table 7-1 used for mathematical methods, except 

that there should be additional information to indicate whether each estimated coefficient is 

statistically significant. Insignificant inputs can be assigned the lowest ranks, indicating no 

measurable sensitivity. For two-dimensional cases, the table should present a statistical summary 

of the results for all of the uncertainty realizations or variability iterations, as in Table 7-2, which 

summarizes the results of an application of sample correlation to the growth estimation part of 

the E. coli model for a two-dimensional probabilistic simulation of 650 variability iterations 

under 100 uncertainty realizations of the model (Frey et. al., 2003).  

As shown in Table 7-2, there are six columns. The column of Model Input lists the model 

inputs of interest. The column of Mean Correlation Coefficient shows the average of n 

correlation coefficients for the corresponding model inputs, which are calculated from n 

uncertainty realizations. In this case, n is 100. The column of 95% Probability Range of 

Coefficients displays the variation in coefficients under n uncertainty realization for a 95% 

probability range. The Frequency column represents the number of the correlation coefficients 
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that are statistically significant under n uncertainty realizations. For example, for Temperature 1, 

there are 97 times out of 100 uncertainty realizations that the calculated coefficient was 

statistically significant. The column of Mean Rank is the arithmetic mean of the ranks in each of 

the uncertainty realizations. This column indicates the overall sensitivity of the model output to a 

particular model input. The column of Range of Rank summarizes the variation in ranks for a 

model input among the n uncertainty realizations and provides insight regarding the degree of 

ambiguity in relative importance of an input based upon uncertainty in the input. 

Summary results provided in Table 7-2 can facilitate identifying groups of model inputs with 

similar sensitivity. For example, the model inputs in this example can be approximately 

classified into four groups. The four groups are:  (1) the most important input, storage 

temperature at stage 3, which has a mean rank of 1.6; (2) inputs of secondary importance, 

including storage time at stages 1 and 3, storage temperature at stage 1, and generation time and 

lag period at stage 3, which have similar mean ranks of 3.9 to 4.7; (3) inputs of tertiary 

importance, including lag period  and generation time at stage 1, with mean ranks of 7.0 and 7.1, 

respectively; and (4) inputs of minor or no importance, including inputs corresponding to the 

second stage (i.e., transportation) and the maximum density, with mean ranks of 10.6 to 10.9. 

Each of these groups has mean ranks that are distinguishable from the mean ranks in other 

groups. 

Two types of graphs can be used to present the two-dimensional sensitivity analysis 

results from the correlation coefficient method. One is tornado graphs, as shown in Section 7.2, 

and another is complementary cumulative distribution functions (CCDF) of ranks. 

Figure 7-2 presents an example of a tornado graph for the four most important inputs 

based upon the results given in Table 7-2. Compared to Figure 7-1 used to present sensitivity 

indices for mathematical methods, additional information is shown. Besides the mean values of 

coefficients, the 95 percent probability range for each coefficient is also shown in the graph. This 

presentation will help the audience understand the uncertainty associated with each correlation 

coefficient. Overlaps in the ranges of variation of multiple inputs indicate that there may be 

groups of inputs with similar importance. 

Figure 7-3 shows an example of a CCDF graph of ranks for the four inputs with the 

highest sensitivity based upon the results given in Table 7-2. The figure shows the variation in  
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Figure 7-2.  Tornado Graph for the Top Four Important Inputs Based on the Results of Sample 
Correlation Coefficient Method. 

 

ranks of an input and the probability associated with the relative rank of the input in each 

uncertainty realization. The CCDF for the storage temperature at stage 3 (Temperature 3) 

indicates that the rank was equal to one in 65 percent of the simulations, which implies that the 

rank was worse than one for 35 percent of the simulations. Furthermore, the storage temperature 

at stage 3 was ranked sixth or higher for 100 percent of the simulations. In contrast, generation 

time at stage 3 (Time 3)was never selected as the most important input in the uncertainty 

realizations of the model, while there was 100 percent probability of allocation of a rank better 

than eight to this input.   

Figure 7-3 implies that the output has approximately the same sensitivity to three inputs 

of generation time at stage 3, storage time at stage 3, and storage temperature at stage 1. Note 

that the CCDFs for these inputs overlap to some extent and show a similar pattern. Although 

there is some ambiguity in the relative rank of storage temperature at stage 3, the obvious 

distinction of the CCDF for this input compared to those of other inputs implies that the output 

has a substantially higher sensitivity to variation of this input. The ranking of storage 

temperature at stage 3 as the most important input is robust to uncertainty. 

7.3.2 Regression Analysis 
This section discuses the presentation and interpretation of the sensitivity analysis results 

using sample and rank regression analysis methods. In both regression methods, the estimated  
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Figure 7-3.  Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the 
Rank of Selected Inputs Based Upon Pearson Correlation:  Storage Temperature at Stages 1and 

3; Storage Time at Stage 3; and Generation Time at Stage 3. 
 

regression coefficients are used as sensitivity indices to indicate the sensitivity of the output to 

the model inputs. For standardized sample regression analysis, the estimated coefficients are 

referred to as standardized regression coefficients. The calculation of the regression coefficients 

and more detail regarding regression analysis methods are given in Frey et al. (2003). Because 

the manner of presenting and interpretation of the results are similar for sample and rank 

regression analysis methods, the following discussions are applicable to both methods. 

The validity of insights from sensitivity analysis depends upon the appropriateness of the 

regression model formulation. Model inputs can be ranked based upon the relative magnitude of 

estimated coefficients. Statistically significant coefficients indicate that there is at least some 

degree of sensitivity. Statistically insignificant coefficients indicate that the output is not 

sensitive to the corresponding inputs.  

The statistical significance of coefficients for model inputs can be evaluated using t tests 

and corresponding P values. The t test provides a statistic to evaluate whether the estimated 

coefficient differs significantly from zero. For a regression coefficient to be judged statistically 

significant, the conventional cut-off for the P value is 0.05 (Neter et. al., 1989).  

Similar to correlation coefficient methods, both tables and graphs can be used to present 

the sensitivity analysis results for regression analysis methods. However, based upon the type of  

Curves to the lower left 
are more important. 
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Table 7-3.  Sample Standardized Regression Analysis Results for the Growth Estimation Part 
Based Upon Variability Only (R2 = 0.51) 

Model Input (a) Coefficient 95% CI (b) t Value Pr>F Rank (c) 

Storage Temperature, Stage 1  0.32 (0.31,0.32) 74 <0.0001 3 
Storage Temperature, Stage 2  3×10-3 (-7,13)×10-3 0.6 0.6 --- 
Storage Temperature, Stage 3  0.59 (0.58,0.60) 124 <0.0001 1 
Storage Time, Stage 1  0.27 (0.26,0.27) 97 <0.0001 4 
Storage Time, Stage 2  7×10-3 (2,13)×10-3 3 0.1 --- 
Storage Time, Stage 3  0.34 0.34(d) 123 <0.0001 2 
Maximum Density  0.012 (0.007,0.02) 5 <0.0001 7 
Lag Period, Stage 1 -0.012 (-0.019, -0.01) -3 0.0005 7 
Lag Period, Stage 2 -1×10-4 (-0.01,0.01) 0.0 0.3 --- 
Lag Period, Stage 3 -1×10-3 (-0.01,0.01) -1 0.4 --- 
Generation Time, Stage 1 0.08 (0.07,0.09) 20 <0.0001 6 
Generation Time, Stage 2 -4×10-3 (-0.014,0.01) -1 0.7 --- 
Generation Time, Stage 3 0.11 (0.10,0.12) 23 <0.0001 5 

(a) 1 = Stage 1 (i.e., retail); 2 = Stage 2 (i.e., transportation); and 3 = Stage 3 (i.e., home). 
(b) CI = Confidence Interval for the coefficient. 
(c) Statistically insignificant inputs are less important than the ranked inputs and are equivalent to a rank of 8 

or more. 
(d) The interval for this coefficient is so tight that it appears as 0.34 to 0.34 when it is rounded to two decimal 

places. 
 

probabilistic simulation, the contents of the table or graph may be different. Typically, the table 

used for presenting a two-dimensional simulation results would contain information similar to 

the two-dimensional correlation analysis. This section will focus on the discussion of one-

dimensional sensitivity analysis results. The presentation and interpretation of sensitivity 

analysis results using regression analysis methods are illustrated below with the help of an 

example of application of standardized regression analysis to the growth estimation pat of the E. 

coli model (Frey et. al., 2003). 

Table 7-3 shows an example summary table of the results using sample regression 

methods to analyze the growth estimation part of the E. coli model. The example is a one-

dimensional simulation with variability only while keeping uncertainty parameters at mean 

values. Table 7-3 is comprised of six columns. The column of Model Input lists the model inputs 

of interest. The column of Coefficient displays the estimated regression coefficients for 

corresponding model inputs. The column of 95% CI shows the 95% confidence intervals of the 

corresponding regression coefficient, which is calculated from the standard error of an estimated 

regression coefficient. Confidence intervals reveals ambiguity in ranks based upon the absolute 

value of the regression coefficient. Overlapping confidence intervals indicate no significant 



 

 102

difference in sensitivity to the model inputs. Ranks in the summary table reflect the relative 

sensitivity of the model output to model inputs. A higher rank shows a higher sensitivity of the 

model output to a model input. However, those model inputs that are not statistically significant 

are not ranked or could be assigned the lowest possible rank.   

The coefficient of determination, R2, can be used to assess whether the fitted regression 

model describing model variability is reasonable. A high R2 value implies that the assumption 

for the functional relationship between the output and inputs is substantially valid. The R2 value 

should be also reported in the summary table, and it can be put in the table title or notes. The R2 

value for the sample regression analysis was 0.51, indicating that approximately 50 percent of 

the output variation is addressed using the linear regression model. Although the variation 

captured by the regression model is not very high, it is still in the acceptable range, indicating the 

ranks provided by relative magnitude of regression coefficients may be reliable. 

The rankings of the inputs in Table 7-3 based upon the regression coefficient values are 

generally unambiguous. For example, the top ranked input, storage temperature at stage 3, has a 

coefficient that is significantly larger than that of the second ranked input, the storage time at 

stage 3. The inputs ranked second through seventh are significantly different from each other in 

importance in that the confidence intervals for their coefficients do not overlap. Two inputs are 

both ranked seven because they have equal coefficients. These two inputs are maximum density 

and lag period at stage 1. The confidence intervals for these two inputs overlap. However, both 

inputs have coefficients that are substantially smaller than all other inputs. Therefore, the two 

inputs are of little importance compared to the other ranked inputs. 

Bar charts can be used to present the one-dimensional results of the regression analysis 

including absolute values of regression coefficients and corresponding confidence intervals. 

Figure 7-4 graphically presents the results summarized in Table 7-3 for statistically significant 

inputs. The audience can easily gain insight that storage temperature at stage 3 is the most 

important input based upon the absolute magnitude of the standardized regression coefficients. 

Confidence intervals graphed in Figure 7-4 shows that the relative ranks of inputs are 

unambiguous, as those intervals do not overlap except for the two least important inputs. 

To present the results from a two-dimensional analysis, the summary table is similar to 

Table 7-2. The summary table can include the names of inputs, mean regression coefficient for 

each input, 95 percent probability range for each coefficient, number of times that each  
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Figure 7-4.  Example Bar Chart for Statistically Significant Inputs with Corresponding 

Confidence Intervals. 
 

coefficient is identified as statistically significant, mean rank corresponding to each input, and 

range of ranks for individual inputs. CCDF graphs, as shown in Figure 7-3, can be used to 

present the results for regression analysis methods applied to a two-dimensional simulation. 

CCDFs provide insight regarding the range and likelihood of ranks corresponding to each input. 

CCDF graphs can facilitate identification groups of inputs with similar importance. 

A CDF graph of the R2 values can also be used to present the two-dimensional sensitivity 

analysis results when using regression methods. The CDF of R2 provides insight regarding the 

uncertainty of goodness-of-fit in multiple realizations of a model. If both sample and rank 

regression analyses are applied to a model, comparison of the corresponding CDFs of R2 values 

may reveal model characteristics such as non-linearity or monotonicity. Figure 7-5, for example, 

compares CDFs of R2 values for sample and rank regression analyses applied to the slaughter 

module of the E. coli model. Figure 7-5 indicates that application of rank regression substantially 

improved the proportion of variability in the output accounted for by the regression model. 

Therefore, the slaughter module may have a monotonic, nonlinear association between the output 

and inputs. 

7.3.3 Analysis of Variance 
This section discusses the presentation and interpretation of the sensitivity analysis 

results using ANOVA. In ANOVA, the estimated F values for each factor and possible  
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Figure 7-5.  R2 Distributions for Sample and Rank Regression Analyses. 
 

interaction terms indicate the sensitivity of the model output to model inputs of interest. Details 

on the ANOVA method and procedure of implementing ANOVA are given in Sections 5.3.2.3 

and 6.2.3, respectively. 

F values estimated for each factor and possible interaction effects between factors are 

used as sensitivity indices. Factors and interaction terms are ranked based upon the relative 

magnitude of their F values. Similar to correlation and regression analysis methods, both 

summary tables and graphs can be used to present the results of ANOVA. The contents of the 

summary tables depend on the type of probabilistic simulation of the model. For one-

dimensional scenarios, a summary table of ANOVA results should include estimated F values, 

corresponding P values, and relative ranks. Factors that are statistically significant (e.g., P<0.05) 

are ranked. When ANOVA is applied to a two-dimensional analysis of variability and 

uncertainty, the summary table is similar to Table 7-2 for Pearson correlation coefficient 

methods, except that mean F values are reported for each factor or interaction term instead of a 

mean correlation coefficient.  

Bar charts representing F values can be used to convey insights regarding sensitivity. For 

two-dimensional scenarios, CCDF graphs similar to Figure 7-3 can be prepared to present the 

range and likelihood for each factor and the range of ambiguity in the associated ranks. These 

graphs can assist in identifying model inputs with similar importance.  
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Table 7-4.  Summary of the ANOVA Results for 200 Bootstrap Simulations for F value Statistics 

Model Factor (a) Mean 
F Value 

95% 
Probability 

Range 
SD/Mean Frequency 

(Percent) 
Mean 
Rank 

Range 
of 

Rank 
Temperature, Stage 1  481 (318,606) 0.16 100 4.0 3-4 
Temperature, Stage 2  1.8 (0.0,9.6) 1.45 17 10.9 7-13 
Temperature, Stage 3  1010 (810,1180) 0.09 100 1.0 1-2 
Storage Time, Stage 1  657 (557,780) 0.09 100 2.9 2-4 
Storage Time, Stage 2  0.4 (0.0,2.6) 1.58 1 12.3 9-13 
Storage Time, Stage 3  781 (714,915) 0.06 100 2.1 1-3 
Maximum Density  8.6 (1.3,26) 0.71 79 8.1 7-13 
Lag Period, Stage 1 50 (35,64) 0.14 100 5.9 5-6 
Lag Period, Stage 2 1.5 (0.1,5.0) 0.76 15 10.6 9-13 
Lag Period, Stage 3 60 (47,73) 0.11 100 5.1 5-6 
Generation Time, 
Stage 1 16 (9.3,24) 0.26 100 7.2 7-8 

Generation Time, 
Stage 2 1.7 (0.1,4.8) 0.74 17 9.9 8-12 

Generation Time, 
Stage 3 19 (12,25) 0.21 100 6.8 6-8 

(a) 1 = Stage 1 (i.e., retail); 2 = Stage 2 (i.e., transportation); and 3 = Stage 3 (i.e., home). 
 

A key point in interpretation of the ANOVA results is that the ranking of factors based 

upon the relative magnitude of F values can be ambiguous. Substantial differences in F values of 

two factors indicate an obvious difference in sensitivity of the output to these factors. In order to 

quantify uncertainty or ambiguity in ranks based upon the magnitude of F values, the bootstrap 

technique can be used (Frey et al., 2003). Results of the bootstrap simulation can be summarized 

in a table.  

For example, Table 7-4 summarizes 200 bootstrap simulation results. ANOVA was 

applied to each bootstrap simulation result; therefore, 200 F values and ranks were estimated for 

each factor. The summary table is comprised of seven columns. The column of Model Factor 

lists the factors of interest in the model. The column of Mean F Value shows the average of F 

values for each model factor, calculated over n bootstrap simulations (in this case, n is 200). The 

column of 95% Probability Range displays uncertainty in F values under n bootstrap simulation 

on 95% probability range. The column of SD/Mean presents the coefficient of variation. The 

Frequency column represents the number of the F values that are statistically significant over n 

bootstrap simulations for each factor. The column of Mean Rank is the arithmetic mean of n 

ranks from n bootstrap simulations. The column indicates the overall sensitivity of the model 
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output to a certain factor. The column of Range of Rank summarizes uncertainty in ranks for a 

factor under n bootstrap simulations and indicate the degree of ambiguity in relative importance 

of each factor based upon uncertainty in F values. 

A practitioner can use the results in Table 7-4 to quantify the uncertainty in F values. For 

example, the storage temperature at stage 3 is estimated to have a mean rank of 1.0. The mean F 

value for this factor is 1,010, and the 95 percent probability range of the F value is 810 to 1,180, 

or approximately plus or minus 20 percent of the mean value. Storage time at stage 3 has a mean 

rank of 2.1, a mean F value of 781 and a 95 percent probability range of 714 to 915. The overlap 

in the confidence intervals for the two factors indicates tied rank order between the two factors 

can reverse, even though on average the F value for storage temperature is 1.3 times larger than 

the one for storage time. The F values for these factors do not have statistically significant 

correlation. In order to gain insight regarding how large the ratio of two F values must be in 

order for the ranks of the corresponding factors to be significantly different, the possible range of 

variation for the F values of each factor should be quantified.  

For a specific case scenario by Frey et al., (2003), statistically significant F values that 

differed by 30 percent or more were judged to be substantially different. These results are 

specific to the example provided here, however, should not be used to make general quantitative 

judgments regarding differences between F values obtained with different sample sizes or 

models. However, the case study result suggests that two factors having similar F values are 

probably of comparable importance. 

A practitioner can use contrasts in ANOVA to obtain more insights regarding the 

sensitivity of the output to individual variation of each factor or simultaneous variation of 

multiple factors. A contrast is the comparison of the mean output values between two levels (or 

two sets of levels) of independent factors following ANOVA. Contrasts can be used to test 

complex patterns between mean output values. The issue of contrasts is discussed further in Frey 

et al. (2003) and Section 6.2.3 of this document. A practitioner can infer special model 

characteristics such as non-linearity, threshold and saturation points, and interactions by clear 

interpretation of the contrast results. Table 7-5 summarizes an example in which a set of 

contrasts is used to infer an interaction effect between two factors in a model and possible 

saturation points. This example is about the application of ANOVA to the growth estimation part 

of the E. coli model (Frey et. al., 2003). 



 

 107

Table 7-5.  Evaluation of ANOVA Contrasts for the Growth Estimation Regarding the 
Interactions Between Storage Temperature and Storage Time at Stage 1  

Contrast Estimate (1) F Value Pr>F Significant 
T [7.5-11oC], Time 1st and 2nd days 0.005 112 <0.0001 Yes 
T [7.5-11oC], Time 2nd and 3rd days 0.026 1280 <0.0001 Yes 
T [7.5-11oC], Time 3rd and 4th days 0.049 1720 <0.0001 Yes 
T [7.5-11oC], Time 4th and 5th days 0.069 1280 <0.0001 Yes 
T [7.5-11oC], Time 5th and 6th days 0.074 610 <0.0001 Yes 
T [7.5-11oC], Time 6th and 7th days 0.103 455 <0.0001 Yes 
T [7.5-11oC], Time 7th and 8th days 0.042 30.8 <0.0001 Yes 
T [7.5-11oC], Time 8th and 9th days 0.031 6.8 0.008 Yes 
T [7.5-11oC], Time 9th and 10th days 0.108 38.8 <0.0001 Yes 
T [7.5-11oC], Time 10th and 11th days ------ 0.16 0.8 No 
T [11-14.5oC], Time 1st and 2nd days 0.116 4060 <0.0001 Yes 
T [11-14.5oC], Time 2nd and 3rd days 0.211 5290 <0.0001 Yes 
T [11-14.5oC], Time 3rd and 4th days 0.218 2170 <0.0001 Yes 
T [11-14.5oC], Time 4th and 5th days 0.119 240 <0.0001 Yes 
T [11-14.5oC], Time 5th and 6th days 0.087 48.4 <0.0001 Yes 
T [11-14.5oC], Time 6th and 7th days ------ 0.9 0.6 No 
T [18-21.5oC], Time 1st and 2nd days 0.55 2630 <0.0001 Yes 
T [18-21.5oC], Time 2nd and 3rd days ----- 0.1 0.4 No 
T [21.5-25oC], Time 1st and 2nd days 0.503 6270 <0.0001 Yes 
T [21.5-25oC], Time 2nd and 3rd days ----- 2.4 0.09 No 

(1) The Estimate column represents the estimate of the difference in the growth of the E. coli organisms in two 
consecutive days. 

The summary table for the contrast results includes five columns. The Contrast column 

includes information regarding the specific levels of factors involved in the contrast. Storage 

temperature (T) and storage time (Time) at stage 1 are involved in the example contrasts. The 

Estimate column presents the estimated contrast. The columns of F Value and Pr>F list the 

calculated F and P values for the corresponding contrast, which are used to evaluate whether the 

estimated contrast is statistically significant. The column of Significant indicates whether the 

contrast is statistically significant. Contrasts with P values less than 0.05 are considered as 

statistically significant. If corresponding probability is larger than 0.05, there is not enough 

statistical support to indicate that the estimated value for the contrast is different from zero. 

Contrast results in Table 7-5 indicate that when storage temperature in stage 1 is at the 

first level (i.e., between 7.5oC and 11oC), storage time influences growth of E. coli in ground 

beef until the tenth day. Statistically significant contrasts are estimated for the difference in 

pathogen growth for consecutive days through the tenth. After the tenth day there is no 
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significant difference between the estimated growth, indicating that maximum population density 

is achieved by the tenth day. When storage temperature at stage 1 is at the second level (e.g., 

between 11oC and 14.5oC), the contrasts indicate that maximum population density is reached in 

only five days. When the storage temperature at stage 1 increases to the third, forth and fifth 

levels, maximum population density is reached in four, three, and two days, respectively. This 

pattern indicates an interaction effect between storage time and temperature. 

The coefficient of determination, R2, should be reported as a diagnostic for the results of 

ANOVA. Although the F values calculated for each effect indicate the statistical significance of 

corresponding effect, the coefficient of determination indicates whether the selected effects 

adequately capture variability in the output. Generally, a high R2 value implies that results are not 

compromised by incomplete specification of effects or by inappropriate definition of the levels 

for a factor. When ANOVA is applied to two-dimensional simulations of variability and 

uncertainty, a CDF graph for R2 can provide information about uncertainty in the adequacy of 

the ANOVA model for multiple realizations of the model. 

7.3.4 CART 
This section discusses the presentation and interpretation of sensitivity analysis results 

using CART. CART was evaluated by Frey et. al. (2003) using several case studies based upon 

two food safety risk assessment models using the S-PLUSTM statistical software package. 

Presentation of CART results may depend on the software package used. Details regarding the 

methodology and procedure of application of CART are given in Frey et al. (2003) and Section 

6.2.4, respectively. 

In general, results of sensitivity analysis using CART are presented in the form of 

regression trees. CART reduces the total deviance in the dataset generated in the probabilistic 

simulation of the model by splitting the dataset into stratified datasets with more homogeneous 

variation of the output within each stratified dataset. The output is inferred to be most sensitive 

to those inputs selected in the regression tree, with the strength or importance of the dependence 

implied by the order, frequency, or both, with which an input appears in the tree, or based upon 

the role of an input with regard to classifying an outcome (e.g., high mean exposure) of interest. 

Interpretation of the results based upon CART may not be straightforward, since CART 

does not produce a singular sensitivity index. The analyst has to scrutinize the regression tree via 

visualization of the tree and considering the order in which inputs are selected in the tree. Cut off  
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Figure 7-6.  The Regression Tree for the Combo Bin Contamination from Steer and Heifer in 
Summer for One-Dimensional Variability and Uncertainty Analysis (Source: Frey et al., 2003). 

 

points selected corresponding to each input should also be considered for inferring special model 

characteristics, such as non-linearity or thresholds. As a general rule of thumb, the output  

typically has higher sensitivity to model inputs selected at upper nodes of the regression tree. In 

addition, when an input is selected several times in different nodes of a regression tree, it implies 

that the input is of importance. 

Figure 7-6 presents an example of CART results. The example comes from the case study 

scenario used in the slaughter module of the E. coli model (Frey et. al., 2003). As shown in 

Figure 7-7, four inputs are selected in the regression tree, including chilling effect, number of 

organisms, washing effect, and contaminated surface. Because no constraint was placed on the 

number of nodes in the regression tree, the mean responses provided in the tree account for all 

the variability in the output that could be captured by partitioning the dataset. The classification 

rule for the highest mean combo bin contamination level corresponds with cases in which the  
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Table 7-6.  Reduction in Deviance Associated with Selected Inputs in the Regression Tree 
Generated in the One-Dimensional Analysis of Variability and Uncertainty in the Slaughter 
Module  

Reduction in the Total Deviance Corresponding to Each Input 
Inputs 1st 

Level 
2nd  

Level 
3rd 

Level 
4th 

Level 
5th 

Level Sum Percent 
Contribution Rank 

Chiller 
Growth 5,600  1,770 (1)   7370 31.7 2 

Number of 
Organisms  14,044(2)  53  14,097 60.6 1 

Washing 
Effect    321  321 1.4 4 

Contaminated 
Surface     1,464 1,464 6.3 3 

(1) From this amount, 227 and 1,543 are associated to selection of chilling effect in the left and right branches 
of the tree, respectively. 

(2) From this amount, 464 and 13,580 are associated to selection of number of organisms in the left and right 
branches of the tree, respectively 

 

initial number of organisms on carcasses is greater than 128 organisms and growth in the chiller 

is higher than 2.2 logs. The mean response for these cases is 3641 E. coli organisms or 

approximately 3.6 logs of contamination. 

Based on the regression tree, the combo bin contamination is most sensitive to both 

growth in the chiller and the initial number of organisms. The chilling growth is placed at the 

first node of the tree. However, although the number of organisms was not selected until the 

second level of the tree (in the right-most branch), this input discriminates the mean response of 

3,641 from other leaves with mean responses of 130 to 528. Thus, CART suggests that the initial 

number of organisms accounts for a wide range of variation in the response. Therefore, there 

appears to be an important interaction between the chiller growth and the initial number of 

organisms. For low values of the chiller growth the mean response varies from 2.3 to 1358, 

depending on more refined ranges of chilling effect, number of organisms, and washing 

efficiency. For high values of the chiller growth, the initial number of organisms is the most 

important input. Therefore, it implies in this case that the chiller growth and the initial number of 

organisms are of comparable importance, and the other inputs selected in the tree are of minor 

importance. 

Frey et. al., (2003) evaluated an alternative sensitivity index for CART using the 

contribution of an input to the reduction of total dataset deviance. This sensitivity index is not 

automatically produced by the software package and was calculated separately. As an example, 
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Table 7-6 summarizes the contribution of the selected inputs to the reduction of the total 

deviance for the regression tree shown in Figure 7-6. There are five levels in the regression tree. 

Except for the first level, there are multiple branches at a given level. Therefore, an input may 

appear several times under different branches of a given level. Each such appearance is denoted 

with a numerical entry in Table 7-6. 

The total deviance of the dataset for the one-dimensional analysis of variability and 

uncertainty is 44,280. Approximately 53 percent of the total deviance is reduced by classifying 

the dataset using the regression tree. For each input, the total reduction in the deviance is based 

upon the cumulative effects of repeated splits in the regression tree. The rankings in Table 7-6 

indicate that the number of organisms is the most important input, although this input is not 

selected at the first splitting node. Chiller growth is selected at the first splitting node and ranks 

2nd. The largest individual reduction in the total deviance is associated with the selection of 

initial number of organisms at the second level of the tree.  

7.4 Graphical Sensitivity Analysis Methods 
The section discusses the presentation and interpretation of two graphical sensitivity 

analysis methods:  scatter plots and conditional sensitivity analysis. Details regarding the two 

methods and procedures for application of them to food safety risk assessment models are given 

in Frey et al. (2003) and Section 6.3.1, respectively.  

Graphical methods can be presented in the form of two or three dimensional graphs 

depicting variation of the output versus the variation of one or two inputs. When presenting the 

results of graphical methods, it is crucial to select an appropriate number of data points. A small 

number of points may not reveal the underlying functional pattern, such as a threshold or non-

linearity. In contrast, a dense graph showing thousands of data points may be difficult to 

interpret. A model may behave differently in different ranges of variation of an input. Hence, an 

analyst may choose to change the scale of the axes to present the results for a desired range of 

input or output values. 

A few examples are provided here from case studies performed by Frey et al (2003). The 

examples provided here demonstrate the capabilities of the graphical sensitivity analysis methods 

in identifying specific model characteristics, such as non-linearity, thresholds, and interaction. 
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Figure 7-7.  Scatter Plot for the Log Reduction in the Number of E. coli Organisms versus the 
Cooking Temperature at Home. 

 

Figure 7-7 presents an example using the scatter plot method. The data shown in the 

figure are from a Monte Carlo simulation of the E. coli model. Figure 7-7 indicates a linear 

relationship between the log reduction in the number of E. coli organisms due to cooking and 

cooking temperature. Each line in the scatter plot represents a specific precooking treatment. 

That the lines presented in the scatter plot are not parallel indicates that there is an interaction 

between cooking temperature and the precooking treatment. Because of the interaction, the 

response of the model differs for low and high cooking temperature depending on precooking 

treatment. There is also threshold in the model response to cooking temperature. Cooking 

temperatures between 47oC and 53oC, depending on the precooking treatment, have no effect on 

the reduction in the number of E. coli organisms. 

Figure 7-8 shows another example using the scatter plot. This figure indicates that there 

is an apparent threshold in the response of the model to the grinder contamination. When the 

grinder contamination is less than an approximate value of –2.5 logs, the grinder contamination 

has negligible effect on the contamination of the ground beef servings since less than one 

organism is predicted. In contrast, when the contamination in the grinder loads increases above 

the threshold value of –2.5 logs, there is a nonlinear relationship between the serving 

contamination and the grinder contamination, and ground beef servings become contaminated 

with more than one E. coli organism. 
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Figure 7-8.  Scatter Plot for the Serving Contamination Versus the Grinder Contamination in 

Summer. 
 

Figure 7-9 presents an example of a conditional sensitivity plot for the mean growth in 

the number of E. coli organisms versus storage time at stage 1. This figure not only reveals the 

way the model responds to variation of storage time conditioned on point estimate values of 

other inputs, but also identifies conditional thresholds. When other inputs are held at their mean 

values, there is no growth unless the storage time is greater than approximately 68 hrs. In this 

case, when the ground beef servings are stored for more than 68 hrs, there is a nonlinear response 

to the increase of the storage time. The approximate value of 68 hrs can be considered as a 

threshold in the model response to the variation of the storage time at stage 1, when other inputs 

are conditioned at their mean values. The threshold when other inputs are conditioned at their 

minimum values is approximately 86 hrs, which indicates that there is an interaction between the 

storage time and other inputs. If other inputs are held at their maximum values the threshold is 

approximately 4.5 hrs, and the maximum population density is reached after approximately 31 

hrs. In contrast, when other inputs are held at their minimum or mean values, the maximum 

population density is not achieved even within 250 hours.  

7.5 Summary 
The presentation and interpretation of sensitivity analysis results are important to helping 

an analyst or a decision-maker better understand the insights from the results. This chapter first 

introduced the general principles for presenting and interpreting sensitivity analysis results. For 

each selected method in Chapter 5, an example is provided to help an analyst better understand  
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Figure 7-9.  Conditional Sensitivity Analysis of Growth in the Number of E. coli Organisms to 

Storage Time at Retail. 
 

the presentation and interpretation of the results. For any method, a key point in presenting and 

interpreting sensitivity analysis results is the necessity to clearly identify the target audience. 
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APPENDIX A.  DISCUSSION OF ADDITIONAL STATISTICAL SENSITIVITY 
ANALYSIS METHODS 
 
 This appendix provides discussion of four statistical sensitivity analysis methods that are 

not commonly applied to food safety risk assessment models but that are potentially useful. 

These methods include:  (1) Fourier Amplitude Sensitivity Test (FAST); (2) response surface 

method (RSM); (3) Mutual Information Index (MII); and (4) Sobol’s method. These methods are 

briefly explained in Sections A.1 to A.4, respectively. For each method key features in 

application of the procedure and interpretation of results are discussed. Patil and Frey (2003) 

performed some case studies with FAST, RSM, and MII applied to the FDA Vibrio 

parahaemolytics model (CFSAN, 2001). 

A.1 Fourier Amplitude Sensitivity Test (FAST) 
FAST can be used for both uncertainty and sensitivity analysis (Cukier et al., 1973, 1975, 

and 1978). FAST can identify the contribution of individual inputs to the expected value of the 

output variance (Cukier et al., 1973). FAST does not assume a specific functional relationship 

such as linearity or monotonocity in the model structure, and hence works for monotonic and 

non-monotonic models (Saltelli et al., 2000). The effect of only one input or the effect of all 

inputs varying together can be assessed by FAST. 

A.1.1 Description 
FAST is a pattern search method that selects points in the input domain, and it is known 

to be faster than the Monte Carlo method (McRae et al., 1982). The classical FAST method is 

not efficient in addressing higher-order interaction terms (Saltelli and Bolado, 1998). However, 

the extended FAST method developed by Saltelli et al. (1999) can address higher order 

interactions between the inputs.   

FAST is used to estimate the ratio of the contribution of each input to the output variance 

with respect to the total variance of the output as the first order sensitivity index. This index can 

be used to rank the inputs (Saltelli et al., 2000). Because FAST can allow arbitrarily large 

variations in input parameters, the effect of extreme events can be analyzed (e.g., Lu and 

Mohanty, 2001; Helton, 1993). The evaluation of sensitivity estimates can be carried out 

independently for each factor using just a single set of simulations (Saltelli et al., 2000). 

As a drawback in application of FAST, it suffers from computational complexity for a 

large number of inputs (Saltelli and Bolado, 1998). The classical FAST method is good only for 



 

 116

models with no important or significant interactions among inputs (Saltelli and Bolado, 1998).  

The reliability of the FAST method can be poor for discrete inputs (Saltelli et al., 2000). Current 

software tools for FAST such as SIMLAB, are not easily applied with existing food safety 

process risk models (Patil and Frey, 2003) 

A.1.2 Application Procedure 
FAST has been applied in fields such as performance assessment of waste disposal 

systems (e.g., Lu and Mohanty, 2001; Helton, 1993), atmospheric modeling (e.g., Rodriguez-

Camino and Avissar, 1998; Collins and Avissar, 1994; Liu and Avissar, 1996), and ground water 

modeling (Fontaine et al., 1992). 

The main idea behind the FAST method is to use the properties of Fourier series to 

approximate the variance in output values and apportion the output variance to variance of the 

model inputs (Cukier et al., 1973). Application of FAST involves defining a set of 

transformation functions and angular frequencies for model inputs. FAST uses the defined 

transformation function of each input for sampling during a probabilistic simulation of a model. 

Because FAST does not use the same probabilistic sampling technique as the one typically used 

in a food safety model (e.g., Monte Carlo sampling), application of FAST to a model will not be 

post hoc and the process should be integrated within the model. Some statistical software 

packages are available for application of FAST to a model. For example, SIMLAB has the 

ability to perform FAST (SIMLAB, 2000). Patil and Frey (2003) used SIMLAB for application 

of FAST to case scenarios with the FDA Vibrio model. Key steps in application of FAST for 

performing sensitivity analysis of a model with SIMLAB are: 

• Encode the model in SIMLAB or encode the model in EXCEL and prepare a 

connection between SIMLAB and EXCEL using macros. 

• Define distributions of model inputs in SIMLAB 

• Generate sample values for each input using transformation functions in SIMLAB 

• Perform a probabilistic simulation of the model using generated values for inputs 

from SIMLAB 

• Estimate sensitivity indices using SIMLAB 
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A.1.3 Interpretation of the Results 
FAST presents sensitivity in terms of the contribution of each input to the total output 

variance. The percentage contribution of each input to the total output variance can be estimated 

by normalizing the FAST indices for each input. FAST can provide:  (1) first-order indices; (2) 

higher-order indices; and (3) total indices. Model inputs can be ranked using the relative 

magnitude of sensitivity indices. 

For linear models the sum of the first-order indices of all inputs should equal to one. If 

the estimated sum does not equal one, it implies that interactions between inputs are statistically 

significant and contribute to the output variance. The total index for an input includes the first-

order sensitivity index of the input and sum of the indices representing the interactions of the 

input with the other model inputs. The difference between the total sensitivity index and the first-

order sensitivity index indicates the importance of the interaction effect. If the total index for an 

input is almost zero or a very low value, then this input can be fixed at a constant value without 

significantly impacting the results of the probabilistic simulation. Hence, the total indices can be 

used for simplifying the model. 

A.2 Response Surface Method 
The objective of the RSM is to develop a simplified version of the original model so that 

it is possible to retain the key characteristics of the model and to shorten the amount of time 

required to predict the output for a given set of inputs. RSM is typically applied to large models 

so that statistical methods that require multiple model evaluations can be applied. RSM is often 

used as a step prior to application of techniques that require many model evaluations, such as 

Monte Carlo simulation. 

A.2.1 Description 
A Response Surface (RS) can be linear or nonlinear and is typically classified as first-

order or second-order methods (Myers and Montgomery, 1995). For nonlinear response surfaces 

interactions terms between inputs are considered. The number of inputs included in a RS and the 

type of RS structure required affect the amount of time and effort needed to develop a RS. It is 

often beneficial to limit the inputs that are included in the RS to those that are identified as most 

important using a screening sensitivity analysis method, such as NRSA. 

A typical approach to RS development is to use a least-squares regression method to fit a 

standardized first or second order equation to the dataset including the output values from a 
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model and sampled values from probability distributions of model inputs. The precision and 

accuracy of the RS can be evaluated by comparing the prediction of the RS with those of the 

original model for the same values of the model input. The key assumption of least-squares 

regression, which is the normality of residuals, should be satisfied; otherwise, other techniques 

such as rank-based or nonparametric approaches should be considered (Khuri and Cornell, 1987; 

Vidmar and McKean, 1996). 

Because the RS is calibrated to data generated from the original model, the valid domain 

of applicability of the RS model will be limited to the range of values used to generate the 

calibration dataset. Most RS studies are based on a fewer inputs than the original model.  

Therefore, the effect of all original inputs on the sensitivities cannot be evaluated in RSM. 

A.2.2 Application Procedure 
The application procedure for RSM starts with a decision regarding the inputs that should 

be included in the RS. If there are a large number of inputs, the RSM can be very complex. 

Hence, a practitioner can use the results from screening analysis or other sensitivity analysis 

methods to select a set of important inputs for the RS. 

The next step after choosing important inputs included in RS is to verify the RS with the 

original data. The F test can be used to determine whether or not the RS is adequately accurate 

by comparing the variance of the output values generated by the RS and the variance of the 

actual values of the model output used to develop the RS. 

Once a response surface is developed, the sensitivity of the model output to one or more 

of the selected inputs can be determined by:  (1) inspection of the functional form of the response 

surface; (2) statistical analysis if regression analysis was used to develop the response surface; or 

(3) application of other sensitivity analysis methods to the response surface. The response 

surface can be thought of as a "model of a model" with an advantage of being simpler and faster 

to execute than the original model. 

A.2.3 Interpretation of the Results 
The estimated coefficients of the terms included in the RSM can be used for sensitivity 

analysis. The first order effect of inputs included in a RS can be ranked considering the relative 

magnitude of estimated RS coefficients as long as all inputs have been standardized. Ranking 

should be provided for statistically significant inputs that have P values less than 0.05 for the 

estimated coefficients. 
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A.3 Mutual Information Index 
The objective of the Mutual Information Index (MII) sensitivity analysis method is to 

produce a measure of the information about the output that is provided by a particular input. The 

sensitivity measure is calculated based upon conditional probabilistic analysis. The magnitude of 

the measure can be compared for different inputs to determine which inputs provide the most 

information with respect to the output. MII is a computationally intensive method that takes into 

account the joint effects of variation in all inputs with respect to the output. MII is typically used 

for models with dichotomous outputs; but it can also be used for outputs that are continuous 

(Critchfield and Willard, 1986). 

A.3.1 Description   
The mutual information is a more direct measure of the probabilistic relationship of two 

random variables than other measures such as correlation coefficients (Jelinek, 1970). For 

example, the correlation coefficient of two random variables examines the degree of linear 

relationship between them. Two uncorrelated variables may not be independent; however, two 

variables with zero mutual information are statistically independent. In addition, the results from 

MII can be graphically presented. Calculation of the MII requires iterative application of Monte 

Carlo techniques that may lead to computational complexity, and thus make practical application 

difficult (Merz et al., 1992). Critchfield and Willard (1986a) have suggested an approach using 

symbolic algebra, which is reported to be less computationally intensive. Because of the 

simplifying approximations that may be used in MII, the robustness of ranking based on the 

sensitivity measure is difficult to evaluate. 

The mutual information between two random variables is the amount of information 

about a variable that is provided by the other variable (Jelinek, 1970). The average MII for each 

input (IXY) is calculated based on the PDF of the input and on the overall and conditional 

confidence in the output. The amount of information about a variable that is provided by the 

variable itself is measured in terms of the “average self-information” (IYY) of that variable. For 

the purpose of sensitivity analysis, a normalized measure of the MII (SXY) is used which is the 

ratio of IXY and IYY (Jelinek, 1970). 
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A.3.2 Application Procedure 
Application of MII involves three general steps (Critchfield and Willards, 1986):  (1) 

generating an overall confidence measure of the output value; (2) obtaining a conditional 

confidence measure for a given value of an input; and (3) calculation of sensitivity indices. 

In a model with dichotomous output, the probability of each output value is interpreted as 

the overall confidence for each value. As the first step to estimate the overall confidence on the 

output, all inputs are varied according to their respective distributions and the output distribution 

will be generated. The overall confidence can be estimated as the percentage of times the 

probability of the output is less than or equal to a defined value. The overall confidence on the 

output is estimated from its CDF.  

In a conditional confidence analysis, an input of interest is held constant at one value and 

other inputs are varied according to their respective PDFs to generate the PDF for the output. 

Monte Carlo simulation is used in this computation. 

A.3.3 Interpretation of the Results 
Sensitivity of the inputs can be evaluated based on the relative magnitude of IXY and SXY 

values estimated for each input. SXY indicates how much an input is important in providing the 

“statistical information” about the output as compared to the “statistical information” that output 

can provide about itself. Thus, SXY may be a better measure to use when the relative importance 

of the inputs needs to be evaluated. 

A.4 Sobol’s Method 
Sobol’s methods (Sobol, 1990, 1993; Saltelli et al., 2000) are variance-based “global 

sensitivity analysis” methods based upon “Total Sensitivity Indices” (TSI) that take into account 

interaction effects. The TSI of an input is defined as the sum of all the sensitivity indices 

involving that input. The TSI includes both the main effect as well as interaction effects (Sobol 

1990; Homma and Saltelli, 1996). For example, if there are three inputs A, B and C, the TSI of 

input A is given by S(A) + S(AB) + S(ABC), where S(x) is the sensitivity index of x. S(A) refers 

to the main effect of A. S(AB) refers to the interaction effect between A and B. S(ABC) refers to 

the interaction effect between A, B, and C. 

A.4.1  Description   
The use of Sobol’s indices in the field of sensitivity analysis is new and there are few 

publications on the application of Sobol’s indices as global sensitivity methods. Effort has been 



 

 121

made to reduce the computational complexity associated with calculation of Sobol’s indices. 

Saltelli (2002a) discusses how to make the best use of model evaluations when calculating 

Sobol’s sensitivity indices. 

Sobol’s method can cope with both nonlinear and non-monotonic models, and provide a 

truly quantitative ranking of inputs and not just a relative qualitative measure (Chan et al., 2000). 

The types of influence of an input that are captured by Sobol’s method include additive, non-

linear or with interactions. Furthermore, Sobol’s method can be smoothly applied to categorical 

variables without re-scaling. Sobol (1990) and Saltelli (2002b) describe such an implementation. 

Sobol’s method, in general, is computationally expensive (Pastres et. al., 1999). It is 

difficult to apply Sobol’s method to models with a large number of inputs and complex model 

structure such as modularity. There is no readily available software that facilitates application of 

Sobol’s method. 

A.4.2 Application Procedure 
Given a model in the form of y=f(X1,X2,…,Xk), where the inputs Xi’s are uncorrelated, y 

can be defined as the realization of a probabilistic process obtained by sampling each of the Xi 

from its respective probability distributions. Sobol’s method defines sensitivity indices based on 

the decomposition of the output variance into terms due to either single input effect (first-order 

indices), or joint effects of more than one input.  

Saltelli et al. (1993) proposed a Monte Carlo procedure for the estimation of the expected 

value of the output variance due to variation of the selected input using two sample matrices 

from the original probability distributions of inputs. These matrices are referred to as “sample” 

and “re-sample” matrices. The proposed procedure by Saltelli decreases the computational time 

associated with estimation of full set of first-order sensitivity indices (Saltelli, 2002). 

Furthermore, in order to estimate the confidence intervals on calculated sensitivity indices, 

bootstrap technique should be used to estimate the 95 percent confidence intervals for the firs-

order and the total sensitivity indices (Archer and Saltelli, 1997) 

A.4.3 Interpretation of the Results 
Inputs can be prioritized using the relative magnitude of Sobol’s sensitivity indices. For a 

completely linear model, the sum of the first-order sensitivity indices for the model inputs should 

equal to one. When interaction effects between model inputs are significant, the summation of 

the first-order sensitivity indices will be less than one. For models that are highly non-linear 
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only, small portion of the output variance would be attributed to the main effect of inputs. Thus, 

when first-order sensitivity indices are substantially low, total sensitivity indices should be used 

for prioritizing model inputs. Estimated confidence intervals can be used to evaluate the 

ambiguity in rankings based on sensitivity indices. Inputs for which sensitivity indices have 

overlapping confidence intervals may be interpreted to have the same relative importance on the 

variance of the output. 
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APPENDIX B.  GLOSSARY 

Add-In Software Packages   “Add-in” is a term used, especially by Microsoft, for a software 

utility or other program that can be added to a primary program. Examples of add-in 

software packages are Crystal BallTM and @Risk. 

Aggregation Refers to situations in which multiple numerical values are combined into one 

numerical value, such as sum or mean value. In some cases, aggregation reflects the 

underlying process. 

Ambiguity of Ranking   Degree of uncertainty in estimated rankings of importance of model 

inputs from a sensitivity analysis method because of uncertainty in the sensitivity index 

or lack of significant differences in the sensitivity index of the inputs being jointly 

evaluated.  

ANOVA  Analysis of Variance, a statistically-based method that can be used for sensitivity 

analysis. 

Binning  A summarization technique in which values of an internal input or output of interest are 

binned into predefined intervals. Binning leads to loss of one-to-one correspondence 

between an output of a module and its exogenous predecessor inputs. If binning exists in 

a model, it can affect the scope of sensitivity analysis. 

Bootstrap simulation  A numerical method for estimating sampling distributions and confidence 

intervals for statistics based on an assumption that the “true” population distribution is 

equal to the empirical sample distribution. 

Branch   Term used in CART to refer to the conditions on the input variables that determine 

which output data go into particular data strata in a regression tree.  

CART  Classification and Regression Tree, a statistically-based method that can be used for 

sensitivity analysis.  Also known as Hierarchical-Based Regression Tree (HBTR).  

Categorical Input  Also referred to as a qualitative input. This is a specific type of inputs with 

values that are mutually exclusive. The categories are measured in nominal scale and 

cannot be ordered from “highest” to “lowest” in any meaningful way. Rather, the 

categories define different groups. Examples include gender, season, and consumption 

type. 
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CCP   Critical Control Point (CCP). A CCP is defined as a point, step, or procedure at which 

control can be applied and food safety hazard can be prevented, eliminated, or reduced to 

an acceptable level. 

CDF   The cumulative distribution function for a variable indicates the probability that the 

variable is less than or equal to any particular value. 

CCDF   Complementary cumulative distribution function for a variable indicates the probability 

that the variable is greater than any particular value. 

Classification Rule  With respect to CART, a result obtained from CART that enables 

stratification of sample values of the output to a specific situation determined by specific 

cut-points for specific inputs. For example, a classification rule could provide insight into 

conditions that lead to the largest mean exposure. 

Coefficient of Determination (R2)   A statistic that is widely used as a goodness-of-fit measure for 

regression analysis and ANOVA. R2 represents the fraction of variation in the output that 

can be explained by the fitted regression or ANOVA model. 

Conditional Analysis   Conditional analysis includes the “what-if” scenario analysis of a model 

and also identification of factors contributing to high exposures and risks. 

Confidence Interval   The computed interval with a given probability (i.e., 95%) that the true 

value of the statistic, such as a mean, proportion, or rate, is contained within the interval. 

Contrast   A comparison between two levels (or two sets of levels) of an independent variable in   

Analysis of Variance (ANOVA). 

Correlation Coefficient   Sample correlation coefficients provide a measure of linear association 

between two variables. Rank correlation coefficients provide a measure of monotonic 

association between two variables. 

Critical limit A term used in HACCP to refer to a criterion or range that must be met for each 

preventive measure associated with a CCP, such as minimum internal temperature, 

product dimension, and cooking time. 

CSA   Conditional Sensitivity Analysis is a graphical method, in which the sensitivity of the 

model to a small number of inputs is evaluated while other inputs are held at fixed values. 

Cut-Point   With respect to CART, a value of an input used as the basis for creating branches.  

Discrete Input  An input variable that can only assume certain integer values. An ordinal 

categorical input variable could also be called discrete variable.  
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DSA Differential Sensitivity Analysis, a mathematical local sensitivity analysis method based 

upon small perturbations of inputs at a specific point in the model space. 

F Value The F value is the ratio of two sums of squares (i.e. estimates of a population variance, 

based on the information in two or more random samples). When employed in ANOVA, 

the obtained F value provides a test for the statistical significance of the observed 

differences among the means of two or more random samples. 

Factor   An independent variable or input in ANOVA. 

Factorial Design   An experimental design in which each level of a variable is paired with each 

level of every other variables. 

Food Safety Process Risk Model   A quantitative model evaluating the risk to humans exposed to 

specific food borne hazard on a population basis. Food safety process risk models aim to 

simulate the process of bringing food from the farm to the table.  

Global Sensitivity Analysis   Global sensitivity analysis apportions the uncertainty in the output 

to the uncertainty in the input factors. Global methods are applicable to situations in 

which model inputs are varied simultaneously over large ranges of values, typically based 

upon probability distributions assigned to each input. 

Graphical Sensitivity Analysis Methods   A category of sensitivity analysis methods that feature 

the use of graphical techniques to present how a model output responds to changes in a 

model input.  Typical graphical techniques include scatter plots or conditional sensitivity 

analysis. 

HACCP   Hazard Analysis and Critical Control Points (HACCP). HACCP is a management 

system in which food safety is considered through analysis and control of biological, 

chemical and physical hazards including raw materials, handling, production, distribution 

and consumption of the final product. 

Important Inputs.  An input to which the model output is highly sensitive or that leads to an 

outcome of most interest to a decision maker. 

Interaction  A case in which the effect of an input to the model response depends on the value of 

another input. For example, interactions can be represented in regression and ANOVA in 

the form of cross-product terms, such as Xi × Xj, where Xi and Xj are inputs to the model. 

Intermediate Node   With respect to CART, an intermediate node refers to a node at which the 

data can be successively split in a regression tree. 
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Internal input  A variable that is an output from a predecessor module and an input to a successor 

module for modules that are in series. 

Leaf Node   With respect to CART, leaf node refers to the node at which the penultimate data 

was split in a regression tree.  The leaf node is also referred to as a terminal node. 

Level   A concept used in ANOVA to refer to specific range of values for a factor. 

Local Sensitivity Analysis   Local sensitivity analysis focuses on the impact of changes in input 

values with respect to a specific point in the input domain. NRSA and DSA are examples 

of local sensitivity analysis methods.  

Mathematical Sensitivity Analysis Method  A category of sensitivity analysis methods that are 

typically applied to a deterministic mathematical model. Examples include NRSA and 

DSA. 

Measure of Sensitivity    An index by which sensitivity of model output to inputs can be 

prioritized or by which insight regarding the sensitivity of the output to inputs can be 

obtained. Examples include standardized regression coefficients in regression analysis 

and F values in ANOVA. Also referred to as sensitivity index. 

Model Independent   A sensitivity analysis method is said to be model independent if it does not 

require any specific assumption regarding the functional form of the model to which it is 

applied.     

Model Validation   Model validation is the comparison of model results to independent 

observations from the system which is being modeled. 

Model Verification  A process of ensuring that the mathematical structure of a model, its 

computer implementation, and its input assumptions are as intended. 

Monotonic Relationship   A relationship that occurs when there is an association between two 

variables that is either consistently increasing or consistently decreasing.  For example, 

the degree of monotonic relationship is measured by the Spearman Correlation 

Coefficient. 

Node   With respect to CART, a node is an input variable at which data can be split in a 

regression tree.     

Nominal Value   A selected point value of a distribution, such as a minimum, mean, median, or 

maximum value. 
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Non-linearity   A relationship between two variables in which the change in each variable is not 

simply proportional to the change in the other variable. Parabolic and exponential 

relationships are examples of non-linearity. Non-linearity may be diagnosed from 

bivariate scatter plots. 

NRSA   Nominal Range Sensitivity Analysis – a mathematical technique in which one input at a 

time is varied over a range from low to high, while other inputs are held constant at a 

nominal value. 

P Value   The probability of obtaining a more extreme value for a test statistic under the 

assumption that the null hypothesis is true. The P value is compared with the chosen 

significance level of the test and, if it is smaller, the result is said to be significant.  

Path or Classification Rule   With respect to CART, a set of conditions on the input variable 

from the root node leading to a leaf node in a regression tree.  

Pearson Correlation Coefficient   A type of correlation coefficient that evaluates the strength of 

linear association between paired random output samples of output and input values. It is 

also known as the sample correlation coefficient. 

Probabilistic Analysis   A numerical analysis in which frequency (or probability) distributions 

are assigned to represent variability (or uncertainty) in model inputs and random 

sampling techniques are used to generate model input samples that are then propagated 

through formula(s) of the model specification to obtain a sample from the distribution of 

an output variable(s) of interest.  

“Push-Button” Techniques A term used to refer to sensitivity analysis techniques that are 

built-in features of commonly used software packages.  For example, the ability to 

calculate sample correlation coefficients is a built-in feature of Crystal BallTM.     

Qualitative Input   See categorical input. 

Quantitative Input   An input that takes numerical values. Quantitative inputs can be continuous 

or discrete. Examples include income, age, temperature, and time. 

Rank Correlation Coefficient   See Spearman correlation coefficient. 

Realization   A realization refers to one model simulation based upon one randomly sampled 

value for each probabilistic input. 

Refined Analysis   An analysis that is intended to be more comprehensive and/or accurate than a 

screening analysis. A refined analysis typically requires greater resources of time, effort, 
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and computation than a screening analysis, but is expected to provide more detailed and 

robust insights.  

Response Surface Method   A sensitivity analysis method that develops a simplified version of 

the original model so that it is possible to retain the key characteristics of the model and 

to shorten the amount of time required to predict the output for a given set of inputs.  

Root Node   With respect to CART, the first node at which data are split in a regression tree.  

RTE   Ready-to-Eat food. A food that can be consumed safely without further heat treatment, 

including reheating. Examples include deli salads, bagged salads, and hot dogs. 

Sample Correlation Coefficient   See Pearson correlation coefficient. 

Sampling Distribution  A probability distribution for a statistic, typically estimated based upon 

random sampling error.  A sampling distribution is the basis for estimation of confidence 

intervals for a statistic. 

Saturation point   A saturation pint is a value for a model input above which there is no change 

in the output, but below which there can be substantial variation in the output. For 

example, the maximum population density. 

Scatter Plot   A figure in which individual data points are plotted in two-dimensional space. 

Scenario   A set of facts, assumptions, and inferences about a problem of interest that helps an 

analyst in evaluating, estimating, or quantifying the problem of interest.  

Scenario Uncertainty   Uncertainty reflecting that a defined scenario may fail to consider all the 

factors and conditions contributing to the variation of the output. In the case of the food 

safety process risk models, scenario uncertainty is typically associated with missing or 

incomplete information needed to fully define exposure and dose.  

Screening Sensitivity Analysis   Can be used to identify subset of inputs that controls most of the 

output variability with low computational effort especially in models that are 

computationally extensive and have a large number of inputs. Screening methods are 

typically less accurate than refined methods and may be used in tiered approach. 

Sensitivity Analysis   The assessment of the impact of changes in input values or assumptions on 

generated output values.  

Sensitivity Index   A quantitative measure of the degree of association between changes in the 

values of a model output relative to changes in the values of a model input 
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Simulation    A series of calculations that attempt to predict a value or outcome. Simulation is 

useful for exploring outcomes that are not observable under the conditions of interest, or 

an outcome whose occurrence is potentially dangerous. 

Spatial Dimension of a Scenario   The spatial considerations for a scenario including the relevant 

geographic area. Depending upon the level of detail of the model, it may be necessary to 

incorporate multiple scales of geographic information. 

Spearman Correlation Coefficient   A measure of the strength of the monotonic relationship 

between two random variables. Thus, it is applicable to situations where there is a 

monotonic nonlinear relationship. It is also known as the rank correlation coefficient. 

Statistical Sensitivity Analysis Methods   A category of sensitivity analysis methods that are 

typically applied to probabilistic models for which random samples are generated for 

model inputs and corresponding samples are estimated for model outputs.  Examples of 

statistical sensitivity analysis methods include correlation analysis, regression analysis, 

ANOVA, and CART. 

Statistical Significance   The satisfaction of a statistical criterion determined by a priori 

specification of an acceptable probability of wrongly rejecting a true hypothesis (i.e., 

usually 0.05 percent).  

Threshold   A value in an input domain below which a model output does not respond to changes 

in the input. An example is a specific storage temperature below which zero growth is 

estimated for an organism. 

Temporal Dimension of a Scenario   The temporal dimension of a scenario typically include:  (1) 

the time for each major step in a process; (2) the activity patterns of individuals or 

agencies; (3) “seasonal” effects, whether at a short time scale (e.g., daily, weekly) or a 

longer scale (e.g., monthly, quarterly, annual); and (4) the time period associated with 

occurrence of illness as a result of one or more exposures.   

Treatment   With respect to ANOVA, a specific combination of levels for different factors. For 

example, in a factorial design with two factors that have n and m levels, respectively, n × 

m treatments can be specified. 

Two-Dimensional Probabilistic Simulation   A probabilistic simulation in which variability and 

uncertainty in model input are simulated separately. 
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Uncertainty   Lack of knowledge about the “true” value of a quantity, lack of knowledge 

regarding which of several alternative models best describes a mechanism of interest, or 

lack of knowledge about which of several alternative probability density functions should 

represent a quantity of interest. Uncertainty is a property of an analyst. 

Variability   Heterogeneity of values over time, space, or different members of a population. 

Variability is a property of nature. 

What-If Scenario Analysis   A type of conditional analysis in which specific goals with respect to 

risk mitigation can be established. As an example of a ”what-if” scenario, risk managers 

may be interested in decreasing the mean exposure level by a specific amount. 
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