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1 INTRODUCTION

Concern for the safety of the food supply is motivated by recognition of the significant
impact of microbial food borne diseases in terms of human suffering and economic costs to the
society and industry (Lammerding, 1997). Mead et al. (1999) have reported that food borne
disease results in 76 million human illnesses in the United States each year, including 325,000
hospitalizations and 5200 deaths. ERS (2001) estimated the cost of food borne disease to be $6.9
billion annually. The increase in international trade in food has increased the risk from cross-
border transmission of infectious agents and underscores the need to use international risk
assessment to estimate the risk that microbial pathogens pose to human health. The globalization
and liberalization of world food trade, while offering many benefits and opportunities, also
presents new risks. Because of the global nature of food production, manufacturing, and
marketing, infectious agents can be disseminated from the original point of processing and
packaging to locations thousands of miles away.

Food Safety regulatory agencies ensure the safety of the food supply based upon the
Hazard Analysis Critical Control Points (HACCP) system (Hulebak and Schlosser, 2002;
Seward, 2000). One step in the HACCP system is to determine critical control points (CCP)
where risk management efforts can be focused. As an example, a critical control point could be
selection of storage temperature or storage time of a food so as to prevent significant growth of
microbial pathogens. Because of the complex and dynamic nature of the food processing,
transportation, storage, distribution, and preparation system, identification of the critical control
points in a farm-to-table pathway poses a substantial analytical challenge (Rose, 1993; Buchanan
et al. 2000).

Sensitivity analysis of risk models can be used to identify the most significant exposure
or risk factors to aid in developing priorities for risk mitigation. Sensitivity analysis can be used
as an aid in identifying the importance of uncertainties in the model for the purpose of
prioritizing additional data collection or research. Sensitivity Analysis can also be used to
provide insight into the robustness of model results when making decisions (Cullen and Frey,
1999).

1.1 Objectives

The objectives of this project are to identify, review, and evaluate sensitivity analysis

methods based upon case studies with two food safety risk assessment models developed by



USDA and FDA. This objective serves as an aid in identifying potential control points along the
farm-to-table continuum, to inform decisions about food safety research and data acquisition
priorities, and to contribute to the development of sound food safety regulations. This project is
follow-on to previous work as described in Section 1.4. The main focus here is on the
methodology of performing sensitivity analysis and regarding the key insights that such analysis
affords.

The key questions that must be addressed in performing sensitivity analysis with food
safety risk assessment models include the following (Frey, 2002):

e What are the key criteria for sensitivity analysis methods applied to food-safety risk
assessment models?

e What sensitivity analysis methods are most promising for application to food-safety risk
assessment models?

e What are the key needs for implementation and demonstration of such methods?

To address these questions, multiple sensitivity analysis methods were explored and
applied to food safety process risk assessment models for E. coli O157:H7 and Listeria
monocytogenes. This report presents application of several sensitivity analysis methods to these
models. The analyses of this work are targeted to answer several key questions that address the
overall project objectives. The answers to these questions are discussed in the conclusion
chapter. For example, some specific questions include:

e Can simple sensitivity analysis methods such as nominal range sensitivity analysis
provide robust insights in spite of their apparent limitations?

e Which methods can take care of qualitative and quantitative variables simultaneously?

e Which methods can identify and appropriately respond to thresholds?

e Which methods can specifically address high exposure/risk case scenarios?

e Which methods can give insights on interactions between explanatory variables?

e  Which methods can identify or appropriately deal with non-linearity in response?

e How unambiguous is the relative importance of the model inputs based on the selected
sensitivity index?

e How should sensitivity analysis be conducted in a two-dimensional probabilistic

framework?



1.2

Which sensitivity analysis methods can be easily automated to address the additional
complexity introduced by two-dimensional Monte Carlo simulation of variability and
uncertainty?

Food Safety Risk Assessment Modeling

Risk can be represented as a combination of the probability of occurrence and the impact

of adverse effects caused by a hazard. Risk assessment is the process of identifying a hazard and

qualitatively or quantitatively presenting the estimated risk of the hazard. Recently, risk

assessment has been gaining support in governments worldwide as a mechanism for improving

decision making and foretelling regulatory policy effects on public health. The U.S. government

has made commitments to use risk assessment for many different types of decisions including

food safety (WHO, 1995).

The traditional model of toxicological health risk assessment consists of four steps: (1)

hazard identification, (2) hazard characterization, (3) exposure characterization, and (4) risk

characterization (WHO, 1995). Each if these four steps are described briefly.

Hazard Identification. Hazard identification involves listing biological, physical or
chemical hazards of concern to human health that may be associated with the
commodity/product situation in question, or conditions that alter the probability of
significant human exposure to such disease agents. Scenarios may be very specific,
describing food type, processing, potential contamination, storage, preparation methods,
pH, water activity, temperature and other factors. The process of hazard identification
may involve data searches, literature reviews, consultation with municipal, provincial,
national or international organizations or university or industry experts including
technical personnel involved directly with the product.

Hazard Characterization. Hazard characterization is the qualitative and/or quantitative
evaluation of the nature of the adverse health effects associated with biological, chemical,
and physical agents that may be present in food. Hazard characterization may or may not
include dose-response assessment.

Exposure Characterization. Where possible, substantiated evidence may be used to build
quantitative multiplicative models, to help estimate the probability of people
experiencing the negative impact of a food borne health hazard. Stochastic and/or

deterministic models may be used. Stochastic models mimic natural variability by



including a process of random selection within defined probability distributions.
Deterministic models calculate overall probabilities based on a series of point estimates
and do not include a process of random selection. The uncertainty of evidence is modeled
by widening the distribution boundaries set in stochastic models, or by altering point
estimates in sensitivity analysis of deterministic models.

e Risk Characterization. Risk is characterized by estimating in qualitative or quantitative
terms, the probability of and the magnitude of the impact (or consequence) of the adverse
effects of the disease for individuals and for a population. The risk is further
characterized by noting the attendant uncertainty of the estimates, given the available
data.

1.3 Need for Sensitivity Analysis

Sensitivity analysis is the assessment of the impact of changes in input values on model
outputs (Cullen and Frey, 1999). In combination with uncertainty analysis, sensitivity analysis
can include the study of how uncertainty in the output of a model (numerical or otherwise) can
be apportioned to different sources of uncertainty in the model inputs. Hence, sensitivity analysis
is considered by some as prerequisite for model building in any setting, whether diagnostic or
prognostic, and in any field where models are used. Quantitative sensitivity analysis is
increasingly invoked for corroboration, quality assurance, and validation of model-based analysis
(Saltelli, 2002).

Sensitivity analysis can be helpful in verification of a model. Verification is a process of
checking that the model is correctly implemented. If a model responds in an unacceptable way to
changes in one or more inputs, then trouble-shooting efforts can be focused to identify the source
of the problem. Sensitivity analysis can be used to evaluate how robust risk estimates and
management strategies are to model input assumptions and can aid in identifying data collection
and research needs (Frey and Patil, 2002).

1.4 Summary of Previous Work at NCSU

On June 11-12, 2001, NC State University hosted a Workshop on Sensitivity Analysis,
sponsored by the U.S. Department of Agriculture’s Office of Risk Assessment and Cost Benefit
Analysis (USDA/ORACBA). The workshop was part of a project whose objective was to

transfer, apply, and adapt sensitivity analysis methods developed in other disciplines (e.g.



complex engineering systems) to food-safety risk assessment. The workshop proceedings have
been published as a special section of the journal Risk Analysis.

A guest editorial in Risk Analysis describes the HACCP concept that underlies risk
assessment and risk management pertaining to food safety (Hulebak and Schlosser, 2002)
Because the workshop was comprised of participants with different disciplinary backgrounds, it
was important to introduce everyone to a similar conceptual framework.In order to learn from
different disciplines, and in preparation for the workshop, NCSU prepared a literature review
regarding sensitivity analysis methods, including the strengths and limitations of selected
methods that merit consideration for possible application to food safety risk assessment (Frey
and Patil, 2002). The report presents a brief overview of the risk assessment framework
pertaining to food safety risk assessment and then reviews key issues in food safety risk
modeling, including the purpose of the model, complexity, verification, validation, extrapolation,
and the role of sensitivity analysis. Sensitivity analysis methods are classified as mathematical,
statistical, and graphical. Ten specific methods are reviewed, including nominal range
sensitivity analysis, difference in log-odds ratio, break-even analysis, automatic differentiation,
regression analysis, analysis of variance, response surface methods, Fourier amplitude sensitivity
test, mutual information index, and scatter plots. For each method, a description, example,
advantages, and disadvantages are addressed. The methods are compared with respect to
applicability to different types of models, computational issues, ease and clarity in representation
of results, and purpose of the sensitivity analysis. Some methods are model-free and global in
nature, and may be better able to deal with non-linear models that contain thresholds and discrete
inputs than can other methods. However, because each sensitivity analysis method is based upon
different measures of sensitivity, two or more methods can in general produce dissimilar results.
Therefore, as a practical matter, it is advisable to explore two or more techniques. Each method
is good at extracting one or more features of the problem, and each feature corresponds to a
different question put to the system. Setting up appropriately suited sensitivity analysis is
discussed in Saltelli and Tarantola, 2002. Examples of questions that can be asked are:

e Which factor produces fractionally the greatest increment of the output?

e Which factors contribute the most to the variance of the output?

e Which factor is mostly responsible for producing realizations of the output beyond

the 95™ percentile of the distribution of the output (or above a given threshold)?



While the answer to the first question is often the goal of sensitivity analysis, the second
and third questions can be addressed by variance based methods and methods that aid in
characterization of specific case scenarios (e.g., high end exposure cases), respectively.

Selected experts were invited to write and present “white papers” reviewing the
application of sensitivity and/or uncertainty analysis to complex engineered and/or
environmental systems. The purpose of these white papers was to: (1) summarize the
development of sensitivity and uncertainty analysis of complex simulation methods in order to
synthesize lessons learned in the field; (2) provide a state-of-the-art review and critique of
selected applied methods and approaches; and (3) identify the most promising methods and
approaches for application to large, complex food safety process risk models. Each of the five
papers is briefly summarized here.

The first paper highlighted important criteria for sensitivity analysis methods (Saltelli,
2002). These included the need to properly specify a model output that is directly relevant to a
decision, as well as identification of desirable properties in sensitivity analysis methods. The
latter includes ability to cope with the scale of inputs and the shape of distributions assigned to
inputs; global methods that can deal with the simultaneous effects of variation in multiple inputs;
model independent methods that work regardless of the functional form of the model; and an
ability to group inputs as if they were a single factor. A distinction was made between
prognostic (forecast) and diagnostic (estimation) models. Variance-based methods, such as
variations of Sobol’s method, are described and illustrated with an example using a prognostic
model.

The second paper illustrates the use of Latin Hypercube sampling combined with
statistical and regression techniques in an overall approach for first propagating probability
distributions through a model and then analyzing the results to identify the most sensitive inputs
(Helton and Davis, 2002). With 150 cited references, the paper also provides the reader with an
introduction to a large supporting literature.

The third paper discusses the reliability of a model, which in the author’s view is related
to the testability of the model (Kohn, 2002). The author introduces sensitivity analysis
techniques based upon system sensitivity theory, with applications to empirical models and to
metabolic networks. Examples of the application of such methods to physiological modeling are

reviewed, illustrating the dynamic nature of sensitivities. Sensitivity analysis was shown to



provide insight into the apportionment of the model response to various inputs in a manner that
can be explained based upon understanding of the biological processes being modeled.

The fourth paper places risk analysis and sensitivity analysis more squarely in the context
of government decision-making, including the process of formulating hypotheses and bounding
of the risk analysis problem (Pate-Cornell, 2002). A probabilistic framework based upon
Bayesian methods is described. This approach is motivated because “expert judgment is simply
unavoidable” in most risk assessment problems. This paper places the need for and
interpretation of sensitivity analyses in the context of the formulation of a risk problem,
including the scenarios and the model, the source of information for developing model inputs,
and the specific methods used to model the risk problem.

The fifth paper addresses the risk management implications of the trend from point-
estimate risk analysis to analyses that explicitly address both variability and uncertainty
(Thompson, 2002). Using two example case studies, one based upon ground fatalities
attributable to airline crashes, and the other based upon the risks and benefits of airbags,
Thompson illustrates the importance of explicitly accounting for variability in risks. With the
growing role of probabilistic risk assessments pertaining to food safety, as reflected by recent
examples for foodborne Listeria monocytogenes, Vibrio parahaemolyticus in raw molluscan
shellfish, Campylobacter in chicken, E. coli O157:H7 in beef, and Salmonella Enteritidis in shell
eggs and egg products, there will be a need for risk managers to take into account both variability
and uncertainty when developing risk management strategies.

The group did not recommend specific sensitivity analysis methods for application to
food safety risk assessment models. Instead, the group emphasized using the methods that can
deal with model characteristics like interactions, nonlinearities, discontinuities, and discrete
inputs. The group recommended use of two or more sensitivity analysis method to obtain insight
into robustness of results. Overall, the workshop resulted in identification of key criteria for
sensitivity analysis methods and recommendations for work needed, listed in Section 1.5, to
further evaluate and specify appropriate sensitivity analysis approaches in the context of food-
safety risk assessment.

1.5  Challenges for Sensitivity Analysis

The workshop addressed three key questions pertaining to the application of sensitivity

analysis in food safety risk assessment. These three key questions are also the focus of this



report. The insights obtained from the workshop are briefly reviewed here for each question and

are further discussed by Frey (2002).

Question 1: What are the key criteria for sensitivity analysis methods applied to food-safety risk
assessment models?

The workshop participants agreed that a key criterion for sensitivity analysis and for the
risk model and analysis in general, are that it must be relevant to a decision. This means that the
model output of interest must be directly related to the decision. Using a highly stylized example,
if a decision is informed by whether risk is above or below a threshold, then the model output
should be a variable indicating the probability that the estimated risk is above or below the
threshold. The sensitivity analysis should pertain to variation in inputs that cause a change in the
value of the output that would lead to a different decision.

Technical requirements of a sensitivity analysis method are manifold and differ from one
application to another, and from one decision application to another. The ideal sensitivity
analysis method would be applicable to models that have the following characteristics that are
typical of food safety risk models:

e Nonlinearities;

e Thresholds (e.g., below which there is no growth of a microbial pathogen);

e Discrete inputs (e.g., integer numbers of animals or herds, yes or no indicators of
contamination);

e Incorporation of measurement error;

e Variation in the scale (units and range) and shape of the distributions of model inputs;
and

e Temporal and spatial dimension, including dynamics, seasonality, or inter-annual
variability.

An ideal sensitivity analysis method would be model independent i.e., functional form
(e.g., monotonic). Specifically, the sensitivity analysis method should not require the
introduction of any assumptions regarding the functional form of the risk model and, therefore,
should be applicable to a wide range of different model formulations. The method should
provide not just a rank ordering of key inputs, but also some quantitative measure of the
sensitivity of each input so that it is possible to distinguish the most strongly sensitive inputs

from those with weaker influence on the selected model output. For example, is the most



sensitive of the inputs substantially more important than the second ranked input, or do the top
two inputs have approximately equal influence on the model output?

Another challenge regarding the application of sensitivity analysis methods to food-safety
risk assessment models is the importance of distinguishing variability and uncertainty where
appropriate. It should be noted that such a distinction could be useful but not essential in every
case. Thus, it may or may not be necessary, in a particular assessment, to distinguish between
variability and uncertainty when doing the sensitivity analysis. It is recommended that the key
sources of uncertainty that are based on data analysis be distinguished from key sources of
uncertainty that are based on expert judgment. For important uncertain inputs for which
uncertainty was estimated based upon expert judgments, refinements can be made based upon
additional expert elicitation or development of an appropriate data collection effort. Refinement
of important estimates of uncertainty that were based upon data analysis would typically require
collection of additional data.

Question 2: What sensitivity analysis methods are most promising for application to food-safety
risk assessment models?

The workshop participants did not identify specific methods. Instead, the group
emphasized the key criteria that were generated in response to the first question. For example,
methods that can deal with interactions, nonlinearities, discontinuities, and discrete inputs would
be preferred over methods that cannot. Methods that are global or generic, such as ANOVA, are
likely to be more promising than other types of methods, although ANOVA also has some
limitations. However, techniques are also needed that can identify not just the effect of variance
in the inputs, but also shift in central tendency or position of the output associated with skewness
of distributions assigned to inputs.

Before applying a sensitivity analysis method, it may help to reduce the computational
burden by narrowing down the search space among the input parameters. For example, if adverse
consequences do not occurred unless a storage temperature exceeds a threshold above which
microbial growth becomes significant, it may not be necessary or important to analyze model
behavior when the storage temperature is below the threshold. Thus the search space could be
narrowed to cases where the storage temperature is above the threshold in order to reduce
computational time.

The goal of this research work is to identify the sensitivity analysis methods that are most

promising for application to food safety risk assessment models, based upon case studies with



two representative models in order to judge the practical applicability of the methods. If a
method allows for particular features of interest such as non-linearity, discontinuities, and
discrete inputs then it is preferred over others.
Question 3: What are the key needs for implementation and demonstration of such methods?
The workshop participants agreed that different methods of sensitivity analysis should be
explored and applied to more than one food safety risk model. The methods should be tested at
research institutes and efforts should be made to confirm and validate the results. The process of
testing methods will help establish a track record for specific methods applied to food safety
process risk models. A comparison of methods, taking into account real life constraints, should
be part of the guideline. The guideline should outline a tiered approach to sensitivity analysis.
Because sensitivity analysis formulation is conditional on the assumption that the model
formulation is acceptable, it is important to have a prior comfort with the plausibility of the
model and to examine the sensitivity analysis results to determine if any of the model responses
are inconsistent with plausible expectations regarding the relationship between the model output
and model inputs.

1.6 Selection of Models for Case Studies

Based on the results of the workshop on sensitivity analysis held at NC State it was
decided that multiple sensitivity analysis methods should be applied to two food safety risk
assessment models, namely Escherichia Coli O157:H7 in ground beef and Listeria
monocytogenes among selected categories of ready-to-eat foods. The former model was
developed by the U.S. Department of Agriculture, while the latter was developed by the Food
and Drug Administration (FSIS, 2001 and CFSAN, 2001). These models are referred to here as
the “E. coli” and “Listeria monocytogenes” models, respectively. These models are further
described in Chapter 3 and Chapter 12, respectively.

A key feature that distinguishes the two selected food risk assessment models is that there
was no clear objective or risk management question posed in the E. coli:O157 study. However in
the case of Listeria monocytogenes study the objective was to arrive at the relative risk ranking
for various food groups considered and thus prioritize future risk reduction efforts among the
food categories.

Both models are non-linear and have thresholds. The Listeria monocytogenes model has

an upper limit on possible growth of Listeria monocytogenes. The E. coli model has threshold in
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the growth estimation part. For example, there is no growth below a particular storage
temperature. For the Listeria monocytogenes model, all inputs are continuous, while the E. coli
model has both discrete and continuous inputs. For example, the storage temperature is a
continuous input in both models, whereas the ground beef consumption type is defined as a
discrete input in E. coli model. The two models do not have a spatial dimension in that they do
not explicitly account for differences in geographic location. The Listeria monocytogenes model
addresses the risk to three sub-populations, namely, neonatal, intermediate and elderly, while the
E. coli model considers two different cattle categories that act as E. coli sources or carriers. The
E. coli model also has a temporal dimension in that high and low prevalence seasons are
considered separately.

1.7 Organization of the Report

A brief introduction to sensitivity analysis methods is given in Chapter 2. The report is
divided into two main parts corresponding to the E. coli and Listeria monocytogenes models.
Part A includes Chapters 3 to 11 and Part B includes Chapters 12 to 20. Chapter 3 explains the E.
coli model and presents case scenarios and modifications performed in the original model.
Chapters 4 to 9 present the results of nominal range sensitivity analysis, analysis of variance,
regression analysis, classification and regression tree, scatter plots and conditional sensitivity
analysis, respectively in the E. coli model. Chapter 10 presents the results of exposure
assessment in ground beef servings. Chapter 11 summarizes the conclusions and
recommendations based on the analyses of the . coli model in Chapters 4 to 10.

Chapter 12 explains the Listeria monocytogenes model and presents the case scenarios
and modifications performed in the original model. Chapters 13 to 18 present the results of
nominal range sensitivity analysis, differential sensitivity analysis, regression analysis, analysis
of variance, classification and regression tree, scatter plots and conditional sensitivity analysis,
respectively. Chapter 19 summarizes the conclusions and recommendations based on the
analyses of the Listeria monocytogenes model. Chapter 20 answers the questions raised in
Section 1.1 based on the results of application of sensitivity analysis to both the E. coli and

Listeria monocytogenes models.
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2 SENSITIVITY ANALYSIS METHODS

The objective of this chapter is to briefly review typical sensitivity analysis methods and
to recommend the selection of methods to apply to one or both of the case study food safety risk
assessment models. Sensitivity analysis methods may be broadly classified as mathematical
methods, statistical (or probabilistic) methods, and graphical methods. This classification helps
in understanding applicability of sensitivity analysis methods for different types of models, and
in selecting appropriate methods according to their usefulness to a decision-maker. Mathematical
methods are useful for deterministic and probabilistic models. Statistical methods are generally
used for probabilistic models. Graphical methods are usually complimentary to mathematical and
statistical methods. Graphical methods can be used for any kind of model (Frey and Patil, 2002).
Specific methods in each of these three categories are reviewed. Methods selected for case
studies and evaluations are identified.

2.1 Mathematical Methods for Sensitivity Analysis

Mathematical methods assess sensitivity of a model output to the range of variation of an
input. These methods typically involve calculating the output for a few values of an input within
the possible range (e.g. Salehi et al., 2000). For example, the output of a model can be calculated
for the highest and lowest possible values of an input. Sensitivity is usually described in terms of
relative change in the output. These methods do not address the variance in the output due to the
variance in the inputs, but they assess the impact of range of variation in the input values on the
output (Morgan and Henrion, 1990). Mathematical methods are helpful in screening the most
important inputs (e.g., Brun et al., 1997). Mathematical methods can be used to identify inputs
that require further data identification and research in the case of deterministic models (e.g.,
Ariens el al., 2000).

Frey and Patil (2002) discussed four methods for mathematical sensitivity analysis,
including nominal range sensitivity analysis (NRSA), difference in log odd ratio (ALOR), break-
even analysis, and differential sensitivity analysis (DSA) technique. NRSA and DSA were
selected for application to the E. coli and Listeria monocytogenes models. ALOR and breakeven
analysis were considered but not selected. ALOR requires the model output to be in the form of
probability. Since neither the E. coli nor Listeria monocytogenes model has such an output,

ALOR was not selected. Breakeven analysis requires the output to be characterized as acceptable
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or unacceptable. Identification of acceptable or unacceptable risk is not explicitly performed in

the E. coli or Listeria monocytogenes models and hence breakeven analysis was not selected.
The following sections explain the selected methods briefly. Section 2.1.1 describes

NRSA and Section 2.1.2 describes the DSA technique. The description of methodology,

advantages and disadvantages are covered in each section.

2.1.1 Nominal Range Sensitivity Analysis Method

NRSA is also known as local sensitivity analysis or threshold analysis (Cullen and Frey
1999; Critchfield and Willard, 1986). This method is applicable to deterministic models. A
typical use of NRSA is as a screening analysis to identify the most important inputs to propagate
through a model in a probabilistic framework (Cullen and Frey, 1999). NRSA can be used to

prioritize data collection needs as demonstrated by Salehi et al. (2000).

2.1.1.1 Description

NRSA is used to evaluate the effect on model outputs of varying only one of the model
inputs across its entire range of plausible values, while holding all other inputs at their nominal
or base-case values (Cullen and Frey, 1999). The difference in the model output due to the
change in the magnitude of the input variable is referred to as the sensitivity or swing weight of
the model to that particular input variable (Morgan and Henrion, 1990). The sensitivity also can
be represented as a positive or negative percentage change compared to the nominal solution.
The sensitivity analysis can be repeated for any number of individual model inputs. The
sensitivity index is calculated as follows:

Output — Ouput

max input

min input
2-1
Output 1)

Sensitivity =

nominal input

The results of NRSA are most valid when applied to a linear model. In such cases, it
would be possible to rank order the relative importance of each input based upon the magnitude
of the calculated sensitivity measure as long as the ranges assigned to each sensitive input are
accurate. However, for a non-linear model, the sensitivity of the output to a given input may
depend on interactions with other inputs, which are not considered. Thus, the results of NRSA
are potentially misleading for nonlinear models. In such cases, conditional NRSA can be done, in

which NRSA is applied to different combinations of input values.
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2.1.1.2  Advantages

NRSA is a relatively simple method that is easily applied. It works well with linear
models and when the analyst has a good idea of plausible ranges that can be assigned to each
selected input. The results of this approach can be used to rank order key inputs only if there are

no significant interactions among the inputs, and if ranges are properly specified for each input.

2.1.1.3 Disadvantages

NRSA addresses only a potentially small portion of the possible space of input values,
because interactions among inputs are difficult to capture (Cullen and Frey, 1999). Conditional
sensitivity analysis, as described in Section 2.3.2, may be used to account for correlation between
inputs or nonlinear interactions in model response, but it has limitations because of the
combinational explosion of possible cases. Potentially important combined effects on the
decision (or output) due to simultaneous changes in a few or all inputs together are not shown by
nominal sensitivity analysis for other than linear models; thus for nonlinear models it is not clear

that NRSA will provide a reliable rank ordering of key inputs.

2.1.2 Differential Sensitivity Analysis (DSA)
Differential Sensitivity Analysis (DSA) is a local sensitivity analysis method. It is most
applicable for calculating the sensitivity of the output to small deviations in the point estimate of

an input.

2.1.2.1 Description

In DSA the local sensitivity is calculated at one or more points in the parameter space of
an input keeping other inputs fixed. The sensitivity index is calculated based on a finite
difference method. DSA is performed with respect to some point x in the domain of the model.
A small perturbation Ax with respect to the point value of a model input, such as a change of plus
or minus one percent, can be used to evaluate the corresponding change in the model output.
Thus, the sensitivity index may be calculated as:

Output —Ouput,_,,

X+AX

Output

Sensitivity = (2-2)

A more generalized form of DSA is the Automatic Differential (AD) sensitivity analysis.
AD is an automated procedure for calculating local sensitivities for large models (Grievank,

2000). In AD the local sensitivity is calculated at one or more points in the parameter space of
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the model. At each point, the partial derivative of the model output with respect to a selected
number of inputs is evaluated. The values of partial derivatives are a measure of local sensitivity.
Automatic differentiation has been applied to models that involve complex numerical
differentiation calculations such as partial derivatives, integral equations, and mathematical

series (Hwang et al., 1997).

2.1.2.2 Advantages

DSA is conceptually easy to apply and needs only a small amount of computational time
compared to statistical methods if sensitivity at only few points is calculated. It is especially
useful when a high degree of confidence is attributed to a point estimate and thus the variation in
the output need only be tested for small variations around the point estimate. The sensitivity thus
obtained can aid in identifying the significant figures needed for the point estimates of an input.
DSA provides insight into the comparative change in the output associated with an equivalent

perturbation of each input.

2.1.2.3 Disadvantages

DSA does not consider the possible range of values that inputs can take in calculation of
sensitivity indices. Thus, no inference can be made regarding global sensitivity. DSA is based on
finite difference method. AD is superior to finite difference approximations of the derivatives
because numerical values of the computed derivatives are more accurate and computational
effort is significantly lower (Bischof et al., 1992).

For nonlinear models, DSA does not account for interaction among inputs. Therefore, the
significance of differences in sensitivity between inputs is difficult to determine making the rank
ordering of key inputs potentially difficult.

2.2 Statistical Methods for Sensitivity Analysis

Statistical methods involve running simulations in which inputs are assigned probability
distributions and assessment of the effect of variance in inputs on the output distribution (e.g.
Andersson et al., 2000). Depending upon the method, one or more inputs are varied at a time.
Statistical methods allow one to identify the effect of simultaneous interactions among multiple
inputs.

Distributions for model inputs can be propagated through the model using a variety of

techniques, such as Monte Carlo simulation, Latin Hypercube sampling, and other methods
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(Cullen and Frey, 1999). Sensitivity of the model to individual inputs or groups of inputs can be
evaluated by variety of techniques. Statistical methods are widely used for probabilistic models
as these methods can evaluate the effect of variance in the inputs on the output. A probabilistic
model is itself deterministic in nature, but inputs are assigned distributions (Cullen and Frey,
1999).

Frey and Patil (2002) discuss five statistical methods for sensitivity analysis, including
linear regression analysis (RA), analysis of variance (ANOVA), response surface method
(RSM), Fourier Amplitude Sensitivity Test (FAST), and Mutual Information Index (MII). Other
statistical-based methods for sensitivity analysis were identified during the course of this work,
including sample and rank regression coefficients, rank regression, Categorical and Regression
Trees (CART), and Sobol’s method. Of these various methods, the following were selected as
the basis for one or more case studies: RA; ANOVA; sample (Pearson) correlation coefficients;
rank (Spearman) correlation coefficients; and CART. More information regarding each of these
methods is given in the following subsections.

Methods not selected for case studies include RSM, FAST, Sobol’s method, and MII.
The rationale for not including these methods in case studies is briefly summarized here. RSM
was not selected because it is not typically a sensitivity analysis method in itself; rather, it is used
to simplify the original model for the purpose of facilitating application of iterative sensitivity
analysis methods. RSM is similar in many respects to the regression methods, although the
functional form of a typical RSM is nonlinear with interaction terms.

FAST and Sobol’s methods are both variance-based methods that enable apportionment
of the variance in a model output to the variance in model inputs. These two methods are
potentially useful and powerful methods; however, at this time software for application of these
methods was not readily available that could be appropriately interfaced with the two case study
models. FAST is included as a capability of the SIMLAB software that is currently undergoing
commercialization. The most readily available implementation of FAST is in a C++ based
software environment (SIMLAB, 2000; Giglioni, 2001) that is not easily interfaced with the
Excel-based models that are the focus of the case studies here. Software for calculation of
Sobol’s indices was not available. Although neither FAST nor Sobol’s method is applied to case

studies here, a brief description of each of these two methods is included in the following
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subsections. Either or both of these methods may be useful to evaluate in the future when
appropriate software for their implementation becomes available.

MII is one of the few methods that can appropriately deal with complex interactions
between model inputs. However, MII requires multiple evaluations of conditional probability
distributions, which requires repetitive Monte Carlo simulations. For example, Patil and Frey
(2003) evaluated MII applied to a draft Vibrio parahaemolyticus food safety risk model for
shellfish. MII is not available in an existing software package. Even if automated, MII would
require dozens or more Monte Carlo simulations per analysis and therefore was deemed to be
impractical to apply to the larger food safety risk models that are the subject of case studies here.

The methods that were applied in one or more case studies to either the E. coli or Listeria
monocytogenes food safety risk assessment models are summarized in the following sections,
including sample and rank correlations, linear regression, ANOVA, and CART. In addition,
FAST and Sobol’s method are briefly discussed to facilitate future consideration of these

methods even though they were not applied here.

2.2.1 Sample and Rank Correlation Coefficients

The correlation coefficient is a statistic that is calculated from sample data, and it is used
to estimate the corresponding population parameter ». Correlation coefficients measure the
strength of a linear the relationship between an input and the output. A correlation exists
between two variables when one of them is related to the other in some way. There are two types

of correlation coefficients: parametric or Pearson and, non-parametric or Spearman.

2.2.1.1 Description

Correlation coefficients can range from -1 to +1. The value of -1 represents a perfect
negative correlation while a value of +1 represents a perfect positive correlation. A value of zero
represents a lack of correlation (Edwards, 1976). The strength of the relationship between x and y
is sometimes expressed by squaring the correlation coefficient and multiplying by 100. The
resulting statistic is known as variance explained (or R°). For example, a correlation of 0.5 means
25% of the variance in y is "explained" or predicted by the x variable. The correlation between

two variables x and y is defined as (Steel et. al., 1997):
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If x and y are not closely related to each other, then their covariance is small and therefore their

correlation is also small.

The inverse Fisher transformation is used to test the statistical significance of the
correlation coefficients. The test is based on the assumption that the distribution of the residual
values (i.e., the deviations from the regression line) for the dependent variable y follows the
normal distribution, and that the variability of the residual values is the same for all values of the
independent variable x. However, Monte Carlo studies suggest that meeting those assumptions
closely is not absolutely crucial if the sample size is not very small and when the departure from
normality is not very large (Steel et. al., 1997).

There are several important kinds of correlation, differing in the details of calculation.
The most widely used type of correlation coefficient is Pearson r, also called the sample, linear
or product moment correlation.

The Spearman correlation coefficient is non-parametric and is also referred to as a rank
correlation. The spearman correlation is similar to the Pearson correlation except that it is
computed from ranks. Therefore, the Spearman correlation is a measure of the stength of the
monotonic relationship between two random variables, and it can account for monotonic
nonlinear relationships (Kendall, 1990). Detailed discussions of the Spearman r statistic, its
power and efficiency can be found in Gibbons (1985), Hays (1981), McNemar (1969), Siegel
(1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949), or Hotelling and Pabst (1936).

2.2.1.2  Application

Correlation coefficients are widely used to assess sensitivity (Cullen and Frey,
1999,Borkman et. al., 1993). Commercial software packages are available to calculate
correlation coefficients using simple menu driven approach. Examples of such software are
@RISK® and Crystal Ball® among many others. However, most menu driven software does not
allow automation when correlation coefficients have to be calculated for a large number of
datasets. In such cases, the macro features of statistical software packages such as SAS® and S-

PLUS™ may be used.

19



2.2.1.3  Advantages

The Pearson correlation coefficients capture linear relationships in the model. Spearman
correlation coefficients can respond to nonlinear monotonic relationships. Both correlation
coefficients are relatively easy to compute, as they are readily available in many commercial

software packages.

2.2.1.4  Disadvantages

Correlation does not imply causation. There can be a case where a third variable is
influencing the two variables with high correlation. Pearson coefficients are inaccurate for
nonlinear models and Spearman coefficients are inaccurate for non-monotonic models. Neither
Pearson nor Spearman coefficients capture complex dependencies nor directly deal with

interactions.

2.2.2 Regression Analysis
Regression analysis can be employed as a probabilistic sensitivity analysis technique as
demonstrated by Iman et al. (1985). Regression analysis serves three major purposes (Neter et
al., 1996; Sen and Srivastava, 1990):
e Description of the relationship between input and output variables
e Control of input variables for a given value of the output variable

e Prediction of a output based on input variables

2.2.2.1 Description

A mathematical relation between inputs and the output must be identified prior to
regression analysis. Such relationship could be identified or hypothesized based upon inspection
of scatter plots or upon understanding of the functional form of the model. Regression analysis is
most properly performed when the output is a random sample. The effect of variation of inputs
on the variation in output can be evaluated using regression coefficients, standard errors of
regression coefficients, and the level of significance of the regression coefficients (Devore and
Peck, 1996; Steel et al., 1997; Sen and Srivastava, 1990). Regression analysis typically involves
fitting a relationship between inputs and an output such as this linear one:

Yi=po+ BXii+ poXoi+ o + BuXni + & (2-4)
where,

Yi = i"™ output data point for i™ input data points
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Xj,1 = i"™ input data point for the j"™ input

el

& = error for the i data point

regression coefficient for the j™ input

Each term in the regression model can have a different basis function, which can be linear
or nonlinear. Most typically, each basis function is a linear function of only one input. If the
analyst has a priori knowledge of more appropriate functional forms, they can be used instead.
For a linear model, the regression coefficient 4, can be interpreted as the change in output Y;
when the input X;; for a given value of j increases by one unit and the values of all other inputs
remain fixed (Devore and Peck, 1996). Therefore, regression coefficients can be used as a form
of nominal range sensitivity. The goodness of fit of the regression model to the data can be
measured using the coefficient of multiple determinations, R>. R? is a measure of the amount of
variance in the dependent variable explained by the model (Draper and Smith, 1981). A key
assumption of least squares regression analysis is that the residuals are normally distributed.

Because the regression coefficients are estimated from a random sample of data, the
estimated regression coefficients themselves are random variables. If the coefficient is not
significantly different than zero, then there is not a statistically significant linear relationship
between the input and the output (Draper and Smith, 1981). Conversely, if the coefficient is
statistically significant, then there is stronger evidence of sensitivity. To determine statistical
significance, the standard error of the regression coefficient is estimated. If the ratio of the value
of the regression coefficient divided by its standard error is greater than a critical value, then the
coefficient is deemed to be statistically significant. The critical value is determined based upon
the desired significance level (usually 0.05) and the degrees of freedom of the regression model
(Devore and Peck, 1996). The magnitude of statistically significant regression coefficients can
be used to help determine the ranking of the inputs according to their sensitivity if the inputs or
the coefficients are normalized (or standardized) to remove dimensional effects (Neter et al.,
1996; Iman et al., 1985).

In regression analysis, in order to evaluate the possibility of discarding insignificant
explanatory variables from the model, a specific statistical test, called “Full versus Reduced F-
test” should be performed (Steel and Dickey 1996). The null hypothesis in this test is presented
in Equation 2-5:

H,=p,=p,=A =, =0 versus Not So (2-3)
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The null hypothesis tests if all the coefficients are simultaneously zero. If this hypothesis
is satisfied then none of the inputs corresponding to these coefficients have a significant effect on
the output of the model. A full model considers all inputs, whereas a reduced model considers
only significant inputs. Referring to full and reduced models, the following ratio should be
calculated. Hy should be rejected if Fcaie > Feritical:

SSM Full — SSM Reduced

F. = dfM Fu;l\4 ; g{j‘j Reduced (2-6)
where,
SSM = Model sum of squares
dfiM = Model degrees of freedom
MSE = Error mean square

In order to compare input variables on the basis of regression coefficients, the data must
be normalized. However, instead of the typical standardization approach, in which subtracting
the mean and dividing by the standard deviation normalize the data points, the normalized value
is also divided by a factor accounting for the sample size. The following equation is used for

normalization (Neter et al., 1996).

- [X—XJ 2-7)
n—1 o
where,
X' = Normalized data point;
n = Number of data points
X = Mean of the data set
c = Standard deviation of the data set

Incorporating the detail formulation for standard deviation, the transformed variable, X' can be

represented as:

X = b X=X = X=X < +1 (2-8)

-1 n — [ —
\/n \/Z(Xi_X)Z Z(Xi_X)z

n—1
Therefore, the transformed variable will always lie between +1 and -1. Thus, regression

coefficients can be compared and expressed in terms of percentages.
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Regression analysis can handle both qualitative and quantitative inputs. Quantitative
inputs take on values on a well-defined scale: examples are storage time, storage temperature,
and decontamination efficiency. In contrast, many inputs of interest are not quantitative but are
qualitative. Examples of qualitative inputs are gender (male, female), season (summer, winter),
and ground beef consumption type (hamburger, raw, meatballs). The method used for
addressing qualitative inputs in regression analysis is explained here. This method is used in case
studies for the E. coli model in which there are qualitative inputs.

There are many ways of identifying the levels of a qualitative input. One of these
methods is application of indicator variables that can take on values of 0 and 1 (Neter et al.,
1989). The use of indicator variables for each level of a qualitative input leads to computational
difficulties such as singularity in the matrix of coefficients. An approach that can be used to
avoid this difficulty is to add an extra condition to the model by dropping one of the indicator
variables and assuming that the summation of level effects is zero. Hence, a qualitative input
with ¢ levels is represented by ¢ — /indicator variables, each taking on the values 0 and 1. Thus,
if all of the ¢ — I indicators have a value of 0, it is implied that the ¢" level is chosen. Any
solution to the regression model with a qualitative input will provide estimated coefficients for
each of the indicator variables and not for the qualitative input directly. Hence, it is important to
understand the meaning of the regression coefficients when there is a qualitative input in the
model. If there is no interaction between the qualitative and quantitative inputs to the model,
estimated coefficients for the indicator variables have the effect of adjusting the intercept of the
regression model conditional on the selected level of the qualitative input. This causes the fitted
regression model to shift up or down based on the magnitude of the coefficients.

Regression analysis is used as a method for evaluating the sensitivity of the output to the
inputs of the model using the estimated regression coefficients of quantitative inputs on a
comparative basis. For a qualitative input, there are typically multiple coefficients estimated for
the indicator variables and not one coefficient for the original qualitative input. Furthermore,
because the indicator variables can have values of only 0 and 1, the magnitude of their
coefficients does not have the same interpretation as that for a quantitative input. Moreover,
estimated coefficients for indicator variables are not unique. These coefficients depend on the

assumption made for solving the singularity problem (e.g., sum of level effects is zero).
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Therefore, the estimated coefficients for the indicator variables cannot be used in a comparative
basis with those of the quantitative inputs.

As an alternative approach for sensitivity analysis when there is a qualitative input to the
model, F values estimated for both qualitative and quantitative inputs are used as indices of
sensitivity. An F value corresponding to each input represents the ratio of the mean input sum of
squares to the mean error sum of squares (Neter et al., 1996). A statistically significant F value
indicates that there is a statistically significant effect corresponding to the input and the input
cannot be discarded from the regression model. Moreover, for quantitative inputs it can be
proved that the F value is equivalent to the square of the t value. The t value is the ratio of the
estimated coefficient for the quantitative input to the standard error corresponding to the
estimated coefficient. Large F values correspond with cases where the standard error for the
input is small indicating that there is a small amount of uncertainty regarding estimated
coefficient. In those cases, the range of the estimated confidence interval for the coefficient is
narrow. In contrast, small F values correspond with cases where the standard error for the
estimated coefficient is large indicating that there is large amount of uncertainty regarding
estimated coefficient. In these latter cases, the range of the estimated confidence interval for the
coefficient is wide. Hence, F values not only take into account the magnitude of the coefficient,
but also consider the amount of error corresponding to each coefficient.

Regression analysis can be applied using commercial software software’s like SAS® and
S-PLUS™. Macro feature in these software packages is used to automate the analysis when

applied to large number of datasets.

2.2.2.2 Advantages

Regression techniques such as the ones discussed here allow evaluation of sensitivity of
individual model inputs, taking into account the simultaneous impact of other model inputs on
the result (Cullen and Frey, 1999). Other regression techniques, such as those based upon the
use of partial correlation coefficients, can evaluate the unique contribution of a model input with
respect to variation in a selected model output (Brikes and Dodge, 1993). Moreover, a rank
regression approach may also be used. In rank regression, the ranks of each input and the output
are used instead of the sample values. Rank regression can capture any monotonic relationship
between an input and the output, even if the relationship is nonlinear. Sample and rank

regression methods are discussed elsewhere, such as by Neter ef al. (1996), Iman et al. (1985),
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Brikes and Dodge (1993), and Kendall and Gibbons (1990). Also, methods such as the change-
point regression that estimate the parameters corresponding to the points at which the slopes

change may be able to identify thresholds in the model (Ogden and Parzen, 1996).

2.2.2.3 Disadvantages

The key potential drawbacks of regression analysis include: possible lack of robustness
if key assumptions of regression are not met; the need to assume a functional form for the
relationship between an output and selected inputs; and potential ambiguities in interpretation.
Regression analysis works best if each input is statistically independent of every other input
(Devore and Peck, 1996). Furthermore, the residuals of a least squares regression analysis must
be normally distributed and independent. If these conditions are violated, the results of the
analysis may not have a strict quantitative interpretation, but instead should be treated as
providing conceptual or qualitative insights regarding possible relationships. The results of
regression analysis can be critically dependent upon the selection of a functional form for the
regression model. Thus, any results obtained are conditioned upon the actual model used.
Regression analysis can yield results that may be statistically insignificant or counter-intuitive
(Neter et al., 1996). The lack of a clear finding may be because the range of variation of that
input was not wide enough to generate a significant response in the output. Thus, regressions
results can be sensitive to the range of variation in the data used to fit the model and may not
always clearly reveal a relationship that actually exists. The regression model may not be useful
when extrapolating beyond the range of values used for each input when fitting the model

(Devore and Peck, 1996).

2.2.3 Rank Regression
Rank regression is a regression method where input and output values are rank ordered
and the linear association between the ranks of an output and corresponding inputs is estimated

in terms of rank regression coefficients (Neter et. al., 1996).

2.23.1 Description
The procedure for rank order regression is similar to that of stepwise linear regression
except that ranks are used instead of sample values. The input and output values are rank

ordered. A regression model, minimizing sum of squares for the output, is fit to the ranked data.
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A high R? value indicates a monotonic relationship. The rank regression coefficient can be used

to rank the inputs.

2232 Application
Sample and rank regression methods are discussed elsewhere, such as by Neter et al.
(1996), Iman et al. (1985), Brikes and Dodge (1993), and Kendall and Gibbons (1990). Rank

STM

regression can be applied using commercial software such as SAS® and S-PLUS™. The macro

features of the software can be used for automation when applied to a large number of datasets.

2233 Advantages

Rank regression can capture any monotonic relationship between an input and the output,
even if the relationship is nonlinear. Rank regression is especially useful when there is high
amount of variance or noise in the data (Steel, et. al., 1997). Rank regression can be
computationally more efficient as it does not have to deal with large numbers, especially outliers
and decimal digits in the original data. Instead, all inputs have the same uniformly distributed

range of ranks from 1 to n, where n is the sample size.

2.2.3.4  Disadvantages

Rank regression assumes a monotonic model and thus is not applicable for models
explained by non-monotonic functions. Rank regression coefficients, unlike standard regression
coefficients, cannot be transformed to obtain sensitivities in terms of the original ranges of each

input. Non-linearity in the response cannot be directly inferred from rank regression results.

2.2.4 Analysis of Variance

ANOVA is a probabilistic sensitivity analysis method used for determining whether there
is a statistical association between an output and one or more inputs (Krishnaiah, 1981).
ANOVA differs from regression analysis in that regression analysis is used to form a predictive
model whereas ANOVA is a general technique that can be used to test the hypothesis that the
means among two or more groups are equal, under the assumption that the mean of the outputs
for each of the groups is normally distributed with same variance (Neter et. al., 1996). Also,

ANOVA addresses both categorical inputs and groups of inputs (Steel et. al., 1997).

2.2.4.1 Description
An input is referred to as a “factor” and specific ranges of values for each factor are

considered as factor “levels” in ANOVA. In ANOVA a “treatment” is a specific combination of
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levels for different factors. An output is referred to as a “response variable” and a “contrast” is a
linear combination of two or more factor level means. For example, a contrast can be built to
evaluate the mean growth of pathogens when the storage temperature varies between high and
low levels for a specific storage time. Discrete variables are easily treated as levels. The
continuous variables can be partitioned to create levels. For example, storage temperature in the
Listeria monocytogenes model is a continuous factor that can take any value between 0 °C to 10
°C. In order to define levels for this factor, this range can be divided into two discrete levels
representing low and high temperatures. Temperature values between 0 °C and 5 °C are
considered for the low level and temperatures between 5 °C to 10 °C are considered for the high
level. Single-factor ANOVA is used to study the effect of one factor on the response variable.
Multifactor ANOVA deals with two or more factors and it is used to determine the effect of
interactions between factors. A qualitative factor is one where the levels differ by some
qualitative attribute, such as a type of pathogen or geographic regions (Neter et al., 1996).

ANOVA is used to determine if the mean values of the output vary in a statistically
significant manner associated with variation in values for one or more inputs. If the mean
response of the output does not have a significant association with variation in the inputs, then
the variation in the output is random. ANOVA uses the F test to determine whether there exists a
significant difference among treatment means or interactions. If the null hypothesis (no
difference among treatments or interactions) is accepted, there is an implication that no relation
exists between the factor levels and the response. When the F test rejects the null hypothesis,
thorough analysis of the nature of the factor-level effects should be undertaken (Neter et al.,
1996).

In ANOVA, it is assumed that the replications for a treatment are done by sampling from

a population normal distribution. These population normal distributions corresponding to each
treatment are assumed to have the same variance but different population means. As a result of
these assumptions, the mean of responses for a treatment is also a random sample from a normal
distribution whose variance is population variance for the treatment divided by number of
replications. Also, the mean of this normal distribution is the same as the population mean for the
normal distribution corresponding to the treatment (Neter et. al., 1996). Diagnostic checks are
important to determine whether the assumptions of ANOVA are violated. If any key

assumptions are violated then there can be corrective measures to address the problem. The F
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test is generally robust to deviations from these assumptions but substantial departures from
normality or large differences in the variances of the output can influence statistical test results
(Lindman, 1974). In the case of correlated inputs, the results of the F test may not be robust.
However, approaches such as principal component analysis to group correlated factors can be
used to address this problem (Kim and Mueller, 1978).

In ANOVA, the statistical significance of factors is tested based on F values. The F
values can be used to rank the factors based on their relative magnitude. The higher the F value
for a factor, the more sensitive is the output to the factor. Therefore, factors with higher F values
are given higher rankings. The sum of squares for each factor may be considered as an
alternative measure of sensitivity. However, F value is preferred as it accounts for not only the
sum of squares but also the degree of freedom associated with the factor (Carlucci, 1999).

The F values calculated for each effect indicate the statistical significance of the
respective effect. The R* value for ANOVA indicates the fraction of output variance captured by
the main and interaction effects considered in the model. Moreover, a high R” implies that results
are not compromised by inappropriate definition of the levels for each factor. Thus, the R* can be
used as diagnostic for ANOVA.

Commercial software’s such as SAS® and S-PLUS™ allow application of ANOVA.
When ANOVA is applied to a large number of datasets macro feature of these software’s is used

to automate the application and summarization of results.

2.2.4.2 Advantages

ANOVA can be used to analyze both continuous and discrete factors (Montgomery,
1997). The results of ANOVA can be robust to departures from key assumptions, and additional
techniques can be employed to deal with issues such as multi co-linearity. ANOVA allows
evaluation of the “main effect” between factors. The main effect is the effect of the factor alone,
averaged across the levels of other factors. ANOVA can also be used to evaluate the “interaction
effect” between factors. An interaction effect is the variation among the differences between
means for different levels of one factor over different levels of another factor. For example,
when the difference between the mean responses for high and low levels of the storage
temperature at a low level of the storage time is not equal to difference between the mean
responses for high and low levels of the storage temperature at a high level of the storage time,

there is an interaction between the storage time and the storage temperature. If there is a
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significant interaction, detailed contrasts can be evaluated. By comparing results for different

levels of each factor, it might be possible to identify thresholds in the model response.

2.2.4.3 Disadvantages

ANOVA can become computationally intensive if there are a large number of inputs. If
this becomes a problem, a suggestion by Winter et al. (1991) is to try to reduce the number of
inputs analyzed by using some less computationally intensive method, such as NRSA, to screen
out insensitive inputs. If there is a significant departure of the response variable from the
assumption of normality, then the results may not be robust (Lindman, 1974). Errors in the
response variables due to measurement errors in the inputs can result in biased estimates of the
effects of factors. If the inputs are correlated, then the effect of each individual input on the
response variable can be difficult to assess (Neter et al., 1996), unless methods such as principal
component analysis are used.

In unbalanced experiments with unequal numbers of observations in different treatments
not all contrasts may be estimable. A contrast is not estimable if the variables involved are not
independent but depend upon a combination of other variables (Giesbrecht, and Gumpertz,

1996).

2.2.5 Classification and Regression Tree
CART or hierarchical tree-based regression (HBTR) can be thought of as a forward
stepwise variable selection method, analogous to forward stepwise regression analysis. The
method used to estimate regression trees has been around since the early 1960’s. The method
proceeds by iteratively asking and answering following questions (Breiman et al., 1984):
e Which variable of all independent variables ‘offered’ in the model should be selected to
produce the maximum reduction in variability of the dependent variable (response)?
e  Which value of the selected variable (discrete or interval) results in the maximum
reduction in variability of the response?
Numerical search procedures are applied iteratively until a desirable end-condition is met,
at which time the final tree structure is formed. The CART terminology is similar to that of a
tree; there are branches, branch splits or internal nodes, and leaf or terminal nodes (Washington
et al., 1997). The components of the classification and regression tree are shown in Figure 2-1.
A node is an input variable based on which data is split. Nodes can be a root node,

intermediate nodes or leaf nodes. A root node is the node based on which the data is first split.
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Figure 2-1. Schematic Diagram of a Classification and Regression Tree Illustrating Rout Node,
Intermediate Nodes, and Terminal Leaves.

Intermediate nodes are the nodes on the basis of which the data is successively split. Leaf nodes
are the nodes on which the penultimate data was split. Branches are the conditions on the input
variables that determine which input set goes to which new dataset. A set of conditions on the

input variable from the root node leading to a root node is called a path or classification rule.

2.2.5.1 Description

CART conceptually seeks to divide a data set into subsets, each of which is more
homogeneous compared to the total dataset. At a given level of division, each of the subsets is
intended to be different in terms of the mean value. Thus, CART is a statistical approach for
binning data.

In order to explain the method in mathematical terms, the definitions presented by
Washington et al. (1997) are used. The first step is to define the deviance at a node. A node
represents a data set containing L observations. The deviance, D,, can be estimated as follows:

(. -%.) (2-9)

1

D, =

L
1=

where,
D, = total deviance at node a, or the sum of squared error at the node
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Via = 1™ observation of dependent variable y at node a

Y. = estimated mean of L observations in node a

For each of k variables, the algorithm seeks to split the domain of a variable, Xj, (where i
has a value from 1 to k) into two half-ranges at node a, resulting in two branches and
corresponding nodes b and c, each containing M and N of the original L observations (M + N =
L) of the variable X;. The reduction in deviance function is then defined as follows:

Aatixy = Dg = Dp = Dy (2-10)

where:
Aalix)= the total deviance reduction function evaluated over the domain of

all Xi’s (i.e. for k number of X variables)
M

D, = Z(ym,b _yb)z

m=I

N

D, = > (v =)

n=l

Dy, = total deviance at node b

D. = total deviance at node ¢

Ymp = m™ observation of dependent variable y in node b
Yne = n™ observation of dependent variable y in node ¢
Y = estimated mean of M observations in node b

Y. = estimated mean of N observations in node c.

The method seeks to find Xy and its optimal split at a specific value of Xy, Xi(i), so that
the reduction in deviance is maximized. The maximum reduction occurs at a specific value Xi(i),
of the independent variable Xy. When the data are split at Xi(i), the remaining samples have a
smaller variance than the original data set. Numerical methods are used to maximize (Equation
2-10) by varying the selection of which variable to use as a basis for a split and what value to use
at the split point. The iterative partitioning process is continued at each node until one of the
following conditions is met: (1) the node of a tree has met minimum population criteria which is
the minimum sample size at which the last split is performed; or (2) minimum deviance criteria
at a node have been met. Some software, such as S-PLUS™, allows the user to select either
criterion.

Although it might be possible that several inputs affect the response of the model, CART

considers only those inputs having a significant effect on the variability of the response. The
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reduction in deviance associated with the inputs present in the tree can be used as sensitivity
index to rank the inputs. CART also provides an indication of priority among different inputs
based upon their precedence in the tree. Typically those inputs in the top nodes have more
importance and influence on the response variable in comparison with inputs in the lower nodes.
Furthermore, it is possible that an input will be selected repeatedly for multiple levels within the
tree, which is also an indication of the importance of that input. If there is a threshold, it is picked
up at the splitting point. However, there is no guarantee that a particular splitting point is also a

threshold.

2.2.5.2 Advantages

One of the advantages of CART over traditional regression analysis is that it is a
nonparametric method and does not require assumptions of a particular distribution for the error
term or of a functional form for the relationship between the input and the output. CART is more
resistant to the effects of outliers since splits usually occur at non-outlier values (Roberts et al.,
1999). A regression tree selects only the most important independent variables and values of
these variables that result in the maximum reduction in deviance. Results are invariant with
respect to monotonic transformations of the independent variables. As a result the researcher
does not have to test a number of transformations to find the “best “fit (Hallmark et al., 2002).
Moreover, application to discrete and continuous explanatory variables and also qualitative

variables is possible in the CART method.

2.2.5.3 Disadvantages

At times, difficulty in prioritizing the explanatory variables based on the results of the
CART method can be considered as a disadvantage of the method. The input variable at the first
splitting point is often the most important variable among others, but in lower branches it is not
always possible to easily compare variables with regard to their importance. These points are
illustrated in the case studies of Chapters 7 and 17 for the E. coli and Listeria monocytogenes
models, respectively. Moreover, a method for evaluating sensitivity based upon the contribution
of each variable to the total reduction in deviance is illustrated in Section 7.3.1.1 and Section

17.1.1.
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2.2.6 Sobol’s Indices

Sobol’s methods (Sobol, 1990, 1993; Saltelli et al., 2000) are variance based “global
sensitivity analysis” methods based upon “Total Sensitivity Indices” (TSI) that take into account
interaction effects. The TSI of an input is defined as the sum of all the sensitivity indices
involving that input. The TSI includes both the main effect as well as interaction effects (Sobol
1990; Homma and Saltelli, 1996). For example, if there are three inputs A, B and C, the TSI of A
is given by S(A) + S(AB) + S(ABC), where S(x) is the sensitivity index of x. Unlike Sobol’s
methods, methods that involve only correlation ratios (Kendall and Stuart 1979; Krzykacz, 1990)
or importance measures (Hora and Iman, 1990) consider just the main effect of an input, and do

not account for the effect of interactions among two or more inputs.

2.2.6.1 Description
The underlying principle upon which Sobol’s approach calculates the sensitivity indices
is the decomposition of function f(x) into summands of increasing dimensionality (Chan et al.,

2000):

JAC e xn):fo+ifi(xi)+izn:ﬁ/(xi,xj)+ ....... + /s

i=1 j=i+l

(X x,)  (2-11)

........

The form presented in Equation 2-11 can only be arrived at when fj is a constant, and the integral

of every summand over any of its own variables is always zero, i.e.

1
[ i (o, el =0,if 1<k <5 (2-12)
0
Where,
S = summand index
k = input variable index

A consequence of Equation 2-11 and 2-12 is that all the summands in Equation 2-11 are

orthogonal, i.e. if (i,....., i) # (j1,.. ..., J1), then
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JK,,fil ,,,,,, oS dx =0 (2-13)

......

Where, K" is the n-dimensional space of input parameters. The total variance D of f(x) is defined

to be
D=[f(x)dx-f, (2-14)

and the partial variances are computed from each of the terms in Equation 2-11.

1

1
Dy = e[ fis (X, )l o, (2-15)
0

0

Where 1<i;<...<is<n and s=1,.., n. By squaring and integrating Equation 2-11 over K", and by

Equation 2-13 we have

n n

D= ZH:Di +> 3D, +...+D,, (2-16)
i=1

i=1 j=i+l

Thus, a sensitivity measure S(iy, ...,1s) is defined as
= Dl (2-17)

The sum of all the sensitivity indices is always unity. The integrals in Equation 2-14 and 2-15

can be computed by the Monte Carlo (MC) integral method.

2.2.6.2 Application

The use of Sobol’s indices in the field of sensitivity analysis is new and there are few
publications on application of global sensitivity methods using Sobol’s indices. In the field of
environmental risk assessment, use of sensitivity indices such as Sobol’s indices in calibration

and reduction of models have been demonstrated on eutrophication models (Ratto ef al., 2001a).
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An application to a very simple chemical system consisting of the observation of the time
evolution of an isothermal first order irreversible reaction in a batch system is presented in Ratto
et al. (2001b). Sobol’s method of sensitivity analysis has been used in the field of financial risk
to identify the major sources of error among the several factors involved in ‘the delta-hedging
problem’ (Compolongo, 2002).

Effort has been made to reduce the computational complexity associated with calculation
of Sobol’s indices. Saltelli (2002a) discusses how to make best use of model evaluation to

calculate Sobol’s sensitivity indices.

2.2.6.3  Advantages

Sobol’s method can cope with both nonlinear and non-monotonic models, and provide a
truly quantitative ranking of inputs and not just a relative qualitative measure (Chan et al., 2000).
The types of influence of an input that are capture by Sobol’s method include additive, non-
linear or with interactions. Furthermore, Sobol’s method can be smoothly applied to categorical

variables without re-scaling. Sobol (1990) and Saltelli (2002b) describe such an implementation.

2.2.64  Disadvantages

Sobol’s method is a global method of sensitivity analysis. Global methods are based on
the sampling of the distribution function of the input factors and on the repeated execution of the
model, in order to determine the distribution of the output; therefore they are, in general,
computationally intensive (Pastres et. al., 1999). Also, the ease of application depends on the
complexity of the model. Hence, it is difficult to apply to models with large number of inputs
and complex model structure such as modularity. There is no readily available software that
facilitates application of Sobol’s method.

Variance based methods provide a factor-based decomposition of the output variance,
and implicitly assume that the second central moment is sufficient to describe output variability.
However, when the region of interest is the tails of the output distribution, this assumption is not

valid (Saltelli, 2002b).

2.2.7 Fourier Amplitude Sensitivity Test (FAST)
The Fourier Amplitude Sensitivity Test (FAST) method is a procedure that can be used
for both uncertainty and sensitivity analysis (Cukier et al., 1973, 1975, and 1978). The FAST

method is used to estimate the expected value and variance of the output, and the contribution of
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individual inputs to the variance of the output (Cukier et al., 1973). The FAST method is
independent of any assumptions about the model structure, and works for monotonic and non-
monotonic models (Saltelli ez al., 2000). The effect of only one input (local sensitivity) or the

effect of all inputs varying together can be assessed by FAST.

2.2.7.1 Description

The main feature of FAST is a pattern search method that selects points in the input
parameter space, and which is reputed to be faster than the Monte Carlo method (McRae et al.,
1982). The classical FAST method is not efficient to use for high-order interaction terms
(Saltelli and Bolado, 1998). However, the extended FAST method developed by Saltelli et al.
(1999) can address higher order interactions between the inputs. Sobol's sensitivity method is
similar to the FAST method and can account for interacting terms, but it is less efficient than
extended FAST (Sobol, 1993).

A transformation function is used to convert values of each model input to values along a
search curve. As part of the transformation, a frequency must be specified for each input. By
using Fourier coefficients, the variance of the output is evaluated (Cukier et al., 1973). The
contribution of input x; to the total variance is calculated based on the Fourier coefficients,
fundamental frequency @;, and higher harmonics of the frequency as explained by Cukier et al.
(1975). The ratio of the contribution of each input to the output variance and the total variance
of the output is referred to as the first order sensitivity index and can be used to rank the inputs
(Saltelli et al., 2000). The first order indices correspond to the contribution of individual inputs
and not to the contribution of interactions among inputs. To account for the residual variance in
the output due to higher order or interaction terms that is not explained by first order indices, the
extended FAST method is used (Saltelli et al., 1999).

The model needs to be evaluated at a sufficient number of points in the input parameter
space such that numerical integration can be used to determine the Fourier coefficients (Saltelli
et al.,2000). The minimum sample size required to implement FAST is approximately eight to
ten times the maximum frequency used. In the case of discrete inputs, if a sufficiently large
sample size is not available, then the output can have frequent discontinuities. In such a case, the
Fourier coefficients may not be estimated properly and hence, the reliability of the results can be
lower in the case of discrete inputs. The Sobol's method is capable of handling discrete inputs

(Saltelli et al., 2000).
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McRae et al. (1982) describe mathematical basis and computer implementation of the
FAST method. Cukier ef al. (1978) and Saltelli et al., (2000) give details of producing optimal
frequency sets. Different search curves and their transformation functions used in FAST are

given by McRae ef al. (1982) and Cukier et al. (1975).

2.2.7.2  Application

FAST has been applied in fields such as performance assessment of waste disposal
systems (e.g., Lu and Mohanty, 2001; Helton, 1993), atmospheric modeling (e.g., Rodriguez-
Camino and Avissar, 1998; Collins and Avissar, 1994; Liu and Avissar, 1996), and ground water
modeling (Fontaine et al., 1992).

As an example, Lu and Mohanty (2001) used the FAST method for sensitivity analysis of
a model developed for performance assessment of a proposed nuclear waste repository. The
model output is the amount of radiation for long time periods. Because the number of inputs of
the model is too large to be handled by the FAST method, less important input parameters were
first screened out. FAST was implemented using twenty inputs. For a 10,000 year time period
of interest, the top three most important inputs identified using FAST were thermal conductivity
of the rock material, the alluvium retardation coefficient for technetium, and the well pumping
rate for the farming receptor group located at 20 km. Conditional complementary cumulative
distribution functions of the model output (Mohanty and McCartin, 1998) were used to verify the
ranking of the influential parameters produced by the FAST method. The ranking of top three
parameters was found to be robust but the FAST method could not consistently rank other inputs

of the set.

2.2.73 Advantages

The FAST method is superior to local sensitivity analysis methods because it can
apportion the output variance to the variance in the inputs. It also can be used for local
sensitivity analysis with little modification (Fontaine et al., 1992). It is model independent and
works for monotonic and non-monotonic models (Saltelli ez al., 2000). Furthermore, it can allow
arbitrarily large variations in input parameters. Therefore, the effect of extreme events can be
analyzed (e.g., Lu and Mohanty, 2001; Helton, 1993). The evaluation of sensitivity estimates
can be carried out independently for each factor using just a single set of runs (Saltelli et al.,

2000). The FAST method can be used to determine the difference in sensitivities in terms of the
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differing amount of variance in the output explained by each input and, thus, can be used to rank

order key inputs.

2.2.7.4  Disadvantages

The FAST method suffers from computational complexity for a large number of inputs
(Saltelli and Bolado, 1998). The classical FAST method is good only for models with no
important or significant interactions among inputs (Saltelli and Bolado, 1998). However, the
extended FAST method developed by Saltelli et al., (1999) can account for high-order
interactions. The reliability of the FAST method can be poor for discrete inputs (Saltelli et al.,
2000). Current software tools for FAST are not readily amenable to application to the selected
food safety risk assessment models.

2.3  Graphical Methods for Sensitivity Analysis

Graphical methods give representation of sensitivity in the form of graphs, charts, or
surfaces. Generally, graphical methods are used to give a visual indication of how an output is
affected by variation in inputs (e.g., Geldermann and Rentz, 2001). Graphical methods can be
used as a screening method before further analysis of a model or to represent complex
dependencies between inputs and outputs (e.g., McCamly and Rudel, 1995). Graphical methods
can be used to complement the results of mathematical and statistical methods for better
interpretation (e.g., Stiber et al., 1999; Critchfield and Willard, 1986).

Frey and Patil (2002) demonstrated scatter plots as an approach in graphical sensitivity
analysis. This method has been selected for application in the case studies of this report. In
addition a graphical method for conditional sensitivity analysis is introduced and is used in this

work.

2.3.1 Scatter Plots

Scatter plots are used for visual assessment of the influence of individual inputs on an
output (Cook, 1994; Galvao et al., 2001). A scatter plot is a method often used after a
probabilistic simulation of the model. Scatter plots are also often used as a first step in other

analyses such as regression analysis and response surface methods.

2.3.1.1 Description
Each realization in a probabilistic simulation (e.g. variability and uncertainty simulation),

such as a Monte Carlo simulation, generates a pair of an input value and the corresponding

38



12%
Number of Points = 10,000
10% 1
s
E 8%
- 3
£
1=-' E E% .
£ 3
E = 4%
=
[=1]
=
2% 4
0% . . T .

1] 0.2 0.4 0.6 0.8 1
Test Sensitivity (0.1g SMACct)

Figure 2-2. Example of a Pattern for a Scatter Plot.

output value. These simulated pairs can be plotted as points on a scatter plot. Scatter plots also
can be plotted for empirical data. The scatter plot displays a range of values for both the input
and output, and the general trend between them. However when data points overlap on the graph,
it can be difficult or impossible to evaluate the relative frequency of occurrence of specific
combinations of inputs and output values.

For example, Figure 2-1 shows simulation data for the median within feedlot prevalence
of E. coli in summer versus the test sensitivity for the ‘0.1g, SMACct’ testing method. This
specific example is discussed in more detail in Section 8.1.2. The scatter plot was used to assess
possible trends in the data and to aid in selecting a functional form for a regression model to fit
to the data. In this case, there appears to be a nonlinear variation of within feedlot prevalence
with respect to test sensitivity. Therefore, a nonlinear polynomial functional form was selected
and fit to the data. The regression model is shown as a solid line. The comparison of the fitted
model to the data is a means for verifying the adequacy of the model. It happens that in this case

that the model adequately captures the key trends in the data.

2.3.1.2 Advantages
Scatter plots are often recommended as a first step in sensitivity analysis of a statistical

sample of data, whether it is an empirical sample or the result of a probabilistic simulation. A
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key advantage of scatter plots is that they allow for the identification of potentially complex
dependencies. For example, Figure 2-2 displays a nonlinear decrease in the response versus the
input. An understanding of the nature of the dependencies between inputs and an output can

guide the selection of other appropriate sensitivity analysis methods.

2.3.1.3 Disadvantages

A potential disadvantage of scatter plots is that they can be tedious to generate if one
must evaluate a large number of inputs and outputs unless commercial software is used to
automatically generate multiple scatter plots (e.g., SPLUS, 2000). Although not necessarily a
disadvantage, the interpretation of scatter plots can be qualitative and may rely on judgment.
Whether the sensitivities of two inputs differ significantly from each other cannot always be
judged from their scatter plots. When the frequency of occurrence of different combinations of

inputs and outputs differ largely, overlapping of data points may affect the clarity of the graph.

2.3.2 Conditional Sensitivity Analysis

Conditional sensitivity analysis is considered as a graphical method since the results are
often presented in form of graphs. The motivation for this technique is that the effect of variation
in any one variable on the output in a non-linear model cannot be adequately captured by

mathematical methods like NRSA.

2.3.2.1 Description

Conditional sensitivity analysis involves repeated application of a method such as NRSA.
Because a key limitation of NRSA when applied to nonlinear models is that the analysis is with
respect to only one combination of input values, the objective of conditional sensitivity analysis
is consider more than one such combination. For example, if a model has three inputs, in NRSA
the sensitivity analysis is with respect to only one point estimate for each of the three inputs. In
contrast, a conditional analysis can be with respect to multiple different combinations of point
values among the three inputs. The response is calculated for point values of the selected input
variable at steps or randomly generated points; the idea is to cover the full scope of the variation
of the selected variables. A graph is plotted from these data points showing the response curve
for a specific variable when other variables are conditioned to fixed values. The process is

repeated for other values of the other input variables.
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Figure 2-3. Log Dose Response for Temperature in Deli Salad.

To illustrate the methodology, exposure to Listeria monocytogenes is plotted versus
variation in temperature in Figure 2-3. Other input variables affecting exposures were held
constant at their respective median values. To generate the data points, values for temperature
were randomly generated from the temperature distribution. A second set of data points were
selected in which all other variables were held at their respective maximum values. The response
of the exposure to temperature is shown to be different depending upon whether other inputs are
held at the maximum versus median values. Thus, the response of exposure to temperature is
conditional upon the values assigned to other model inputs. Similar response curves can be
generated keeping other variables at minimum values. However, this response is not shown in
Figure 2-3, as all dose values for the corresponding case were below the minimum detectable
dose level for deli salad. Conditional sensitivity analysis enables insight into these types of

interactions based upon a simple enhancement to other methods such as NRSA.

2.3.2.2 Advantages

Non-linearity, saturation point and thresholds can be identified based upon conditional
sensitivity analysis. These insights are under assumptions that other variables are fixed at
particular values. The plotted graphs can be used to calculate NRSA and differential sensitivity
indices. In many of the case studies given in Chapters 8 and 18 for the E. coli and Listeria
monocytogenes models, respectively, each graph has three curves corresponding to cases where

other inputs were at minimum, median and maximum values, respectively. Differential
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sensitivity indices can be calculated from the curve corresponding to the case where other inputs
were kept at a point value by reading the output at a point estimate, 99 percent of the point
estimate and 101 percent of the point estimate. NRSA indices can be calculated by reading
output values at the minimum, median and maximum values of the selected input from the curve

corresponding to the case when other inputs were kept at selected point values.

2.3.2.3 Disadvantages

It is not always possible to rank inputs based on the nature of the response curve alone.
For example, if two inputs have response have non-linear response then it may be difficult to tell
which one has higher degree of variance. This method is based on assumptions that other inputs
are conditioned to specific values. Therefore a totally random outcome where multiple inputs
take random values simultaneously from their distribution is not considered. Thus, this method
may provide only partial insight into the nature of interactions as well as their likelihood. Hence,
conditional sensitivity analysis cannot give global ranking.

2.4  Summary of Sensitivity Analysis Methods Selected for Case Studies

This chapter has introduced specific sensitivity analysis methods and explained which
ones were selected for further evaluation. The selected methods include NRSA, AD, sample and
rank correlation coefficients, RA, rank regression, ANOVA, CART, scatter plots, and
conditional sensitivity analysis methods. These methods are applied to one or both of two food

safety process risk assessment models as documented in later chapters.
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3 E. COLI 0157:H7 FOOD SAFETY RISK ASSESSMENT MODEL

This chapter briefly describes the model used to estimate the occurrence of E. coli
0157:H7 in single servings of ground beef. Different modules and parts of the E. coli food safety
risk assessment model are explained in coming sections, and specific terminologies in each
module are defined in order to give better understanding of the modeling structures and the
inputs and outputs in different modules. Moreover, the limitations of the original E. coli food
safety risk assessment model with respect to the application of different sensitivity analysis
methods are discussed in this chapter. Specific case scenarios for sensitivity analyses in each
module are defined. Modifications performed to prepare the model for application of different
sensitivity analysis methods are explained. A list of inputs and their characteristic is given for
each module of the E. coli food safety risk assessment model.

3.1 Background on E. coli O157:H7

A German bacteriologist Dr. Theodor Escherich discovered E. coli bacteria in the human
colon in 1885 (Riley et. al 1983). He showed that certain strains of the bacteria were responsible
for infant diarrhea and gastroenteritis. Because scientists could grow the bacteria quickly on both
simple and complex media, E. coli became a very popular lab organism. E. coli could be grown
aerobically, or anaerobically. This ability classifies the E. coli bacteria as a facultative anaerobe.
The vast majority of E. coli strains, including those commonly used by scientists in genetics
laboratories, are harmless, however, exposure to E. coli O157:H7 can lead to severe illness and
death.

E. coli O157:H7 infection often causes severe bloody diarrhea and abdominal cramps;
which sometimes the infection causes nonbloody diarrhea or no symptoms. Usually little or no
fever is present, and the illness resolves in 5 to 10 days. Certain age groups have a higher
incidence of E. coli O157:H7 infection. Surveillance from FoodNet sites in 1999 shows that 1 to
9 year-olds had the highest incidence among all age groups (CDC, 2000). In children under 5
years of age and the elderly, the infection can also cause a complication called hemolytic uremic
syndrome, in which the red blood cells are destroyed and the kidneys fail. About 2%-7% of
infections lead to this complication. In the United States, hemolytic uremic syndrome is the
principal cause of acute kidney failure in children, and most cases of hemolytic uremic syndrome

are caused by E. coli O157:H7.
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E. coli is found in the family of bacteria named Enterobacteriaceae, which is informally
referred to as the enteric bacteria. Other enteric bacteria are the Salmonella bacteria, Klebsiella
pneumoniae, and Shigella. The latter many people consider to be a part of the E. coli family
(Riley et. al 1983).

The US Department of Agriculture conducted a farm-to-table risk assessment to evaluate
the public health impact from E. coli O157:H7 in ground beef (FSIS, 2001). The risk assessment
includes a comprehensive evaluation of the risk of illness from exposure to E. coli O157:H7 in
ground beef based on available data. In the risk assessment model, the likelihood of human
morbidity and mortality associated with exposure to a specific number of E. coli pathogens
consumed in ground beef is estimated. Methods to reduce the risk of illness from this pathogen
in ground beef are included in the risk assessment framework (FSIS, 2001). The purpose of the
risk assessment study was to:

(1) Provide a comprehensive evaluation of the risk of illness from E. coli in ground beef
based on currently available data;

(2) Estimate the likelihood of human morbidity and mortality;

(3) Estimate the occurrence and extent of E. coli contamination at points along the farm-to-
table continuum;

(4) Provide a tool for analyzing how to effectively mitigate the risk of illness from E. coli in
ground beef; and

(5) Identify future food-safety research needs.

3.2 Overview of the Model

The E. coli food safety risk assessment model includes hazard identification, exposure
assessment, hazard characterization, and risk characterization steps. An overview of the model is
given in Figure 3-1. The hazard of E. coli O157:H7 is identified using data from ecology,
pathology, epidemiology, and microbiology. The exposure assessment consists of three major
modules: (1) production; (2) slaughter; and (3) preparation. The exposure assessment is based
upon a probabilistic approach for modeling the prevalence and the concentration of the E. coli
pathogen in live cattle, carcasses, beef trim, and a single serving of cooked ground beef. In the
exposure assessment several factors are taken into account, including slaughter-processing
servings, consumer demographics, the consumption pattern, and seasonal differences in herd

prevalence.
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Figure 3-1. Schematic Diagram of the Farm-to-Table Risk Assessment Model for E. coli
0157:H7 in Ground Beef. Source: (FSIS, 2001).

Hazard characterization quantifies the nature and severity of the adverse effects
associated with the given number of E. coli organisms in a ground beef serving. Risk
characterization integrates the results of the exposure assessment and hazard characterization to
estimate the risk of illness from E. coli O157:H7 in ground beef. Risk estimates are provided for
individuals, a community in a simulated outbreak scenario, and the U.S. population. The
variability of risk among the U.S. population is considered according to differences in seasonal
exposure and host susceptibility, based on the age of the consumer.

In Sections 3.2.1 to 3.2.3 different modules inside the exposure assessment part are
explained. These modules include production, slaughter, and preparation. The exposure
assessment part is the focus of further analyses by application of different sensitivity analysis
methods in Chapters 4 to 10. Selection of the exposure assessment part for the sensitivity
analyses in the E. coli food safety risk assessment model can be justified since that in the hazard
and risk characterization parts, the dose-response relationship is estimated as the output of the
model, based on the results of the exposure assessment part and available surveillance data exist
on the annual number of illnesses due to infection with E. coli O157:H7. Hence, uncertainty
about the results provided by the exposure assessment part can lead to uncertainty in the final

output of the model, which is the dose-response equation for E. coli O157:H7.
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3.2.1 Production Module

The production module estimates the prevalence of E. coli-infected cattle entering US
slaughter plants. A determination of the quantitative association between the incoming status of
cattle and the outgoing status of harvested meat is the main objective of this module. Estimation
of the proportion of E. coli-infected cattle at slaughter begins with estimation the proportion of
infected cattle on the farm.

The prevalence of the infected cattle entering the slaughter plants may be reduced
through actions on the farm or feedlot. Mitigation strategies typically target herd-level risk
factors for E. coli control. As an example, vaccination for this pathogen would likely be applied
at the herd level. Culled breeding cattle and feedlot cattle are separately modeled, because there
is evidence showing that there may be differences in E. coli prevalence between these two types
of cattle.

The following key terms are used throughout this module (FSIS, 2001):

e Infected Cattle: refers to cattle whose intestinal tracts are colonized with the E. coli
0157:H7 organisms.

e Contaminated Cattle: refers to cattle whose hides, hair, or hooves have some E. coli

0157:H7 organism residing on them.
e Prevalence: the proportion of infected herds or individual cattle in a population.

e Herd Prevalence: the proportion of herds with one or more E. coli-infected cattle when

the reference population is all herds of one type, for example, breeding herds.

e Apparent herd prevalence: the proportion of herds with one or more test-positive cattle

detected among all herds sampled. Test-positive samples include both infected and

contaminated cattle.

e True herd prevalence: is estimated by adjusting apparent herd prevalence observed in
surveys with herd sensitivity.

e Herd sensitivity: is the proportion of infected herds that, when tested, are detected as E.

coli positive. Herd sensitivity is dependent on the number of samples collected within
herds and the detectable prevalence of infected animals in the infected herd.

e Within herd prevalence: is the proportion of infected cattle when the reference population

is the cattle within a specific infected herd. This measurement is only applied to infected

herds.
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e True within herd prevalence: is estimated by adjusting apparent within-herd prevalence
by test sensitivity.

e Test sensitivity: proportion of infected cattle, when tested, are detected as E. coli-positive

using a particular diagnostic test.

The production module is comprised of three segments: (1) on-farm; (2) transportation;
and (3) slaughter plant intake. The on-farm segment is comprised of four parts for estimating:
(1) true herd prevalence; (2) true feedlot prevalence; (3) true within breeding herd prevalence;
and (4) true within feedlot prevalence. Variability of true within herd or feedlot prevalence
among all infected herds or feedlots and the seasonal variability of true within herd or feedlot
prevalence are also estimated.

The four critical inputs to the production module are herd prevalence, within herd
prevalence, feedlot prevalence, and within feedlot prevalence of E. coli. The production module
simulates cattle entering the slaughter process via truckloads. Therefore, the prevalence of
infection within truckloads is the module’s output and the first input to the slaughter module. In
Figure 3-2 the connectivity between different segments of the production module is depicted in a

flowchart.

3.2.2 Slaughter Module

The slaughter module estimates the occurrence and extent of E. coli contamination as live
cattle transition to carcasses, meat trim, and aggregates of meat trim in 60-pound trim boxes or
2000-pound combo bins destined for commercial ground beef production. Two types of
slaughter plants are modeled: (1) those that handle culled breeding cattle (cow and bull); and (2)
those that handle feedlot cattle (steer and heifer). The model only considers the commercial
slaughter and processing of cattle. Prevalence distributions of £. coli in breeding and feedlot
cattle, developed in the production module, serve as inputs to the slaughter module.

The prevalence distributions provide the number of infected cattle entering the slaughter
plant. Breeder and feedlot cattle slaughtering operations are modeled separately, as are high and
low prevalence seasons.

The following key terms are used throughout this module (FSIS, 2001):
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Figure 3-2. Schematic Diagram of the Production Module for the E. coli O157:H7 Food Safety
Risk Assessment Model.

e Carcass: refers to an animal that has been killed and had its hide removed.

e Contamination: is the presence of E. coli on carcass surface.

e Trim: is a by-product of processing carcasses to create cuts of meat when the carcasses
originate from feedlot cattle. Trim consists of both muscle and fat.

e Combo bins: are containers that hold 2000 pounds of meat trim. Many cattle may
contribute meat trim to a single combo bins.

e Boxes: of meat trim are similar to combo bins, but only contain 60 pounds of product.
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e Lot: is defined as total number of cattle necessary to fill one combo bin. A single lot may
comprise one or more truckloads of cattle

The slaughter module includes seven steps: (1) arrival of live cattle at the slaughter
plant; (2) dehiding; (3) decontamination following dehiding; (4) evisceration; (5) final washing;
(6) chilling; and (7) carcass fabrication. The module assumes that either contamination or
decontamination can occur at each step of the process, with the prevalence and extent of
contamination increasing if further contamination occurs and decreasing if decontamination
occurs. The probability and extent of E. coli contamination or decontamination during slaughter
are modeled as dependent on the status of the incoming animal, type of processing plant, type of
equipment and procedures used, efficiency of decontamination procedures, and sanitation
processes. In Figure 3-3 the connectivity between different parts of the slaughter module is
depicted in a flowchart.

In step 1, cattle arrive at slaughter plants via truckloads with variability in the prevalence
of infected cattle. In step 2, dehiding, there is the transition from live cattle to carcasses. This
process creates the first opportunity of contamination of the carcass with E. coli. The number of
E. coli organisms that initially contaminate a carcass depends on the level of infected cattle, the
average concentration of the pathogen per contaminated area, and the total area of the carcass
that is contaminated. In step 3, the number of E. coli O157:H7 organisms on contaminated
carcass surfaces can be reduced by the decontamination processes, including trimming,
vacuuming, and washing of the carcass surface. Step 4, evisceration, is another opportunity for
contamination to be introduced. Following final washing in step 5, the carcasses move to step 6,
which is chilling. During the chilling process E. coli contamination may again increase or
decrease. In step 7 the carcasses are fabricated. Because carcasses from breeding cattle produce
less valuable whole muscle cuts than those from feedlot cattle, greater numbers of these deboned
carcasses contribute to ground beef. The boneless meat trim from one animal is distributed based
on fat content into multiple combo bins or boxes, where it is mixed with trims from other cattle.

Outputs from the slaughter module are distributions describing the frequency of E. coli in
combo bins (and trim boxes) generated during high and low prevalence seasons for cow/bull and
steer/heifer slaughter plants. These outputs are inputs to the preparation module. In Figure 3-3

the connectivity between different parts of the slaughter module is depicted in a flowchart.
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Figure 3-3. Schematic Diagram of the Slaughter Module for the E. Coli O157:H7 Food Safety
Risk Assessment Model.
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3.2.3 Preparation Module

The preparation module estimates the occurrence and extent of E. coli contamination in

consumed ground beef servings. This module also characterizes the consumption of ground beef

servings by the age of consumer and the location of the meal.

The preparation module simulates the annual consumption of approximately 18 million

ground beef servings. The model focuses on ground beef in the form of hamburger patties, and

on ground beef as a formed major ingredient. Although cross-contamination could be a potential

contributor for contamination of ground beef product, cross-contamination of ground beef

products is not modeled. Cross contamination is the transfer of harmful microorganisms to food.

It can occur in many ways, including contact from human hands, use of unsanitary equipment or

work surfaces, storage or raw foods above ready-to-eat foods, or use of unsanitary cleaning

cloths. In Figure 3-4 the connectivity between different parts of the preparation module is

depicted in a flowchart.

The following key terms are used throughout this module (FSIS, 2001):

Servings: the amount of ground beef consumed per eating occasion. It varies by the age
of consumer and the location where the meal is consumed (e.g., at home versus away
from home).

Exposure: amount of contamination that is consumed in a serving.

Home: is used when servings are prepared and served in a home environment.

Away from home: is used when servings are prepared and served in an institutional

environment. This is often referred to as “HRI” (hotels, restaurants, and institutions).
Transportation: refers to non-refrigerated transport of product from a retail to wholesale
establishment.

Retail: refers to establishments, such as grocery stores or butcher shops, that sell ground
beef for home consumption.

Wholesale: refers to establishments that serve as distributors to HRI for away from home

consumptions.
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The preparation module consists of six primary steps. Five of these steps explicitly model
growth, decline, or dispersion of E. coli O157:H7 contamination: (1) grinding; (2) storage at
retail; (3) transportation; (4) storage at home or away from home; and (5) cooking. Step 6 models
the amount of ground beef consumed, which varies depending on the age of the consumer and
the eating location. In step 1, multiple combo bins or boxes are combined and mixed to produce
finished ground beef with a specific fat content. Although the extent of E. coli contamination
does not increase during the grinding process because of temperature controls, contamination
from single combo bins or boxes can be dispersed during grinding to contaminate many
individual ground beef servings. In step 2, storage conditions at retail or wholesale provide an
opportunity for E. coli O157:H7 levels to increase as a result of increased time and temperature
or decrease as a result of freezing ground beef. High storage time or storage temperature at retail
leads to increase in the number of E. coli O157:H7 organisms. Step 3 models the effects of time
and temperature during transportation on the level of E. coli O157:H7 after the ground beef is
purchased. Step 4 models the storage of ground beef at freezer and refrigerator prior to its
preparation and consumption. In step 5, the effect of cooking on the number of E. coli O157:H7
organisms is evaluated. Step 6 models the consumption of contaminated ground beef servings.

An intermediate output of the preparation module is the distribution of E. coli densities in
grinder loads of ground beef made from 2000-pound combo bins. Another intermediate output of
the preparation module is the distribution of E. coli densities in grinder loads of ground beef
made from 60-pound trim boxes. The primary outputs from the preparation module are
distributions describing the prevalence of E. coli O157:H7 in ground beef servings generated

during low and high prevalence seasons (winter and summer, respectively).

3.2.4 Limitations

The E. coli food safety risk assessment model was not originally developed for the
purpose of facilitating sensitivity analysis. The objective of this section is to identify critical
needs for sensitivity analysis and to determine the limitations of the existing model with respect
to these needs. Based upon these limitations, specific requirements are identified for modifying
the existing model in order to facilitate sensitivity analysis. The modifications are documented
in Section 3.4.

One of the most important goals of sensitivity analysis, as described at the NCSU/USDA

Workshop on Sensitivity Analysis, is to perform global sensitivity analysis on output variables of

53



direct relevance to a decision. However, the E. coli risk assessment model is implemented with
separate modules that make it impractical to perform global sensitivity analysis upon the entire
model.

A second desirable goal of sensitivity analysis is to distinguish between variability and
uncertainty. Many of the inputs to the E. coli model can be conceptualized as representing
variability only, uncertainty only, or both variability and uncertainty. However, the manner in
which the probabilistic analysis was implemented for the E. coli model makes these distinctions
difficult in the context of a single simulation. Rather, in order to distinguish between variability
and uncertainty with the existing model, it is necessary to run the model for separate case studies
of variability only, uncertainty only, variability for different uncertainty realizations, or co-
mingling of both variability and uncertainty in a single probabilistic simulation.

A third limitation is that data for many of the intermediate variables are binned.
Therefore, it is not possible to trace the value of a model output to a specific combination of
input values. Thus, because the model is structured to bin intermediate results, it is not possible
to have a one-for-one correspondence between the value of a model output and the values
assigned to model inputs, which poses a challenge for performing sensitivity analysis. In
summary, the three key limitations of the E. coli model with respect to sensitivity analysis
include: (1) modularity of the model based upon division into modules; (2) challenges in
distinguishing between variability and uncertainty; and (3) coding limitations pertaining to

binning of intermediate inputs. Each of these limitations is described in more detail.

3.2.4.1 Modularity

The E. coli risk assessment model is divided into modules, as described in Sections 3.1.1
through 3.1.3. Outputs of one module serve as inputs to the next. In combination with the fact
that many of the intermediate values of variables are binned, the implication of both modularity
and binning of variables is that there is a lack of one-for-one correspondence between the value
of a desirable risk assessment model output, such as contamination in ground beef servings, and
the values of inputs to the various modules that influence the output. The possibility of
modifying the model to avoid binning of intermediate variables and to allow for direct
communication of data from one module to the next was considered and explored.

The original version of the E. coli food safety risk assessment model was implemented in

Microsoft Excel using inter-cellular functioning by implementing equations inside worksheet
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cells prepared for each module. Furthermore, the @Risk software was used to define probability
distributions for inputs to the model. The use of equations inside worksheet cells, as opposed to
the use of a stand-alone programming language, permits execution of the code in the spreadsheet
environment; however, spreadsheet-based models are difficult to modify compared to
programming language-based models. In order to perform sensitivity analysis, a data set should
be formed consisting of the desired candidate inputs and the outputs of interest. Thus, it is
desirable to easily access and store paired data values for the inputs and outputs in order to
facilitate sensitivity analysis. In the existing model, data are not routinely stored for this
purpose. Therefore, in order to save the data needed for sensitivity analysis, the code in different

modules and parts of the E. coli model is modified to save such data.

3.2.4.2 Challenges in Distinguishing Between Variability and Uncertainty

In risk assessment, it is often useful to distinguish between variability in exposure and
risk versus uncertainty regarding knowledge of the true value of a quantity or distribution. An
accepted method for distinguishing between variability and uncertainty in human health risk
assessment is to use two-dimensional probabilistic simulation (e.g., Frey and Rhodes, 1996).
This approach requires that each input to the model be appropriately simulated to represent either
variability and/or uncertainty. In the following this issue is clarified with an example.

In a two-dimensional probabilistic simulation each input variable has a two-dimensional
matrix, containing the generated values for the input variable for both variability and uncertainty
simulations. In Figure 3-5, this two-dimensional matrix for input X is depicted. In this example,
variable X has both variability and uncertainty.

The number of iterations for the variability simulation is n, and the number of iterations
for the uncertainty simulation is m. Hence, an n * m matrix is generated for variable X, with
columns representing variability, and rows representing uncertainty. For instance, in Figure 3-5,
the first column represents the first uncertainty iteration, and » variability iterations. In this

column, the uncertain part of the input X remains constant.
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Figure 3-5. Matrix of Generated Values for Variable X in a Two-Dimensional Simulation.

As an example, Figure 3-6 depicts the variability distribution of the cooking temperature
as an input in the preparation module for the j” uncertainty iteration. During the variability
simulation cooking temperatures are selected from the distribution based on random samples.
Hence, for n variability iterations there are n values for the cooking temperature. These values
are placed in different columns of the matrix in Figure 3-5, based on the number of the
uncertainty iteration (e.g., j =1 to m). Figure 3-7 depicts the effect of the uncertainty in the
cooking temperature distributions. At a specific variability percentile, different cooking
temperatures can be generated, because of the uncertainty in the cooking temperature
distributions. Hence, for m uncertainty iterations there are m values for the cooking temperature
at each variability percentile. These values are placed in different rows of the matrix in Figure 3-
5, indicating that each row represents a specific variability percentile.

In order to form the above matrix with columns representing the variability and rows
representing the uncertainty, the same set of random numbers for the variability simulation
should be used in different uncertainty iterations. Using the same set of random numbers
facilitates stratifying between variability and uncertainty in the matrix, since for example the
variation in each row can be attributed to only the uncertainty in specific percentile, and not the

contribution of both uncertainty and variability.
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Figure 3-7. Different Values of the Cooking Temperature at Specific Variability Percentile,
Representing the Uncertainty about the Input.

However, the E. coli model is structured in a way that makes it difficult to fully
distinguish between uncertainty and the variability. In the E. coli model, the random numbers
used during the variability iterations are not stored. Hence, for different uncertainty iterations,

different sets of random numbers are used for the variability simulation. Thus, variation of the
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numbers in each row of the matrix cannot be attributed only to the influence of uncertainty in the
input distribution, because they also are influenced by a random component within the variability
simulation. Hence, it is impractical to perform analysis of uncertainty only in the modules and
parts of the original E. coli model that have two-dimensional simulation such as the slaughter
module and the growth estimation part.

The E. coli model can be configured to run case studies in a one-dimensional framework
to simulate only variability in each input or only uncertainty of each input for modules and parts
that have one-dimensional simulation, such as the production module, cooking effect or serving
contamination parts. Furthermore, the model can be run for multiple realizations of variability
based upon different estimates of uncertainty. Thus, four types of case studies are included in
later chapters: (1) variability only; (2) uncertainty only; (3) variability and uncertainty in
separate dimensions, with a focus on how uncertainty impacts the realizations of variability; and
(4) variability and uncertainty combined into one-dimension, representing a randomly selected

individual.

3.2.4.3 Coding Limitations Pertaining to Binning of Intermediate Inputs

Because many intermediate inputs in the E. coli risk assessment model are binned, it is
not possible to trace the influence of specific values of model inputs to corresponding values of
model outputs. For example, the contaminant concentration in combo bins is simulated as a
continuous variable, but subsequently is binned into increments of 0.5 logs ranging from 0 to 8
logs. The estimated contamination for the combo bin is rounded to the next upper level. For
instance, if the estimated contamination is 0.1 logs, it is considered as 0.5 logs, and if it is 1.01
logs, it is considered as 1.5 logs. In this way, when the combo contamination is used as input in
the next modules, and a value is selected from its binned distribution, there is no way to identify
the original value of the combo contamination before the binning process. This issue makes back
tracking, which is essential for developing the dataset for the sensitivity analysis, almost
impossible. In order to eliminate the bining approach, it would be necessary to substantially
change the model structure. Such a change was beyond the scope of this work. Therefore, global
sensitivity analysis could not be performed in the E. coli model. Instead, different case scenarios
for sensitivity analysis are focused on different modules and parts of the E. coli model

individually. In Chapter 10 results of the local sensitivity analyses in different modules and parts
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of the E. coli model are evaluated in order to come up with general conclusions regarding the
relative significance of different parts of the model.

In the next section, key scenarios that were selected as the basis for case studies with the
E. coli model are identified. The focus of the selected case studies, combined with the
limitations described in this section, were used as a basis for prioritizing activities to modify the
E. coli model as appropriate in order to facilitate sensitivity analysis. The modifications are
documented in Section 3.5.

3.3 Case Scenarios

Any analysis calls for resources both in terms of time and space. Hence, it is important to
identify the highest priority scenarios needed for evaluation. For example, one season may
provide more ideal conditions for pathogen organism dispersion and spread of the disease than
others. A sub-population may be more susceptible to the adverse effects caused by consumption
of the contaminated food. The methodology for sensitivity analysis is not dependent on these
factors. Thus, for purpose of demonstrating methods, it is not necessary to consider all possible
scenarios. Furthermore, in order to have meaningful outcomes from the sensitivity analysis that
can be used by food scientists, it is useful to define specific case scenarios relevant to the model
scope that are of policy interest. Therefore, the objective of this section is to define specific
scenarios that are the focus of sensitivity analysis case studies. The scenarios are defined for each

of the three exposure assessment modules, including production, slaughter, and preparation.

3.3.1 Production Module

In this section the case scenario in the production module is explained. The explanation
of the case scenario includes the identification of cattle categories, and seasons that are
considered in the analysis. The characteristic of the simulation, regarding the incorporation of
variability, uncertainty, or both is specified, and the number of iterations in the simulation is
introduced. In addition, a few questions are raised at the end of the section. These questions are
addressed later based on the sensitivity analysis methods that are applied to this module in
Chapters 4 to 10.

In the production module both feedlots cattle (e.g., steers and heifers) and breeding herds
cattle (e.g., cow and bulls) are considered in the analysis. Regarding the temporal dimension of
the analysis, both high and low prevalence seasons are considered in the analysis. In the

production module there is a one-dimensional uncertainty simulation. The number of iterations
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in the simulation equals 65,000. This number is selected considering the maximum possible
number of rows in an EXCEL worksheet, since the generated data during the simulation are
stored in an EXCEL worksheet.

Key questions are raised here for the production module, and these questions are
answered in Section 11.2.1 based on results of different sensitivity analyses in Chapters 4 to 10.

Question 1: What is the ranking of the input variables regarding their influence on the

output of interest?

Question 2: Is there any study effect in estimation of the response?

Question 3: Is there any seasonality effect for estimation of average within feedlot or

breeding herd prevalence?

Question 4: Which of the testing methods provide higher accuracy?

Regarding Question 2, in different parts of the production module, such as feedlot or
breeding herd prevalence, and within feedlots or breeding herd prevalence, several studies
provide information about the population variation for the infection prevalence. These studies
have specific characteristics regarding the number of samples, number of positive cases and
specific testing methods, implemented in the study. In the original E. coli food safety risk
assessment model, the final outputs in the production module incorporate the effect of different
studies in estimation of feedlot or breeding herd prevalence and within feedlots or breeding herds
prevalence. Since some of the studies may have greater credibility because of the larger sample
size and better testing methods with higher accuracy, the effect of a choice among the studies as
information sources on the final outputs of the module was evaluated. The results from this
analysis provide insight regarding the impact of selection of different studies as a basis for
estimating the infection prevalence. The information regarding different studies implemented in

the production module is given in Tables 3-1 to 3-4.

3.3.2 Slaughter Module

In this section, the case scenario in the slaughter module is explained. For explanation of
the case scenario, cattle categories that are considered in the analyses are identified. In addition,
the season selected for the analyses and the reason for this selection is presented. The
characteristic of the simulation regarding the incorporation of the variability, uncertainty, or both

is specified, and the number of iterations in the simulation is introduced. In addition, a few
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Table 3-1. Different Studies Used for Estimation of the Feedlot Prevalence

Dargatz .
Study Hancock Hancock Smith Elder
1997 1998 1999 2000
Number of Positive Cattle in Positive Herds 210 38 707 91
Number Tested in Positive Herds 7560 1046 3054 254
Samples per Feedlot 120 174 611 12
Number of Feedlots Tested 100 6 5 29
Positive Feedlots 63 6 5 21
Source: Table 3-6, E. coli food safety risk assessment model report, FSIS 2001
Table 3-2. Different Studies Used for Estimation of the Within Feedlot Prevalence
Study }?::;gzzi Hancock | Hancock Smith Elder
1999 1998 1999 2000
1997
Total Month with Available Data 3 5 5 4 2
0.1g, 0.1g, 0.1g, 10g, 10g,
Testing Method
SMACct | SMACct | SMACct IMS IMS
Study Weight 2520 48 209 764 127
Source: Table 3-6, E. coli food safety risk assessment model report, FSIS 2001
Table 3-3. Different Studies Used for Estimation of the Breeding Herd Prevalence
Study Garber | Sargeant H;I;:ZCk Hancock | Hancock | Lagreid | Hancock
1998 2000 2001 1997a 1998 1998 1997b
Number of Positive
Cattle in Positive 51 29 38 179 25 61 91
Herds
Number Tested in
o 1268 2348 5709 9720 1097 758 7121
Positive Herds
Samples per Herd 58 235 317 360 183 60 791
Number of Herds
91 10 20 36 6 15 13
Tested
Positive Herds 22 10 18 27 6 13 9

Source: Table 3-2, E. coli food safety risk assessment model report, FSIS 2001
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Table 3-4. Different Studies, Used for Estimation of the Within Breeding Herd Prevalence

Hancock
Garber | Besser Rice Hancock | Sargeant
Study FDA
1998 1997 1997 1994 2000
2001
Total Month with
5 12 6 10 12 8
Available Data
le 0.1 0.1 0.1 10 0.1
Testing Method SMACct 8 8 8 s e
SMACct | SMACct SMAC IMS SMACct
TSB
Study Weight 254 173 13 46 196 714

Source: Table 3-2, E. coli food safety risk assessment model report, FSIS 2001

questions are raised at the end of the section. These questions are addressed later based on the

sensitivity analysis methods that are applied on this module in Chapters 4 to 10.

The output of interest in the slaughter module is the contamination in combo bins and

trim boxes. Cattle harvested from feedlots have higher probability of infection than cattle from

breeding herds, and regardless of cattle type, more highly infected cattle enter the slaughter

plants during the high prevalence season (FSIS, 2001). Therefore, feedlot cattle in the high

prevalence season are selected as the focus of the case study.

In the slaughter module there is a two dimensional simulation, incorporating both

variability and uncertainty. In order to have profound insight regarding the individual variability

and uncertainty effect on the output of the module, three different analyses are performed: (1)

variability analysis for a mean uncertainty effect; (2) variability analysis for several uncertainty

iterations; and (3) mixed analysis.

In the first analysis, in order to evaluate the sole effect of the variability in inputs of the

slaughter module on the output of interest, the uncertainty in the inputs are fixed at point

estimates (e.g., mean value of the uncertainty distribution). The number of iterations in the

variability analysis simulation equals to 65,000, based on the upper limit of what can be

simulated in EXCEL.

In the second type of analysis, the objective is to distinguish between variability and

uncertainty. The focus of the sensitivity analysis is to identify the key inputs for each realization
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of variability. Specifically, the model is executed 650 times for each estimate of variability, and
this is repeated 100 times for different estimates of uncertainty. Thus, sensitivity analysis is
applied 100 times to identify key inputs. To the extent that the sensitivity analyses yield similar
results regarding the rank ordering of key inputs regardless of uncertainty, an analyst or decision
maker will have greater confidence that the results of the analysis are robust to uncertainty. Such
a result would imply that an analyst or decision maker could make a robust determination as to
what model inputs are contributing the most to variability in exposure and, hence, risk and as to
what CCP’s could be employed to reduce the high end exposures. In contrast, if the ranking of
key inputs changes substantially from one simulation of uncertainty to another, then the
identification of key inputs would be ambiguous because of uncertainty. The latter result implies
that there could be a benefit to targeting data collection or research so as to reduce uncertainty.
The sample sizes for variability and uncertainty were selected based upon the constraint that only
65,000 simulations can be carried out in the Excel-based model. A sample size of 100 for the
uncertainty dimension is adequate to capture a wide range of variation in uncertain model inputs.
The uncertainty sample size was kept smaller than the variability sample size because the
uncertainty sample size also determines the number of iterations, and hence the computational
burden, for the sensitivity analysis methods. Because only a few of the selected sensitivity
analysis methods were readily amenable to automation, the two-dimensional framework for
dealing with variability distinct from uncertainty was applied only with the regression analysis
and ANOVA techniques.

The third type of analysis involves co-mingling of both variability and uncertainty into a
one-dimensional probabilistic simulation. This type of analysis can be used to address issues
pertaining to a randomly selected individual. Many key risk characterization questions focus
either upon the average risk to a population or the high end risk among individuals. Such
questions cannot be answered based upon analysis of a randomly selected individual. However,
as an aid to sensitivity analysis, analysis of a randomly selected individual may have some
advantages. In particular, by co-mingling both variability and uncertainty into a single
dimension, one typically would obtain wider ranges of values for model inputs than if only
uncertainty or only variability had been characterized. Thus, in a single probabilistic simulation
it is possible to exercise as fully as possible the range of model inputs and the corresponding

impact on model outputs. This type of analysis could be used, for example, as a screening tool to
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perhaps focus subsequent two-dimensional analyses upon those inputs that appear to matter the
most.
Key questions are raised here for the slaughter module, and these questions are answered
in Section 11.2.2 based on results of different sensitivity analyses in Chapter 4 to 10.
Question 1: What is the ranking of inputs regarding their influence on the output of
interest?
Question 2: How robust is the identification of key inputs for situations in which
variability and uncertainty can be distinguished?
Question 3: Which step in the slaughter module could produce high contamination levels
in combo bins?
Question 4: How can the decontamination steps mitigate the number of E. coli organisms

in combo bins?

3.3.3 Preparation Module

In this section the case scenarios in the preparation module are explained. The
preparation module consists of three main parts: (1) growth estimation; (2) cooking effect; and
(3) serving contamination. Different case scenarios are presented for each part in the following
text. Explanation of case scenarios includes identification of stages considered in each part,
ground beef consumption types, sub-population age groups, and the temporal dimension of the
analysis. The characteristic of the simulation regarding the incorporation of variability,
uncertainty, or both is specified. In addition, a few questions are raised at the end of the section.
These questions are addressed later based on the sensitivity analysis methods that are applied to
this module in Chapters 4 to 10.

In the growth estimation part, three stages are considered: (1) retail; (2) transportation;
and (3) home. There is no temporal dimension in the growth estimation part, indicating that no
difference was considered in the growth of E. coli O157:H7 organisms in different seasons. The
growth estimation part has a two-dimensional simulation incorporating both variability and
uncertainty in the analysis. Three different probabilistic analyses are performed in the growth
estimation part similar to the approach for the production module: (1) variability analysis based
upon mean point estimates for uncertainty; (2) variability analysis for alternative realizations of
uncertainty; and (3) a one-dimensional analysis in which variability and uncertainty are

combined. The explanation of each type of analysis was presented in Section 3.2.2.
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In the cooking effect part, nine precooking treatments are considered in the analysis in
order to identify the effect of precooking treatments on the log reduction in the number of E. coli
0157:H7 organisms. In addition, two cooking locations (i.e., home and away) are considered to
identify whether there is any difference in the cooking effect when ground beef servings are
cooked at home or away from home. The cooking effect part has a one-dimensional probabilistic
simulation incorporating only variability. Hence, 65000 variability iterations were performed in
this part.

The case study scenario in the serving contamination part includes consideration of three
ground beef consumption types: (1) raw ground beef; (2) hamburger patties; and (3) meatballs.
These ground beef consumption types are considered in order to compare the effect of different
consumption types with respect to the serving contamination. In addition, four age groups (i.e.,
0-5, 6-24, 25-64, 65+) are considered in the analysis. Children less than 5 years old and elderly
people are considered as susceptible sub-populations to E. coli O157:H7 based upon surveillance
data (FSIS, 2001), but all four sub-populations are incorporated in the simulation in order to
identify the effect of consumer age on the serving contamination. Eating at home and away from
home are considered as two alternative eating locations, in order to identify any effect of eating
place on the serving contamination. Serving contamination part has a one-dimensional
probabilistic simulation incorporating only variability. Hence, 65000 variability iterations are
performed in this part.

Key questions are raised here for the preparation module, and these questions are
answered in Section 11.2.3 based on results of different sensitivity analyses in Chapters 4 to 10.

Question 1: What is the ranking of the input variables regarding their influence on the

output of interest in different parts of the module?

Question 2: How robust is the identification of key inputs for situations in which

variability and uncertainty can be distinguished?

Question 3: What is the effect of precooking treatments on the log reduction due to

cooking?

Question 4: How does the contamination level differ for different age groups?

Question 5: What is the effect of eating location on the possible contamination of a

ground beef serving?
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Question 6: Does the eating place affect the contamination in different ground beef
consumption types?

3.4  Modifications to Enable Sensitivity Analysis

Based on the discussion of the model’s limitations in Section 3.1.4, the original E. coli
code was modified in order to prepare the E. coli food safety risk assessment model for
performing deferent sensitivity analysis methods. The modifications were done so as not to
change the original model structure. The modifications are classified into three parts, including
modifications in the: (1) production module; (2) slaughter module; and (3) preparation module.

Each of the modifications is discussed in the following subsections.

3.4.1 Production Module

Based on the case scenario for the production module as described in Section 3.2.1, the
intent was to identify the study effect and the seasonality influence on the outputs of interest.
Modifications in the production module are classified into two parts: (1) modifications in the
feedlot or breeding herd prevalence estimation part; and (2) modifications in the within feedlots
or breeding herds prevalence estimation part.

For the feedlot or breeding herd prevalence estimation part, there is no seasonality effect,
since the temporal variation of these outputs was not considered in the E. coli model. Hence, the
original model is modified in a way that the study effect can be evaluated. The original E. coli
model considered equal weights for different studies used for estimation of the feedlot or
breeding herd prevalence. In order to consider the study as a random variable in the modified E.
coli code, a discrete distribution with equal weights was defined for the study effect. Figure 3-8
depicts the modified algorithm for the estimation of feedlot or breeding herd prevalence.

Based on the modified algorithm, in step 1 of each iteration, a study is picked from the
discrete distribution defined for the study effect. In step 2, the herd sensitivity and the apparent
feedlot or breeding herd prevalence is estimated based on the data available from the selected
study. In the original E. coli model a distribution is estimated for the output, and then a number
randomly is picked from that distribution as the value of feedlot or breeding herd prevalence for
that iteration. In order to eliminate this random characteristic of the output, in step 3 the median

value of the estimated output distribution is considered as the output of interest.
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Figure 3-8. Schematic Diagram of Modified Algorithm for the Feedlot or Breeding Herd
Prevalence Estimation.

For the within feedlot or breeding herd estimation part, both the seasonality effect and the
study effect are considered. The original code averages over different studies and estimates the
within feedlot or breeding herd prevalence for high and low prevalence season separately. In the
original code the final output in this part is the average between different studies considering the
number of months with available data as the weight of the study. In the modified version of the
E. coli code, a discrete distribution with unequal weights based on the number of months with
available data is defined for the study effect. Figures 3-9 and 3-10 depict the distributions
defined for the study as a random input in estimation of average within feedlot and breeding herd
prevalence. To account for the seasonality effect in the within feedlot or breeding herd
prevalence, a discrete distribution with equal weights was defined. In this way, season
participates in the simulation as a random variable. Figure 3-11 depicts modified algorithm for
the estimation of average within feedlot or breeding herd prevalence.

Based on the modified algorithm, in step 1 of each iteration a study is picked from the
discrete distribution defined for the study effect. In step 2, the season is selected from its
distribution. In step 3, based on the study and the season that are already selected, the test

sensitivity and the apparent within feedlot or breeding herd prevalence are calculated. In step 4,
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Figure 3-9. Discrete Distribution for the Study Effect in Within Feedlot Prevalence.
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Figure 3-10. Discrete Distribution for the Study Effect in Within Breeding Herd Prevalence.
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Figure 3-11. Schematic Diagram of Modified Algorithm for the Average Within Feedlot or
Breeding Herd Prevalence Estimation.
the average within feedlot or breeding herd prevalence is estimated as the output of interest in

this part.

3.4.2 Slaughter Module

In this section the modifications performed in the slaughter module are explained. In
order to answer to the questions raised in Section 3.3.2 for the case scenario in the slaughter
module, a dataset including the generated values of the relevant inputs in this module and the
output of interest was prepared. That dataset has one column corresponding to each input, and a
column for the output of interest. The number of rows in this dataset equals the number of
iterations in a simulation. The formation of such a dataset is essential for performing any
sensitivity analysis method. Sensitivity analysis methods typically require that for each input,

one value is generated in an iteration and that there is an output corresponding to input variables
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in an iteration. In the slaughter module of the original E. coli model it was not possible to form

this type of dataset. In order to illustrate this issue, an example regarding the modeling approach
in the slaughter module of the original E. coli model is presented here. At the end of this section,
the modifications in the slaughter module in order to generate the required dataset are presented.

In the slaughter module contamination in combo bins and trim boxes is estimated,
considering that combo bins and trim boxes are filled with meat trims coming from cattle that are
slaughtered in the slaughter plant, dehided, eviscerated, and finally fabricated in different parts of
the plant. The aggregation issue in filling combo bins and trim boxes with meat trims and the
difficulty in tracking down the contaminated meat trims into different combo bins and trim boxes
cause problem in generating the explained dataset. As an example, a combo bin may consist of
52 cattle. From these cattle, 42 may have no contamination, 5 are contaminated only at dehiding,
2 are contaminated only due to evisceration, and the rest are contaminated at both steps, dehiding
and evisceration. Hence, in this combo bin E. coli organisms come from three pathways. During
estimation of the number of organisms in this combo bin, each contamination pathway is taken
into account separately and then the final contamination of this combo bin includes the
organisms from all three pathways. There are inputs affecting the combo bin contamination that
have to be calculated for each contamination pathway separately, such as the number of
organisms on a contaminated carcass, Trim/Vacuum/Washing efficiency, organisms added due
to evisceration, washing efficiency, and contaminated cm” of meat trims in a combo. Figure 3-14
depicts a schematic flow of the process of filling a combo bin with meat trims, based upon
different sources with different pathways of contamination.

Based on the schematic diagram in Figure 3-12, contamination from 3 pathways is
aggregated and eventually there is only one value of contamination for the combo bin. In each
pathway, there is another source of aggregation of E. coli O157:H7 organisms. For example, in
the first pathway, there are five cattle contaminated during the dehiding process. For each cattle,
the amount of E. coli O157:H7 organisms that each animal contributes to the total contamination
of the combo bin is calculated separately, and then sum of the contaminations over different
animals is considered as the aggregate pathway contamination. Thus, although there is only one
value of the combo contamination as the output in this iteration, there are multiple values of
inputs associated with each animal and with the aggregate effect of multiple animals on each

pathway. For instance, in this example, all input variables affecting the combo contamination are
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calculated five times in pathway one, three times in pathway two, and two times in pathway
three. A question can be raised as to which of these input values should be considered as the
appropriate one to use for sensitivity analysis corresponding to the output in the iteration, since
ideally there should be only one input value associated with each output.

In order to solve this problem, the original E. coli code in the slaughter module was
modified in a way that a new individual animal is introduced, representing the characteristics of
all contaminated cattle contributing to the combo bin contamination. Figure 3-13 depicts the
individual cattle representing all the contaminated cattle in different pathways of the presented
example. This representative animal contributes the total number of E. coli O157:H7 organisms
to the combo bin. Hence, the equations used for calculation of the number of E. coli O157:H7
organisms were modified in order to take into account that the data regarding representative
animal are needed instead of data for individual contaminated cattle. In these equations, n
indicates the number of contaminated cattle contributing in the combo bin (e.g., 10 cattle in
presented example):

Organisms on Contaminated Carcass = Z(OC ), (3-1)

i=1

n

> loc). *(tvw) ]

Trim/Vacuum/Wash Efficiency = =

(3-2)

n

> (0c),

i=1

Evisceration Organisms Added = Z(EOA)Z. (3-3)

3 [0C),*(7R),]

Wash Percent Reduction = = (3-4)

n

>-(0¢),

i=1

n

Contaminated Cm” in a Combo = »_(CC), (3-5)

i=1

n

Combo Contamination = Z (M), (3-6)

i=1
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Figure 3-12. Schematic Flow of the Process of Filling a Combo Bin with Meat Trims Coming
From Different Sources with Different Contamination Pathways.
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Figure 3-13. The Representative Cattle Introduced in the Modified E. Coli Model in the

Slaughter Module.
Where,
oG = Number of organisms on contaminated carcass i
TVW; = Trim/Vacuum/Washing efficiency for carcass i (percent)
EOA; = Evisceration organisms added for carcass i
WR; = Washing reduction efficiency for carcass i (percent)
CcG = Number of contaminated cm® of meat trims for carcass i
CCM; = Contribution of Each Animal to Combo contamination

3.4.3 Preparation Module
Modifications in the preparation module are categorized into two parts: (1) modifications
in the serving contamination part; and (2) modifications in the cooking effect part. In the

following sections each part is explained separately.

3.4.3.1 Modifications in the Serving Contamination Part

In this section the modifications of the original E. coli code in the serving contamination
part of the preparation module are explained. In order to clarify the modifications, at first the
original approach in calculation of the serving contamination is explained.

In the original E. coli model, the amount of ground beef in each food item was calculated
using the CSFII recipe files (FSIS, 2001). This provides information about the amount of ground
beef consumed during a meal. Consumption data for each ground beef category (e.g., raw meat,
hamburger patties, and meatballs) were separated by the eating location (i.e., either at home or
away from home). This stratification results in six combinations for ground beef consumption by

location: (1) raw ground beef consumed at home; (2) raw ground beef consumed away from
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home; (3) ground beef consumed as hamburger at home; (4) ground beef consumed as
hamburger away from home; (5) ground beef consumed as meatballs at home; and (6) ground
beef consumed as meatballs away from home. Ground beef consumption was further stratified to
four age groups: (1) 0 to 5; (2) 6 to 24; (3) 25 to 64; and (4) above 65 years of age. Hence, there
are 24 combinations of ground beef consumption type, eating location, and consumer age. For
each of these combinations, there is an average serving size based on the CFSII data. In the
original code in the serving contamination part, based on the distribution of the grinder load
contamination available as an intermediate output of the E. coli model in previous parts, the
serving contamination distribution is calculated for each combination of ground beef
consumption type, eating location and the consumer age, taking in to account the corresponding
average serving size. Hence, there are 24 serving contamination distributions for different
combinations. Based on the CSFII data, each combination has a total number of servings
consumed in the United States. These numbers are implemented to give weight to different
combinations. These weights are used to average the serving contamination distributions for
different combinations, and finally there is one distribution representing the frequency of
contamination in a ground beef serving.

Based on the case scenario for the serving contamination part in Section 3.3.3, the intent
is to identify the effect of factors, such as the consumer age, ground beef consumption type, the
serving size, and the eating location, on the contamination distribution of a ground beef serving
consumed in the United States. In order to achieve this goal, these factors should participate in
the simulation as random variables, and not as point estimates or averages as they are behaving
in the original E. coli model in the serving contamination part. Hence, the original E. coli code in
the serving contamination part was modified so that these factors participate in the simulation as
random variables.

In order to define distributions for these factors, data from CFSII were used. These data
are given in Tables 3-5 to 3-7. For these factors discrete distributions were defined, considering
the information presented in the tables. For example, in Figure 3-14 the defined discrete
distribution for the ground beef consumption type in the United States is depicted. For the
consumer age and the eating location, the weights of the defined discrete distributions are given
in Tables 3-5 to 3-7. For the serving size, different cumulative distributions are defined

considering the data from CFSII survey. The ground beef consumption data from CFSII are
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Figure 3-14. Discrete Distribution for the Ground Beef Consumption Type in the US.

available in the original E. coli model (i.e., the ‘CONSUMPTION’ worksheet). These data are
presented in the form of minimum serving size, maximum serving size, and 5 to 95 percentiles of
the serving size for each combination of the ground beef consumption type, the consumer age,
and the eating location. Hence, 24 cumulative distributions are defined for the serving size.

In Figure 3-15, steps in the modified code for the serving contamination estimation part
are depicted. In step 1, a ground beef consumption type is randomly selected from the
corresponding discrete distribution. In step 2, the eating location is selected from its distribution.
In step 3, the age of the consumer is selected from the corresponding discrete distribution. The
selected ground beef consumption type and the eating location are taken into account when
choosing a distribution for the consumer age, because for different combinations of the ground
beef consumption type and the eating location there are different distributions for consumer age.
In step 4, considering selected values for the ground beef consumption type, the eating location,
and the consumer age, a cumulative distribution for the serving size is selected from the available
24 distributions, and a serving size is randomly picked from that distribution. In step 5, the
grinder load contamination is calculated from the available distribution. In step 6, the mean
contamination of the ground beef serving is estimated as the output of interest in this part.
Equation 3-7 is used to calculate the mean contamination of the ground beef serving as the
output of interest in this part. These steps are repeated for the number of iterations in the
simulation.

Mean Serving Contamination = Serving Size * ](Grnder Contamination (3-7)
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Figure 3-15. Schematic Diagram of Modified Algorithm for the Mean Serving Contamination
Calculation.

Table 3-5. Consumption Data for Raw Ground Beef

Number of Mean
Location Age in Years . Serving Weight
Servings .
Size (g)
H 6-24
ome 25-64 8,861,470 113.40 100%
65+ |
Total 8,861,470 Weight 66.8%
0-5 522,315 56.70 11.9%
A 6-24
way 25-64 3,883,053 12.60 88.1%
65+
Total 4,405,368 Weight 33.20%
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Table 3-6. Consumption Data for Hamburger Patties

Number of Mean
Location Age in Years . Serving Weight
Servings .
Size (g)
0-5 395,592,840 51.86 8.0%
Home 6-24 1,478,341,250 95.17 29.7%
25-64 2,517,532,750 102.02 50.7%
65+ 577,825,295 86.52 11.6%
Total 4,969,292,135 Weight 31.0%
0-5 717,308,950 36.88 6.5%
Away 6-24 4,215,244,840 78.73 38.0%
25-64 5,628,291,058 87.64 50.8%
65+ 523,589,763 67.53 4.7%
Total 11,084,434,611 | Weight 69.0%
Source: E. coli food safety risk assessment model, “CONSUMPTION” worksheet
Table 3-7. Consumption Data for Meatballs
Mean
Location Age in Years Numb-er of Serving Weight
Servings .
Size (g)
0-5 109,001,410 62.36 7.6%
H 6-24 362,621,113 123.02 25.4%
ome 25-64 686,647,125 | 123.95 48.0%
65+ 272,269,925 100.09 19.0%
Total 1,430,539,573 | Weight 66.2%
0-5 27,548,375 64.01 3.8%
A 6-24 169,672,623 75.64 23.2%
way 25-64 398,076,300 | 101.57 54.5%
65+ 135,376,128 67.30 18.5%
Total 730,673,425 Weight 33.8%

Source: E. coli food safety risk assessment model, “CONSUMPTION” worksheet
3.4.4 Modifications in the Cooking Effect Part

In this section the modifications of the original E. coli code in the cooking effect part of
the preparation module are explained. In order to clarify the modifications, at first the original

approach in calculation of the cooking effect on the reduction of the number of E. coli O157:H7

organisms in ground beef servings is explained.

Cooking effect depends on the cooking temperature, the precooking treatment, and the
place of cooking (i.e., home or away from home). Precooking treatment refers to the condition in
which a ground beef serving is stored before cooking. There are nine precooking treatments,

considered in the E. coli food safety risk assessment model. These treatments are summarized in
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Table 3-8. Specification of Precooking Treatments in the Cooking Effect Part

I:;:;(t)ﬁ:z::tg Specification
A -18° for 8 days
B 3°C for 9 hours
C -18°° for 8 days 21°° for 4 hours
D 15° for 9 hours
E 3°C for 9 hours 21°° for 4 hours
F -18°C for 8 days 30°° for 4 hours
G 15° for 9 hours 21°° for 4 hours
H 3°C for 9 hours 30°° for 4 hours
| 15° for 9 hours 30°° for 4 hours

Source: FSIS, 2001

Table 3-8. For each precooking treatment there is a linear regression model, indicating
the relation between the cooking temperature and the log reduction in the number of E. coli
0157:H7 organisms due to cooking. A cumulative distribution for the cooking temperature is
available. For each precooking treatment a frequency distribution of log reduction in
contamination due to cooking is calculated. Hence, at the end of each iteration, there are 9
cooking effect distributions for servings cooked at home and 9 cooking effect distributions for
servings cooked away from home. In addition, different weights are allocated to different
precooking treatments in each iteration. All of the estimated cooking effect distributions are
averaged taking into account these weights. As the final output of the model in this part, there is
a single frequency distribution of log reduction in contamination due to cooking.

Based on the case scenario for the cooking effect part in Section 3.3.3, the intent is to
identify the effect of precooking treatments and the cooking location on the amount of log
reduction in the number of E. coli O157:H7 organisms due to cooking. In order to address this
concern, these factors should participate in the simulation as random variables. Hence, the
original E. coli code in the cooking effect part was modified in a way that these factors
participate in the simulation as random variables.

For the precooking treatment a discrete distribution is defined, using the weight of each
treatment as the probability of occurrence of that treatment. Since these weights are changing in
different iterations of a random simulation, a range of uncertainty is considered for each
precooking treatment probability. Figure 3-16 depicts the discrete distribution defined for the
precooking treatment. The depicted probabilities are the mean probabilities of different

precooking treatments. In addition, the range of uncertainty regarding the probability of each
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Figure 3-16. Discrete Distribution for the Precooking Treatments Considering the 95%
Probability Range for the Mean Values.

precooking treatment is also demonstrated in this figure. For the cooking location, based on
information available in the original E. coli model regarding the number of ground beef servings
consumed at home or away from home, a discrete distribution is defined for this factor.

Figure 3-17 depicts the schematic diagram of the modified algorithm in the cooking
effect part. In step 1, a precooking treatment is selected from the corresponding distribution. In
step 2, a cooking place is selected from the distribution defined for this input. In step 3, a
cooking temperature is randomly picked from the cumulative cooking temperature distribution.
In step 4, considering the precooking treatment already selected in step 1, the log reduction in the
number of E. coli O157:H7 organisms due to cooking is estimated using the linear regression
model available for that treatment. These steps are repeated for the desired number of iterations
in the simulation.

3.5 Identification of the Input Variables and the Outputs of Interest

In order to perform any sensitivity analysis method a data set containing the paired values
of input variables and the outputs of interest are formed. Therefore, it is crucial to identify the
input variables and the deserved outputs before performing the simulation, and to modify the
code in a way such that those inputs are stored properly. In the E. coli model there are input
variables in each module affecting the outputs of interest. During the input identification process,
it should be clarified whether the selected input represents variability, uncertainty or both. In

addition, assumptions made for each input regarding the possible range of variation and its
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Figure 3-17. Schematic Diagram of Modified Algorithm for the Mean Serving Contamination
Calculation.

distribution has to be identified. The input variables and the outputs of interest for each module
in the E. coli food safety risk assessment model are given in Tables 3-9 to 3-13. In those tables,
the “Variable Characteristic” column indicates whether the input represent variability,
uncertainty or both.

For inputs incorporating both variability and uncertainty, uncertainty is considered in the
parameters of the variability distribution. For example, for the number of combo bins to which
each animal contributes, there is a triangular distribution representing the variability of the input.
The mean value of this distribution is uncertain. Hence, a uniform distribution is considered for
the mean value to represent the uncertainty in this input. In addition, each input can be
quantitative or qualitative. A quantitative variable is naturally measured as a number for which

meaningful arithmetic operations make sense, while qualitative or categorical variables are any
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variable that is not quantitative. Qualitative variables take a value that is one of several possible
categories. As naturally measured, categorical variables have no numerical meaning.

Tables 3-9, 3-10, 3-11, 3-12, and 3-13 give the inputs and outputs in the production
module, the slaughter module, the growth estimation, the serving contamination, and the cooking

effect parts, respectively.
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Table 3-9. Input Variables and Outputs of Interest in the Production Module

Name I(n)l:lltl;::: Ch:f:cl?;liz tic Value, Equation, or Distribution Comment
Feedlot Prevalence
Study Input Uncertain Discrete[ {A,B,C,D};{1,1,1,1}] Qualitative
Apparent Feedlot Prevalence (AFP) Input Uncertain Beta(Np+1 , Ni-Np+1) @ Quantitative
Herd Sensitivity Input Uncertain 1-(1-Exponential(AFP))*" © Quantitative
Feedlot Prevalence Output — Discrete[{17...100”}; {P;...P10}] (4)
Within-feedlot Prevalence
Study Input Uncertain Discrete[ {A,B,C,D,E}, {Pa,Pg,Pc,Pp,Pet] © Qualitative
Season Input Uncertain Discrete[ { Winter, Summer},{1,1}] Qualitative
Apparent Within-feedlot Prevalence Input Uncertain Beta(Np+1 , Npt-Np+1) @ Quantitative
(AWFP)
Test Sensitivity Input Uncertain Beta(a., p) © Quantitative
Average Within-feedlot Prevalence Output — Average over high or low prevalence seasons —
Breeding Herd Prevalence
Study Input Uncertain Discrete[ {A,B,C,D,E,F,G}:{1,1,1,1,1,1,1}] @ Qualitative
Apparent Bre(ziléfill;;% rd Prevalence Input Uncertain Beta(Np+1 , Npr-Np+1) @ Quantitative
Herd Sensitivity Input Uncertain 1-(1-Exponential(ABHP))>" © Quantitative
Breeding Herd Prevalence Output -—-- Discrete[{1”...100”};{P;...P10}] (4)
Within-breeding Herd Prevalence
Study Input Uncertain Discrete[ {A,B,C,D,E}, {P,Pg,Pc,Pp,Pet] © Qualitative
Season Input Uncertain Discrete[ { Winter, Summer},{1,1}] Qualitative
Appagféliz\éﬁil;n(-zr\;egﬁlg)Herd Input Uncertain Beta(Np+1 , Nr-Np+1) @ Quantitative
Test Sensitivity Input Uncertain Beta(o., p) © Quantitative
Average Within-breeding Herd Output -—-- Average over high or low prevalence seasons -—--

Prevalence

(Continued on the next page)
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Table 3-9. Continued

[O8)

Discrete distributions with equal weights are defined for the study effect in the feedlot and breeding herd prevalence estimation. In the feedlot prevalence,
four studies contribute in the estimation of the output, while for the breeding herd prevalence there are seven studies. The data regarding these studies are
given in Tables 3-1 and 3-3.

Np = Number of positive cattle in positive herds or feedlots, Nt = Number of cattle tested in positive herds. These values are summarized in Tables 3-1 and
3-3.

SF = Samples per feedlot or breeding herd. Different values of SF are given in Tables 3-1 and 3-3 for different studies.

The probability of different feedlot or breeding herd prevalence is estimated for different values of prevalence from 1 to 100 percent. In the original E. coli
model a random value is picked from this distribution as the output in this part, while in the modified model the median value of this discrete distribution is
considered as the output of interest.

Discrete distributions with unequal weights are defined for the study effect in the within feedlot and breeding herd prevalence estimation. In the within
feedlot and breeding herd prevalence parts five studies contribute to the estimation of the output. The data regarding these studies are given in Tables 3-2 and
3-4.

Parameters o and B differ for different testing methods specific for each study. The testing methods used for each study are specified in Tables 3-2 and 3-4
for feedlots and breeding herds, respectively.
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Table 3-10. Input Variables and Outputs of Interest in the Slaughter Module

Input or Variable . C e
Name Output | Characteristic Value, Equation, or Distribution Comment

Number of Combo Bins, Each Animal Variable . . I
Contributes (Steer/Heifer) Input Uncertain Triangle (2,Uniform (2,5),6) Quantitative

Number of Combo Bins, Each Animal Variable . . I
Contributes (Cow/Bull) Input Uncertain Triangle (2, Uniform(2,3),4) Quantitative
Number of Infected Feedlot Cattle ina Lot (Niz) | Input I}/r? crclaerl?aien Binomial(1,H).Binomial[40,Exponential(W)] M Quantitative

Number of Infected Breeding Herd Cattle in a Variable ) ) ) ) L
Lot (Njp) Input Uncertain 2 {Binomial[ 1,H*Exponential(W)]} Quantitative

Number of Contaminated Feedlot Cattle in a Lot Variable . e
umber ot Lon amme(ll\eICF) cedlot Latiemn a Lo Input Uncertain Poisson [Ng*TR] @ Quantitative

Number of Contaminated Breeding Herd Cattle Variable . « ?) oy
in a Lot (Nep) Input Uncertain Poisson [Nig*TR] Quantitative

Probability of Contamination at Both Steps . . o
(Dehiding & Bvisceration) (Paods) Input Variable Uniform [0,Nir or Nig]/(Nir or Nig) Quantitative

N f taminat t . . . o .
umber OEgzge?:;;gfl (GI?ICC; reasses @ Input Variable Binomial [(Ncr or Neg), Pyis] Quantitative

Number of Contaminated C t . o o
et OEVi(s)(I:Ie?;l:ilgs (eNCE)a reasses a Input Variable Binomial [(Ncr or Neg), Peyis] @ Quantitative

Number of Contaminated Carcasses at Both . . . . r
Steps (Dehiding & Evisceration) Input Variable Binomial [Min(N¢g or Neg, Ncg), Pot] Quantitative
Chilling Effect Input I}/r? crclaerll)aien o NormaliUniform(-0.3.0.3). 1) Quantitative

. . Variable A @ oy
Organisms on Contaminated Carcass Input Uncertain I*A Quantitative
Trim/Vacuum/Wash Efficiency Input [\J/r?crggien 1" Tringular {0.Uniform(0.3.0.7).Uniform(0.8.1.2); Quantitative

(Continued on next page)
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Table 3-10. Continued

Evisceration Organisms Added Input [\J/I?cr;:arlzien [*A @ Quantitative
Washing Percent Reduction Input [\J/r?cr;:arlzien " Tringular {0.Uniform (0.3.1.5).Uniform(1.5.2.3); Quantitative
. ) Variable . . ®) o
Contaminated cm” (CC) Input Uncertain Binomial (C*¢, A/TSA) Quantitative
Contamination in a Combo Bin Output -—— Poisson (7 * CC) 6)

N —

W

H = Feedlot or breeding herd prevalence, W = Within feedlot or breeding herd prevalence.
TR represents the transformation ratio based upon a ratio of two beta distributions. It relates the frequency of contaminated carcasses to the frequency of the

infected cattle in a lot.

Pg,is = Probability of the evisceration occurrence.
I = Initial number of organisms on contaminated carcasses introduced during dehiding and is modeled as a cumulative frequency distribution, A =

Contaminated surface area.

¢ = Weight of contribution, @ = cm*/Ib of meat trims, TSA = Total surface area.

In the slaughter module the output of interest is calculated using a Poisson distribution with the parameter of the distribution estimated based on the inputs in
this module. Hence, in each iteration a value is picked randomly from the distribution as the output of interest. In the modified slaughter module the mean of
this Poisson distribution is considered as the output of interest.
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Table 3-11. Input Variables and Outputs of Interest in the Preparation Module, Growth Part

Input or Variable . c
Name Output Characteristic Value, Equation, or Distribution Comment
Storage Temperature Variable . o
Retail Input Uncertain Cumulative Quantitative
Storage Temperature Variable . o
Transportation Input Uncertain Cumulative Quantitative
Storage Temperature Variable . o
Home Input Uncertain Cumulative Quantitative
Storage Time Variable x . . o
Retail (ST)) Input Uncertain 24 * Exponential[Uniform(0.5,1.5)] Quantitative
Storage Time . ) o
Transportation (ST») Input Variable Cumulative Quantitative
Storage Time Variable x . . o
Home (STs) Input Uncertain 24 * Exponential[Uniform(0.5,1.5)] Quantitative
Maximum Densit Input Variable Triangle (5, Uniform(5,10),10) Quantitative
Y P Uncertain g ’ I
Laile);ri‘f’d Input Variable Exponential {Normal(9.98-2.69L.n(ST;),0.27)} | Quantitative
Lag Period . . o
Transportation Input Variable Exponential {Normal(9.98-2.69Ln(ST;),0.27)} Quantitative
La%f)’f;;od Input Variable Exponential {Normal(9.98-2.69Ln(ST3),0.27)} Quantitative
Generation Time Variable . o
Retail Input Uncertain Exponential {Normal(9.98-2.69Ln(ST;),0.16)} Quantitative
Generation Time Variable . o
Transportation Input Uncertain Exponential {Normal(9.98-2.69Ln(ST;),0.16)} Quantitative
Generation Time Variable . o
Home Input Uncertain Exponential {Normal(9.98-2.69Ln(STs),0.16)} Quantitative
Growth Output e -——-
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Table 3-12. Input Variables and Outputs of Interest in the Preparation Module, Serving Contamination Part

Input or

Variable

Name . .. Value, Equation, or Distribution Comment
QOutput Characteristic
Ground Beef Consumption Type Input Variable Discrete[ {Raw,Hamburger,Meatball},{0.1”,88”,12”}]1 | Qualitative
Eating Location Input Variable Discrete[ {Home, Away},{Py,Pw}] Qualitative
Age of Consumer Input Variable Discrete[ {A,B,C,D,E},{Pa,Pg,Pc,Pp,Ps}] Qualitative
Grinder Contamination (GC) Input Variable Cumulative Quantitative
Serving Size (SS) Input Variable Cumulative Quantitative
Serving Contamination Output — Poisson (SS * 10 ) (1)

1. In the serving contamination part, the output of interest is the contamination in a ground beef serving that is estimated by randomly picking a value from a
Poisson distribution with the distribution parameter estimated using inputs in this part. In the modified model, the mean value of this distribution is

considered as the output of interest.

Table 3-13. Explanatory Variables and Outputs of Interest in the Preparation Module, Cooking Effect Part

Name I(I;Eltl;l?: Ch:f:cl?ebrliz tic Value, Equation, or Distribution Comment
Precooking Treatment Input Variable Discrete[ {A,...,I},{Pa,...,P1}] Qualitative
Cooking Place Input Variable Discrete[ {Home, Away},{0.35, 0.65}] Qualitative
Cooking Temperature Input Variable Beta(a , B) Quantitative
Log Reduction Output -—-- Intercept + Slope * T (1)

1. The values of the intercept and slope of the linear log reduction model for each precooking treatment are specified separately in the model.
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4 NOMINAL RANGE SENSITIVITY ANALYSIS APPLIED TO THE E. COLI
MODEL

The objective of this chapter is to evaluate the application of NRSA to the E. coli model.
This chapter includes three sections. Section 4.1 explains limitations regarding the application of
NRSA to the E. coli model. Section 4.2 presents an example to illustrate NRSA application to
the growth estimation part of the preparation module. Section 4.3 presents a summary and
conclusion regarding the application of the mathematical sensitivity analysis methods to the E.
coli model.

4.1 Overview of Limitations Precluding the Application of NRSA to the E. coli Model

This section explains the reasons that make the application of NRSA to the E. coli model
impractical. These reasons are classified into two categories: (1) model limitation; and (2)
method limitation.

Section 3.2.4.1 explained that one of the limitations of the E. coli model for application
of sensitivity analysis methods is that the model is structured in Microsoft Excel using inter-
cellular functioning. The use of equations inside worksheet cells, as opposed to the use of a
stand-alone programming language, permits execution of the code in the spreadsheet
environment; however, spreadsheet-based models are difficult to modify compared to
programming language-based models. In order to apply NRSA, all inputs should be held at
nominal point values, and only one input is varied to its minimum and maximum values to
evaluate the effect of this variation on the output. Because all the model equations are stored in
worksheet cells, changing the values of cells is difficult to implement.

In Section 2.1.1 NRSA is explained. NRSA is a simple sensitivity analysis method that
gives insight regarding the relative effect of inputs on the output change. Since NRSA is not
prepared basically to address special relationship such as interactions between inputs and
nonlinearity in the model response, when there are such characteristics in the model NRSA may
not present informative results. In those cases that there are interactions between inputs, NRSA
may give results if changing each input value is synchronized with change in the input that has
interaction with the first input. This process may be tedious and time consuming, because at the
beginning of the analysis it is not clear as to which inputs have interaction. Hence, it is possible

that too many combinations would have to be examined in order to find those inputs that have
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interaction. The amount of manual work that has to be done increases substantially when the
number of inputs to the model increases.

Statistical and graphical methods for the sensitivity analysis applied in Chapters 5 to 9
indicate that there are statistically significant interactions between inputs to different parts and
modules of the E. coli model. Thus, considering the limitations explained above, NRSA was not
selected for application to the E. coli model.

In next section an example is presented for application of NRSA to the growth estimation
part. Through this example, it is illustrated that how an interaction effect between the storage
time and temperature affects the results from NRSA.

4.2 Example of Application of NRSA to the E. coli Model

In this section an example is presented regarding the application of NRSA in the growth
estimation part of the production module. In addition to the simple NRSA, the possible
interaction between inputs was addressed by conditioning the change in the input values to
changes in the values of other inputs that are suspected to have an interaction with the first input.

Table 3-11 summarizes the inputs and their distributions in the growth estimation part.
Nominal values (i.e. minimum, mean, and maximum) for each input are extracted considering
the input distribution. These values are given in Table 4.1.

Equation 2-1 is used as an index for the sensitivity measurement. In Table 4-2 the results
of simple NRSA method are summarized. Since the model response when all the variables are at
mean values is zero (i.e. no growth), the sensitivity indexes based on that equation could not be
estimated. Therefore only the numerator of the equation was only used for measuring the
sensitivity.

Results in Table 4-2 implies that for almost all the inputs changing the input value
between the maximum and minimum values, while conditioning other inputs at their mean
values does not result in any change in the model response. Thus, there may be interactions
between inputs. In each stage, growth is estimated if the available time at that stage is longer
than the lag period of the stage, otherwise the growth will be estimated as zero (FSIS, 2001).
Mean values of the storage times and the lag periods at different stages in Table 4-1 indicate that
for the case with all the inputs conditioned at their mean values the growth is zero. Moreover, the
growth in the number of E. coli organisms in ground beef servings could be estimated only if the

storage time and the lag period are changed simultaneously.
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Table 4-1. Nominal Values for Inputs to the Growth Estimation Part

Variable Minimum | Mean | Maximum | Unit
Storage Time at Retail 0 24 340 Hour
Storage Temperature at Retail 46 47.6 73 °F
Storage Time at Transportation 0 1 6.5 Hour
Storage Temperature at 46 48 8 73 R
Transportation
Storage Time at Home 0 24 340 Hour
Storage Temperature at Home 46 48.3 73 °F
Maximum Density 5 7.5 10 log
Lag Period at Retail 2.7 73.6 250.2 Hour
Lag Period at Transportation 2.5 64.7 260.9 Hour
Lag Period at Home 2.2 71.8 247.5 Hour
Generation Time at Retail 0.6 9.9 22.8 Hour
Generation Time at Transportation 0.6 8.7 24.6 Hour
Generation Time at Home 0.6 9.7 24 Hour
Table 4-2. The Results of the NRSA in the Growth Estimation Part
. Growth in Log at Input Values: | Sensitivit
Variable Minimum Nigean pMaximum (Rank) '
Storage Time at Retail 0 0 0.7 0.7(1)
Storage Temperature at Retail 0 0 0 0
Storage Time at Transportation 0 0 0 0
Storage Temperature at
. 0 0 0
Transportation
Storage Time at Home 0 0 0.7 0.7(1)
Storage Temperature at Home 0 0 0 0
Maximum Density 0 0 0 0
Lag Period at Retail 0.09 0 0 -0.09(2)
Lag Period at Transportation 0 0 0 0
Lag Period at Home 0.07 0 0 -0.07(3)
Generation Time at Retail 0 0 0 0
Generation Time at
Transportation 0 0 0 0
Generation Time at Home 0 0 0 0

In order to incorporate the effect of interactions in NRSA, conditional NRSA was applied
to this part. Table 4-3 gives the results of conditional NRSA at stage one (i.e. retail). Although
just three inputs are considered in the example, 27 manual calculations were performed in order

to estimate the sensitivity indexes for inputs.
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Table 4-3. The Results of the Conditional NRSA for the Stage One (Retail) in the Growth

Estimation Part

§ Storage Time | Lag Period at . Sensitivit
&\\\\\\\\\\\\\ at l%etail gRetail Growth in Log (Rank) '
oD Low Value 0
E = Low Value Mean Value 0 0
g N High Value 0
g- g Low Value 0.74
= Mean Value Mean Value 0 0.74 (4)
= = High Value 0
55 Low Value 7.19
8 ef High Value Mean Value 7.19 4.43 (1)
7 = High Value 2.76
° Low Value 0
E Low Value Mean Value 0 0
g _ T High Value 0
=S G Low Value 0.74
e Mean Value | Mean Value 0 0.74 (4)
T, % S High Value 0
¥ = Low Value 7.15
g N’
S High Value Mean Value 7.15 4.4 (2)
s High Value 2.75
° Low Value 0
E ) Low Value Mean Value 0 0
g _ 73 High Value 0
2'F > Low Value 0.74
E) I~ E Mean Value Mean Value 0 0.74 (4)
o = g High Value 0
%‘0 g Low Value 6.59
% c High Value Mean Value 6.59 3.83 (3)
High Value 2.76

Results in Table 4.3 indicate that for low storage temperature at retail, the model response
is greater than zero only if there is a low value of lag at a mean storage time or for any lag for a
high value of storage time. Thus, it is clear that interactions are important and that the model is
non-linear with possible thresholds.

If all three stages (i.e. retail, transportation and home) were considered simultaneously,
the number of calculations with considering the interactions between inputs would be boosted

dramatically making the analysis onerous and time consuming.
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4.3 Summary and Conclusions Regarding Application of Mathematical Methods for
Sensitivity Analysis to the E. coli Model

In Section 4.1 it was explained that because of limitations of the model regarding the
modeling environment and those of the NRSA, application of NRSA to the E. coli model is not
practical or informative. Section 4.2 presented an example for application of NRSA to the
growth estimation part. In that example, an attempt was made to address the interaction effect
using NRSA. As demonstrated in the example, when the number of inputs to the model increases
the application of the conditional NRSA in order to address the interaction effects between inputs
becomes impractical. Therefore, it was decided that this method would not be applied to different
modules and parts of the model. Application of NRSA is presented with Listeria monocytogenes
model in Chapter 13, in which there is limited number of inputs to the model.

Moreover, in Section 2.1.2 DSA was explained as another mathematical approach for the
sensitivity analysis is explained. This method has almost the same characteristics as the NRSA.
Therefore, based on the discussion in this chapter for refraining the application of NRSA, DSA

was not applied to the E. coli model.
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5 ANALYSIS OF VARIANCE FOR THE E. COLI O157:H7 MODEL

The objective of this chapter is to present the results of applying ANOVA, as a method
for the sensitivity analysis, to different modules and parts of the E. coli food safety risk
assessment model. The modules and parts are explained in Sections 3.2.1 to 3.2.3. ANOVA is
explained in Section 2.2.2, including terms specific to ANOVA such as factor, treatment, level,
balanced or unbalanced experiment, contrasts, and F values.

In Section 5.1, the specification of levels for different factors affecting the output of
interest in each module is explained. In Sections 5.2 to 5.4 the results of ANOVA are presented
for the three major modules of the E. coli model: (1) production; (2) slaughter; and (3)
preparation. For each module, the approach employed regarding the consideration of variability
and uncertainty is explained. Details for scenarios for each module are presented in Sections
3.3.1t03.3.3.

As an illustration of a technique for performing a diagnostic check on the results of
ANOVA, three case studies are provided in Sections 5.4.1.1 to 5.4.1.3 in which the coefficient of
determination, R?, is calculated based upon the results of ANOVA. Although the F values
calculated for each effect indicate the statistical significance of the respective effect, the
coefficient of determination provides insight regarding whether the selected effects adequately
capture variability. Moreover, a high value of R* implies that results are not compromised by
inappropriate definition of the levels for each factor.

A case study is provided in Section 5.4.2 to evaluate the uncertainty in F values as an
index of sensitivity in ANOVA. The purpose of this case study is to evaluate how large
differences must be between F values in order to discriminate the importance of two or more
inputs.

In Section 5-5, the ANOVA method is evaluated and the limitations, advantages,
disadvantages and key criteria for application of this method to sensitivity analyses are
summarized.

5.1 Identification of Levels of Factors in Different Modules of the E. coli Model

In this section the levels assigned to factors for different modules of the E. coli model are
identified. Each factor included in ANOVA must be divided into discrete levels. For continuous
factors, levels were defined by dividing the domain of values into ranges based upon the

cumulative distribution function (CDF) of the factor. In particular, levels are defined based upon
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Table 5-1. Levels for Factors Used in ANOVA in the Feedlot Prevalence Part

Factor Number Levels and Units
of levels Corresponding Percentiles "
Stud 4 Dargatz Hancock 1997, Hancock 1998, .
Y Smith 1999, Elder 2000 ®
{0-4, 4-35, >35}
Apparent Prevalence 3 / 40th, 80“‘} Percentiles Percent
. {0-70, 70-95, >95}
Herd Sensitivity 3 {20&1’ 40th} Percentiles Percent

(1) For continuous variables, the ranges that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified.
(2) Data regarding each study are summarized in Table 3-1.

Table 5-2. Levels for Factors Used in ANOVA in the Within Feedlot Prevalence Part

Factor Number Levels and Units
of levels Corresponding Percentiles "
Stud 5 Dargatz Hancock 1997, Hancock 1999, .
Y Hancock 1998, Smith 1999, Elder 2000

Season 2 Summer, Winter ---

Apparent Within Feedlot {0-6,>6}

Prevalence 2 60" Percentile Percent
. {0-50, 50-65, 65-92, >92}

Test Sensitivity 4 {20&1’ 60", 80th} Percentiles Percent

(1) For continuous variables, the ranges that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified.
(2) Data regarding each study are summarized in Table 3-1.

the lower tail, middle region, and upper tail of the distribution of each factor. The CDF for each
factor is derived based on the generated values from the corresponding distribution during a
random simulation of the E. coli model. In cases with contributions of both variability and
uncertainty in the simulation, levels are identified based on the cumulative distributions
developed from co-mingled variability and uncertainty generated values. In Sections 5.1.1 to

5.1.3 these levels are identified for factors in the three modules of the E. coli model.

5.1.1 Production Module

The production module includes four parts: (1) the feedlot prevalence; (2) the breeding
herd prevalence; (3) the within feedlots prevalence; and (4) the within breeding herds prevalence.
These parts are explained in Section 3.2.1. In Section 3.3.2 the case scenario for the production
module is explained. Factors in the production module are summarized in Table 3-9. Based on
the case scenario in the production module, the analysis includes one dimensional uncertainty

simulation with 65,000 iterations. CDFs for factors in the production module were derived based
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Table 5-3. Levels for Factors Used in ANOVA in the Breeding Herd Prevalence Part

Factor Number Levels and Units
of levels Corresponding Percentiles "
Garber 1998, Sargeant 2000,
Stud 7 Hancock/FDA 2001, Hancock 1997a, .
y Hancock 1998, Lagreid 1998, Hancock
19976 @
{0-3,>3}
Apparent Prevalence 2 60™ Percentile Percent
e {0-75, 75-94, >94}
Herd Sensitivity 3 {20&1’ 40th} Percentiles Percent

(1) For continuous variables, the ranges that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified.
(2) Data regarding each study are summarized in Table 3-1.

Table 5-4. Levels for Factors Used in ANOVA in the Within Breeding Herd Prevalence Part

Factor Number Levels and Units
of levels Corresponding Percentiles '
Garber 1998, Besser 1997, Rice 1997,
Study 6 Hancock 1994, Sargeant 2000, -
Hancock/ FDA 2001 ?
Season 2 Summer, Winter -—-
gfcg:iriennt }vl&grtgm 2 10-2,>2} Percent
g 50™ Percentile
Prevalence
Test Sensitivity 3 / 2{(311;52(’)31? lzgr,cZZl?iies Percent

(1) For continuous variables, the ranges that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified.
(2) Data regarding each study are summarized in Table 3-1.

on the generated values from the uncertainty simulation. These CDFs are depicted in Figure 5-1
for apparent prevalence, herd sensitivity, test sensitivity, apparent within feedlot prevalence, and
apparent within breeding herd prevalence.

The shape of the CDF for each factor is used to define the levels. For example, for the
apparent prevalence in the feedlot prevalence part, shown in Figure 5-1(a), values at the 40™ and
80™ percentiles are used to define the levels. At these percentiles, the corresponding CDF graph
for the apparent prevalence shows changes in the trend of the graph. Hence, these percentiles are
selected in order to define the levels for the apparent prevalence. For qualitative factors such as

the study and the season, original values generated from the distribution are considered as
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different levels. For example, each study is treated as a different level of the study factor. In

Tables 5-1 to 5-4 levels for the factors in the production module are summarized.

5.1.2 Slaughter Module

The slaughter module is explained in Section 3.2.2, including the case scenario. The
slaughter module has a two-dimensional variability and uncertainty simulation. Factors for the
slaughter module are summarized in Table 3-10. CDFs for some factors in the slaughter module
are derived based on the generated values in the co-mingled variability and uncertainty
simulation. These CDFs are depicted in Figure 5-2. In the co-mingled variability and uncertainty
simulation there are 650 iterations for variability and 100 iterations for uncertainty for a total of
65,000 iterations. Factor levels were defined based on the shape of the corresponding CDF for
each factor. For example, for the total number of infected animals, shown in Figure 5-2(a),
values at the 25", 40™ and 80™ percentiles are used to define four levels.

For factors not depicted in Figure 5-2, each unique generated factor value during the
simulation was considered as the factor level. For example, the number of combo bins to which
each carcass contributes is a factor in the slaughter module. Each possible integer value of the
number of combo bins to which each carcass contributes is defined as a factor level. Hence, there
are five levels for this factor since a carcass is assumed to contribute to as few as two but not
more than six combo bins. For the chilling effect five levels are defined based upon one
logarithmic range increments. In Table 5-5, levels for different factors in the slaughter module

are summarized.

98



—_—pf npatent Prevalence ——Herd Sensitivity —Test Sensitivity —— A pparent Within Feedlot Prevalence

100% 100%

z 2

E BO0% = a0 4
2 g

E B0% - E B0%
g 4% - g a0%
E 20% E 0%
3 3

D% T T T T D% T T T T
a 0z 0.4 NG 0.4 1 0 0.2 04 0.6 0.s 1
Yalue Value

(a) Apparent Prevalence and Herd Sensitivity for Feedlot Prevalence (b) Test Sensitivity and Apparent Within Feedlot Prevalence for Within Feedlot Prevalence

—Apparert Prevalence —— Herd Sensitity | | — Test Sensitivty — Apparent Within Breeding Herd Prevalence
100% 100%
& &
= 80% o = B0% -
= =
-_= =
E B0% + E B0% +
o a
% 40% - g a0% |
g o0% - 2 o0% -
= -
] S
0% | | | | 0% T T T T
a 0.2 0.4 0.5 0.8 1 a 0.2 04 08 0.8 1
Value Value
(c) Apparent Prevalence and Herd Sensitivity for Breeding (d) Test Sensitivity and Apparent Within Breeding Herd
Herd Prevalence Prevalence for Within Breeding Herd Prevalence

Figure 5-1. Cumulative Probability Functions for Apparent Prevalence, Herd Sensitivity, Test Sensitivity, and Apparent Within Feedlot and
Breeding Herd Prevalence.
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Table 5-5. Levels for Factors Used in ANOVA in the Slaughter Module

Factor Number Levels and Units
of levels | Corresponding Percentiles
Total Number of Combo Bins for 5 23,456 .
Each Carcass
: {0-2, 2-4, 4-6, >6}
Total Number of Infected Animals 4 I st 400 g Oth} Percentiles -
Total Number of Contaminated 4 {0-1, 1-4, 4-8,>8} .
Animals {25th, 60™, 80th} Percentiles
Probability of Positive Cases at 3)
Dehiding & Evisceration Steps 4 0-25,25-50,50-75, >75 Percent
Number of Positive Cases at 4 0.1.2.3® .
Dehiding & Evisceration Steps C 7
Number qf Positive Cases at 4 0.1,2,3® .
Evisceration
Chilling Effect 5 <-1,-1-0, 0-1, 1-2, >2 Log
. {0-5, 5-20, 20-70, >70} .

Number of Organisms 4 { 50" 60, 80th} Percentiles

. . . {0-25, 25-40, >40}
Trim/Vacuum/Washing Efficiency 3 (40%, SOth} Percentiles Percent

_— . {0-5, 5-20, 20-70, >70}
Evisceration Organisms Added 4 5 0" 60 80th} Percentiles

. {0, 0-20, >20}
Washing Effect 3 200, SOth} Percentiles Percent
. 2 {0-60, 60-200, 200-600, >60}

Contaminated cm 4 {40th, 60™, 80th} Percentiles B

(1) For continuous variables, the ranges that define each factor level and the percentile of the CDF
corresponding to the break point between factor levels are given. For discrete variables, each factor level is
identified.

(2) Levels are identified based on the generated values for the factor.

(3) For this factor four levels with equal intervals are defined.

(4) Similar levels as the number of organisms are defined for this factor.
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Figure 5-3. Cumulative Probability Functions for the Maximum Density and the Generation
Time at Three Stages in the Growth Estimation Part.

5.1.3 Preparation Module

The preparation module includes three parts: (1) growth estimation; (2) cooking effect;
and (3) serving contamination. These parts are explained in Section 3.2.1. In Section 3.3.2 the
case scenarios for the preparation module are explained. Factors for the preparation module are
summarized in Table 3-11. In the growth estimation part there is a two-dimensional simulation
of variability and uncertainty, while in the cooking effect and the serving contamination parts
there is a one-dimensional variability simulation.

In order to identify levels for the factors, CDFs were developed using the simulated
values of each factor in a co-mingled variability and uncertainty simulation in the growth
estimation part, while for the cooking effect and the serving contamination parts values
generated in the variability simulation were used. These CDFs were used only to define levels
for quantitative factors. Factor levels were defined based on the shape of the corresponding CDF
for each factor. For example, for the maximum density in the growth estimation part, shown in
Figure 5-3, values at the 20™, 50", and 80™ percentiles were used to define four levels. For the
qualitative factors, discrete values were used as levels. For example, the cooking place is a
qualitative factor with two levels: (1) home; and (2) away from home. Table 5-6 summarizes the
levels for factors in the cooking effect and the serving contamination part of the preparation
module. Table 5-7 summarizes the levels for factors in the growth estimation part of the
preparation module. Figures 5-3 and 5-4 present the CDFs for maximum density, generation

times, and lag periods in stages 1 to 3 in the growth estimation part.
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Figure 5-4. Cumulative Probability Functions for the Lag Period at Three Stages in the Growth
Estimation Part.

Table 5-6. Levels for Factors Used in ANOVA in the Preparation Module, the Cooking Effect
and Serving Contamination Part

Factor Number Levels and Units
of levels Corresponding Percentiles )
Cooking Effect Part
Precooking Treatment 9 A,B,C,D,E F G H,I @ ---
Cooking Place 2 Home, Away " -—-
) {39-58, 58-66, 66-73, 73-79, >79} o
Cooking Temperature 5 120" 40", 60", 80™ Percentiles C
Serving Contamination Part
Ground Be%f;’l(;é)nsumptlon 3 Raw, Hamburger, Meatball ---
Eating Location 2 Home, Away -—-
Consumer Age 4 <5, 5-24, 25-64, >65 year
Serving Size 7 0-30, 30-60, 60-90, 90-120,
g 120-150, 150-180, >180 @ &
: L <=6, (-6)-(-5), (-5)-(-4), (-4)-(-3)
Grinder Contamination 7  (-3)-(-2), (-2)(-1), >-1 @ log

(1) For continuous variable, the range that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified

(2) Levels for the precooking treatment were defined in Table 3-8.

(3) For the cooking temperature equal percentiles are considered as levels.

(4) For this factor equal intervals are considered as levels.
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Table 5-7. Levels for Factors Used in ANOVA in the Preparation Module, the Growth
Estimation Part

Factor Number Levels and Units
of levels | Corresponding Percentiles )
7.5-11, 11-14.5, 14.5-18, 18- 0
Storage Temperature, Stage 1 5 21552150 C
Storage Temperature, Stage 2 3 7.5-13.5,13.5-19.5,>19.5 D °C
7.5-11, 11-14.5, 14.5-18, 18- 0
Storage Temperature, Stage 3 5 215,521,501 C
Storage Time, Stage 1 12 0-24, 24-48, ..., 264-288, >288) | hr
Storage Time, Stage 2 2 0-3.5,>3.5 hr
Storage Time, Stage 3 12 0-24, 24-48, ..., 264-288,>288") | hr
: . {<6.5,6.5-7.5,7.5-8.5,>8.5}
Maximum Density 4 120" 50" 80"} Percentiles | 0%
. {<50, 50-65, 65-95, >95}
Lag Period, Stage 1 4 20" 50" 80" Percentiles |
. {<35, 35-55, 55-90, >90}
Lag Period, Stage 2 4 20" 50", 80"} Percentiles |
. {<45, 45-65, 65-95, >95}
Lag Period, Stage 3 4 20" 50", 80" Percentiles |
. . {<7,7-9.5,9.5-12.5,>12.5}
Generation Time, Stage 1 4 {20&1’ 50", 80“‘} Percentiles hr
. . {<4.5,4.5-8, 8-12,>12}
Generation Time, Stage 2 4 {20&1’ 50", 80“‘} Percentiles hr
) . {<6.5, 6.5-9.5, 9.5-13, >13}
Generation Time, Stage 3 4 {20&1’ 5 Oth, 80th} Percentiles hr

(1) For continuous variable, the range that define each factor level and the percentile of the CDF corresponding to
the break point between factor levels are given. For discrete variables, each factor level is identified
(2) For this factor equal intervals are considered as levels.

For some factors in Tables 5-6 and 5-7 equal intervals are used as factor levels. The use
of equal intervals for factor levels facilitates the identification of thresholds in the effect of the
factor on the output of interest. For example, for the storage temperature at retail, five levels are
defined with 3.5°C increments. Using contrasts in ANOVA with this degree of level definition
makes it possible to identify whether there is any temperature above which there is no
temperature effect on the growth of E. coli organisms because of a saturation effect.

5.2 Analysis of Variance in the Production Module

In the production module ANOVA was applied to four parts, including feedlot
prevalence, within feedlot prevalence, breeding herd prevalence, and within breeding herd
prevalence. The results of the analyses are presented in Sections 5.2.1 to 5.2.4 for each of these

four parts, respectively.
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Table 5-8. Analysis of Variance Results for Uncertainty in the Feedlot Prevalence Part

Variable F Value Pr>F Significant Rank
Study 189,900 <0.00001 Yes 1
Apparent Prevalence
(AP) 1,450 <0.00001 Yes 3
Herd Sensitivity (HS) 10,400 <0.00001 Yes 2

AP * HS 15,000 <0.00001 Yes .

5.2.1 Uncertainty in the Feedlot Prevalence Part

As explained in Section 3.2.1, for feedlot prevalence estimation, factors include the
apparent prevalence and the herd sensitivity as quantitative factors, and the study as a qualitative
one. Distributions for these factors are summarized in Table 3-9. The output in the feedlot
prevalence part is the median feedlot prevalence. In Section 5.1.1, the definition of levels for
each factor is explained and in Table 5-1 the assigned levels are summarized. For the feedlot
prevalence part there is a one-dimensional uncertainty simulation with 65,000 iterations. Table 5-
8 summarizes the result of application of ANOVA to the feedlot prevalence part.

The factors in Table 5-8 are ranked based on the magnitude of F values. Rankings are
presented for statistically significant factors with Pr>F less than 0.05. Rankings are presented
considering the F values only for main effects. In addition to the main effect of different factors,
the interaction effect between the herd sensitivity and the apparent prevalence is also considered
in the model. The F values in Table 5-8 indicate that all the factors have statistically significant
effects, including the interaction term. Comparing the magnitude of F values for the main effects
of different factors indicates that the study is the most sensitive factor. Hence, it is ranked first.
The herd sensitivity and the apparent prevalence are ranked second and third, respectively. The
difference between the F values of these three factors in the feedlot prevalence part indicates that
the rankings can be considered robust. For example, the F value for the study is approximately
18 times greater than the F value for the herd sensitivity.

In order to better understand the relationship between the mean response and levels of the
study, the mean response is estimated for each level of the study factor in Figure 5-5. The mean
value of the feedlot prevalence is highest for the Smith (1999) study and is almost twice as large
as the value estimated based upon the Hancock (1998) study. Moreover, the analyses based upon

the Smith (1999) and Elder (2000) studies have approximately the same mean response.
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Figure 5-5. Mean Feedlot Prevalence for Levels of the Study Factor.

5.2.2 Uncertainty in the Within Feedlot Prevalence Part

As explained in Section 3.2.1, the quantitative factors for the within feedlot prevalence
part include test sensitivity and apparent within feedlot prevalence, and the qualitative factors
include study and season. Distributions for these factors are summarized in Table 3-9. Section
5.1.1 presents the definition of levels for each factor and in Table 5-2 the assigned levels are
summarized. There is a one-dimensional uncertainty simulation with 65,000 iterations in this
part. Table 5-9 summarizes the result of application of ANOVA to this part.

The factors in Table 5-9 are ranked based on the magnitude of F values. Rankings are
presented for statistically significant factors with Pr>F less than 0.05. In addition to the main
effect of different factors, the interaction effect between the test sensitivity and the apparent
within feedlot prevalence, and between the study and the season are also considered. All of the
factors and interaction terms have statistically significant effects. Comparing the magnitude of F
values for different factors indicates that the study is the most sensitive factor. Hence, it is ranked
first. The apparent within feedlot prevalence, season and test sensitivity are ranked second, third
and fourth, respectively. The F value for the study is approximately 12 times greater than the F
value for the second most important factor. In contrast, the F values of the second, third, and
fourth most sensitive factors differ by a ratio of less than 1.3. Thus, the ranking of these factors

with similar F values may not be unambiguous.
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Table 5-9. Analysis of Variance Results for Uncertainty in the Within Feedlot Prevalence Part

Variable F Value Pr>F Significant Rank
Study 36,800 <0.00001 Yes 1
Season 2,820 <0.00001 Yes 3
Apparent Within Feedlot

Prevalence (AWEP) 3,030 <0.00001 Yes 2
Test Sensitivity (TS) 2,430 <0.00001 Yes 4 |
Study * Season 4,860 <0.00001 Yes &\\\\\\\\\\\\\\\\\j
AWFP * TS 80 <0.00001 Yes |

There is a strong statistically significant interaction effect between the study and the
season. The interaction effect between apparent within feedlot prevalence and test sensitivity is
also significant, but is not as strong.

In order to visualize the relationship between the mean response and the qualitative
factors, the mean response is depicted in Figure 5-6 for individual levels of these factors. Each
value presented in Figure 5-6 equals the mean response at that specific factor level averaged over
other factors. For example, the mean response of 22 percent for summer was estimated based on
averaging over different levels of the study, test sensitivity, and apparent within feedlot
prevalence when the season level equals summer. For different study levels in this figure, the
smallest response value is associated with the Smith (1999) study, and the largest value is
associated with the Elder (2000) study. The range of responses is from 2 to 37 percent among the
different study levels. For the season factor, summer is associated with a higher value of the
mean response than winter. This indicates the higher possibility of infection among feedlot cattle
in summer. However, the range of the mean responses to the two levels of the season factor is
not as large as the range of the mean responses for different levels of the study factor. Thus,

these results confirm that the study factor is more important than the season factor.

5.2.3 Uncertainty in the Breeding Herd Prevalence Part

As explained in Section 3.2.1, for breeding herd prevalence estimation, factors include
the apparent prevalence and the herd sensitivity as quantitative factors, and the study as a
qualitative one. Distributions for these factors are summarized in Table 3-9. In Section 5.1.1, the
definition of levels for each factor is explained and in Table 5-3 the assigned levels are

summarized. There is a one-dimensional uncertainty simulation with 65,000 iterations in this
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Figure 5-6. Mean Within Feedlot Prevalence for Levels of the Study and the Season Factors.

part. Table 5-10 summarizes the result of application of ANOVA to the breeding herd prevalence
part.

The ranking in Table 5-10 is based on the magnitude of F values for each factor.
Rankings are presented for statistically significant factors with Pr>F less than 0.05. In addition to
the main effect of each factor, the interaction effect between the herd sensitivity and the apparent
prevalence is also considered. F values in Table 5-10 indicate that all of the factors and the
interaction term have statistically significant effects. Comparing the magnitude of F values for
different factors indicates that the study is the most sensitive factor. Hence, it is ranked first. The
herd sensitivity and the apparent prevalence are ranked second and third, respectively. The F
value for the study is approximately 25 times greater than the F value for the second most
important factor. Moreover, the F value for the herd sensitivity is approximately 9 times greater
than the F value for the third most important factor.

In order to better understand the importance of the study factor, the mean response is
estimated for each level of the study factor in Figure 5.7. The mean value of the breeding herd
prevalence is highest for the Hancock (1998) study and is approximately 2.5 times greater than
the value estimated based upon the Garber (1998) study. Moreover, the analyses based upon the

Hancock (1998) and Lagreid (1998) studies have approximately the same mean response.
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Table 5-10. Analysis of Variance Results for Uncertainty in the Breeding Herd Prevalence Part

Variable F Value Pr>F Significant | Rank
Study 94,400 <0.00001 Yes 1
Apparent Prevalence (AP) 400 <0.00001 Yes 3
Herd Sensitivity (HS) 3,800 <0.00001 Yes 2
§
AP * HS 3,760 <0.00001 Yes [
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Figure 5-7. Mean Breeding Herd Prevalence for Levels of the Study Factor.

5.2.4 Uncertainty in the Within Breeding Herd Prevalence Part

As explained in Section 3.2.1, the quantitative factors for within breeding herd
prevalence part include test sensitivity and apparent within breeding herd prevalence, and the
qualitative factors include study and season. Distributions for these factors are summarized in
Table 3-9. Section 5.1.1 presents the definition of levels for each factor and in Table 5-4 the
assigned levels are summarized. There is a one-dimensional uncertainty simulation with 65,000

iterations in this part. Table 5-11 summarizes the result of application of ANOVA to this part.
In addition to the main effect of each factor, the interaction effects between test

sensitivity and apparent within breeding herd prevalence, and between study and season are also
considered. All of the individual factors are statistically significant, while none of the interaction
terms are statistically significant interaction. Study is the most sensitive factor. Apparent within
breeding herd prevalence, test sensitivity and season are ranked second, third and fourth,

respectively. The F value for is approximately 9 times greater than the F value for the second
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Table 5-11. Analysis of Variance Results for Uncertainty in the Within Breeding Herd
Prevalence Part

Variable F Value Pr>F Significant | Rank
Study 18,830 <0.00001 Yes 1
Season 12 0.0005 Yes 4
A | o | oo | v |
Test Sensitivity (TS) 400 <0.00001 Yes 3 ‘
Study * Season 2 0.10 No &\\\\\\\\\\\\\\j
AWBHP * TS 1 0.4 No |
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Figure 5-8. Mean Within Breeding Herd Prevalence for Levels of the Study and the Season
Factors.

most important factor. The relative differences of F values among other factors are also large.
Therefore, the rankings are considered to be unambiguous.

In order to visualize the relationship between the mean response and qualitative factors
(i.e., the study and the season) the mean response is depicted in Figure 5-8 for individual levels
of these factors. Each value presented in Figure 5-8 equals the mean response at that specific
factor level averaged over other factors. For example, the mean response of 5 percent for
summer was estimated based on averaging over different levels of the study, test sensitivity, and
apparent within breeding herd prevalence for the summer season. For different study levels in
this figure, the smallest response value is associated with the Sargeant (2000) and
Hancock/CFSAN (2001) studies, and the largest value is associated with the Hancock (1994)

study. The range of responses is from 1 to 68 percent among the different study levels. The
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infection prevalence value in summer differs from the infection prevalence in winter by a ratio of
only 1.6 indicating that for breeding herds seasonal effect does not affect the infection
prevalence substantially. Moreover, the range of the mean responses to the two levels of the
season factor is not as large as the range of the mean responses for different levels of the study
factor. Thus, these results confirm that the study factor is more important than the season factor.

5.3 Analysis of Variance in the Slaughter Module

The slaughter module is discussed in Section 3.2.2. Factors and corresponding
distributions in the slaughter module are summarized in Table 3-10. Three different types of
probabilistic analysis were performed for this module, as described in Section 3.3.2: (1) one-
dimensional simulation of variability based upon mean values of uncertain factors; (2) two-
dimensional simulation of variability for each realization of uncertainty; and (3) one-dimensional
simulation of both variability and uncertainty co-mingled. In this section, the results of ANOVA
for each of these three types of simulations are given. The case study scenario for the slaughter
module is focused upon steers and heifers in the high prevalence season. Section 5.1.2 presents
the definition of levels for each factor and in Table 5-5 the assigned levels are summarized.

In the next section, the results of ANOVA are presented based upon simulation of
variability only. In Section 5.3.2, results are presented based upon the two-dimensional
simulation of variability for different realizations of uncertainty. Results for the co-mingled one-
dimensional simulation of both variability and uncertainty are given in Section 5.3.3. Section

5.3.4 compares the results from Sections 5.3.1 to 5.3.3.

5.3.1 Variability Only

This section presents the results of ANOVA applied to a one dimensional probabilistic
simulation in which variability is only considered for mean value of uncertain factors, based
upon the case study scenario described in Section 3.3.2. The factor levels used in this analysis
are the same as those given in Table 5-5.

Table 5-12 summarizes the results of application of ANOVA to the slaughter module for
the simulation of variability only. Rankings are presented for statistically significant factors with
Pr>F less than 0.05. In addition to the main effect of each factor, interaction effects are also
considered between: (1) the chilling effect and the Trim/Vacuum/Washing efficiency; (2) the

number of organisms and the Trim/Vacuum/Washing efficiency; (3) the number of organisms
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Table 5-12. The Analysis of Variance Results for Steer and Heifer Combo Bin Contamination in
Summer Based Upon Variability only

Variable F Value Pr > F | Significant | Rank

Total Number of Combo Bins for Each
Carcass (TNCB) 2.1 0.08 No B
Total Number of Infected Animals (TNI) 0.1 0.9 No -—-
Total Number of Contaminated Animals
(TNC) 7.2 0.0007 Yes 9
Probability of Positive Cases at Both Steps of
Dehiding and Evisceration (Ppom) 0.4 0.8 No o
Number of Positive Cases at Both Steps of
Dehiding and Evisceration (Npoth) 282 <0.0001 Yes >
Number of Positive Cases at Evisceration
(NPE) 33 <0.0001 Yes 8
Chilling Effect (CH.g) 1480 <0.0001 Yes 1
Number of Organisms (Noyo) 850 <0.0001 Yes 3
Trim/Vacuum/Washing Efficiency (TVW) 1030 <0.0001 Yes 2
Evisceration Organisms Added (Neyisc) 143 <0.0001 Yes 6
Washing Effect (W) 492 <0.0001 Yes 4
Contaminated cm” (CCM) 50 <0.0001 Yes

§
CHegr * TVW 487 <0.0001 Yes | = =
Nowe * TVW 28 <0.0001 Yes \\\\\\\\\\
Nogg * Weir 815 <0.0001 |  Yes _
Nevise ¥ Wesr 304 <0.0001 Yes |

and the washing effect; and (4) the evisceration organisms added and the washing effect are
considered. Three factors are not statistically significant, including the total number of combo
bins to which each carcass contributes, the total number of infected animals, and the probability
of positive cases at both steps of dehiding and evisceration. All four interaction terms are
statistically significant.

Comparing the magnitude of F values for the statistically significant factors indicates that
the chilling effect, Trim/Vacuum/Washing efficiency, and the number of organisms are the three
most sensitive factors. The relative difference of F values for these factors indicates that these
three factors may be of comparable importance. For example, the F values for the chilling effect
and the Trim/Vacuum/Washing efficiency differ by a ratio of only 1.4. The ambiguity of these
rankings is further evaluated in Section 5.3.2, when the factors are ranked for different

uncertainty realizations.
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For factors rather than the three most sensitive ones, the F values are comparatively
small, especially for the seventh through ninth ranked inputs. Although all interactions have
statistically significant effects, the interactions between the number of organisms on
contaminated carcass and the washing effect, and between the chilling effect and the
Trim/Vacuum/Washing efficiency, are more important than others considered based upon the
magnitude of their F values.

5.3.2 Two-Dimensional Simulation of Variability for Different Uncertainty

Realizations

The application of ANOVA to a two-dimensional simulation in which variability is
simulated for each different realization of uncertainty involves sensitivity analysis for each of the
uncertainty iterations. In this case, for example, there are 100 uncertainty iterations. Within each
uncertainty iteration, 650 samples were generated to represent variability in each factor. Thus,
ANOVA was applied 100 times. The factor levels used in this analysis are the same as those
given in Table 5-5.

The factors included in ANOVA for the two-dimensional simulation were the same as
those for the one-dimensional simulation of variability only as listed in Table 5-12 without
considering the interaction terms. The interaction terms were not considered because the datasets
were unbalanced. This means that the sample sizes within levels were different, with some levels
having comparatively small sample sizes. For some uncertainty realizations the lack of balance is
severe enough to lead to singularities in the solution algorithm.

The results of the 100 analyses with ANOVA are summarized in Table 5-13. The table
includes the mean F value of the factor and the minimum to maximum range of F values over the
100 simulations. The percentage of the 100 simulations that produced a statistically significant F
value is quantified. Furthermore, the mean rank and the range of ranks are given for each factor.

The mean ranks indicate that the chilling effect is the most important factor. There is 100
percent probability that the chilling effect is identified as a statistically significant factor among
all 100 uncertainty realizations. The mean ranks for the Trim/Vacuum/Washing efficiency,
washing efficiency, and the number of organisms are estimated as 4.2, 4.4, and 4.4 indicating
that on average the output has approximately similar sensitivity to these factors. For these factors
the probabilities of being statistically significant in 100 uncertainty realizations are 78, 75, and

74 percent, respectively. However, although these factors have approximately similar average
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Table 5-13. Summary of the ANOVA Results for Two-Dimensional Variability Simulation for
100 Uncertainty Realizations

Variable Mean Minimum | Maximum Frequency Mean | Range of

F Value F Value F Value Rank Rank

TNCB 1.3 0.06 15.2 12 9.6 2-12
TNI 1.4 0.01 0.8 17 9.4 3-12
TNC 752 0.01 21,700 69 5.8 1-12
Ppotn 1.3 0.02 4.2 6 9.1 3-12
Nboth 89 0.01 4,605 52 7.5 2-12
NPE 449 0.01 15,560 48 7.4 1-12
CHesr 128,000 3.73 3,490,000 100 1.7 1-6
Norg 9,200 0.01 442,550 74 4.4 1-12
TVW 2,700 0.1 105,000 78 4.2 1-11
Nevise 5,900 0.01 503,000 37 8.0 1-12
Wesr 12,100 0.02 884.600 75 4.4 1-11
CCM 1,100 0.01 28,860 65 5.8 1-12

(1) The percentage of the 100 uncertainty simulations for which the F value was statistically significant.

and range of rankings indicating that they are of comparable importance to each other, they are
less important than the chilling effect. The number of contaminated cm” of meat trims and the
total number of contaminated animals each have a mean rank of 5.8 with a probability of being
statistically significant of 65 and 69 percent, respectively. Thus, the output has approximately
similar sensitivity to these two factors. Moreover, the output has approximately similar
sensitivity to the number of positive cases at evisceration and the number of positive cases at
both steps of dehiding and evisceration with mean ranks of 7.4 and 7.5, respectively, in 100
uncertainty realizations. The output has the lowest sensitivity to the number of combo bins to
which each animal contributes, with mean rank of 9.6. This factor was statistically significant in
only 12 percent of the uncertainty realizations.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each factor based upon the 100 uncertainty
realizations in Figures 5-9 to 5-11. Figure 5-9 displays the CCDFs for four factors that have the
highest average ranks among all of the factors included in the analysis. These factors are chilling
effect (CH.), washing efficiency (Wefr), number of organisms on the carcass surface (Nor), and
Trim/Vacuum/Washing efficiency (TVW). The CCDF for the chilling effect indicates that for
approximately 52 percent of the simulations, the rank was one, which implies that the rank was

worse than one for 48 percent of the simulations. Furthermore, the chilling effect was ranked
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Figure 5-9. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected factors: Chilling Effect (CHegr); Washing Efficiency (Wegr);
Trim/Vacuum/Washing Efficiency (TVW); and Number of Organisms on the Carcass Surface

(Norg).

five or higher for 96 percent of the simulations. In contrast, washing efficiency was ranked first
for 12 percent of the simulations and was ranked fifth or higher for 80 percent of the simulations.
The distributions of ranks for washing efficiency, Trim/Vacuum/Washing efficiency, and
number of organisms on contaminated carcasses are similar to each other. Thus, although the
chilling effect has the highest frequency of a rank of one, there is some ambiguity regarding
which of the other three factors factor is the second most important.

When comparing the CCDFs of Figure 5-9, it is apparent that the chilling effect tends to
have a higher rank than the other factors. Furthermore, because the probability that the chilling
effect has a rank of five or higher is nearly 100 percent, the identification of the chilling effect as
one of the most important factors is robust to uncertainty. In contrast, the washing efficiency,
Trim/Vacuum/Washing efficiency, and the number of organisms have 20, 28, and 30 percent
probability, respectively, of having a rank worse than five. Thus, although these three factors
typically have a similar importance to each other, they are typically less important than the
chilling effect.

Figure 5-10 displays the CCDFs for five factors that have the highest probability of a
middle range of average ranks between five and eight among all of the factors included in the

analysis. These factors are total number of contaminated animals (TNC), contaminated cm’ of
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Figure 5-10. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected factors: Total Number of Contaminated Animals (TNC); Contaminated Cm® of
Meat Trims (CCM); Number of Positive Cases at Evisceration (NPE); Number of E. coli
Organisms Added Due to Evisceration (Neyisc); and Number of Positive Cases at both Steps of
Dehiding and Evisceration (Npoth).

meat trims (CCM), number of positive cases at evisceration (NPE), number of organisms added
due to evisceration (Nevisc), and number of positive cases at both steps of dehiding and
evisceration (Npom). The CCDF for the contaminated cm?’ of meat trims indicates that for
approximately 88 percent of the simulations, the rank was worse than one, which implies that the
rank was equal to one for only 12 percent of the simulations. In contrast, for other factors, the
probability of the rank being worse than one is 98 percent.

Although the mean ranks of these factors vary between 6 and 8, the probability that the
ranks are worse than eight varies from 10 to 58 percent among the five selected factors.
Furthermore, these five factors have ranks ranging from as high as one to as low as 12 in some
cases. Thus, it is apparent that the identification of the rank of these factors is not robust to
uncertainty. Hence, there is ambiguity regarding the rank of each factor as a function of
uncertainty in the model factors.

The least important group of factors is depicted in Figure 5-11. These factors include the
total number of combo bins to which each animal contributes (TNCB), probability of positive
cases at both steps of dehiding and evisceration (Pyom), and the total number of infected animals
(TNI). These factors have a probability ranging from 93 to 98 percent of having a rank worse

than five, and their average ranks range from 9 to 10. These factors have similar CCDF
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Figure 5-11. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected factors: Probability of Positive Cases at both Steps of Dehiding and
Evisceration (Pyot); Total Number of Combo Bins (TNCB); and Total Number of Infected
Animals (TNI).

distributions. The similarity of these distributions implies that these three factors are of
comparable importance. However, even though all three of these factors are typically ranked
seven or worse for approximately 80 percent of the uncertainty realizations, there are a few
uncertainty iterations for which these factors have ranks as high as two or three. Hence, there is
ambiguity regarding the rank of each factor as a function of uncertainty in the model factors,
although with high probability the ranks are worse than six in different uncertainty realizations.
Furthermore, even taking into account uncertainty, these three factors are clearly less important

than the most important input, chilling effect.

5.3.3 One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of ANOVA applied to a one dimensional probabilistic
simulation in which variability and uncertainty are co-mingled, based upon the case study
scenario described in Section 3.3.2. The factor levels used in this analysis are the same as those
given in Table 5-5.

Table 5-14 summarizes the results of application of ANOVA to the slaughter module for
the co-mingled simulation of variability and uncertainty. The factors in Table 5-14 are ranked
based on the magnitude of F values. Rankings are presented for statistically significant factors

with Pr>F less than 0.05. In addition to the main effect of each factor, the interaction effects
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Table 5-14. The Analysis of Variance Results for Steer and Heifer Combo Bin Contamination in
Summer Based Upon One-Dimensional Co-Mingled Variability and Uncertainty Simulation

Variable F Value Pr > F | Significant | Rank
Total Number of Combo Bins for Each Carcass 0.5 0.7 No -
Total Number of Infected Animals 0.7 0.5 No ---
Total Number of Contaminated Animals 12 <0.0001 Yes 6
Probability of Positive Cases at both Steps of 12 0.3 No .
Dehiding and Evisceration ) )
Number of Positive Cases at both Steps of
Dehiding and Evisceration 2.7 0.04 Yes
Number of Positive Cases at Evisceration 7.8 <0.0001 Yes
Chilling Effect (CHcg) 1053 <0.0001 Yes
Number of Organisms (Noyo) 253 <0.0001 Yes
Trim/Vacuum/Washing Efficiency (TVW) 225 <0.0001 Yes
Evisceration Organisms Added (Nevyisc) 76 <0.0001 Yes
Washing Effect (W) 159 <0.0001 Yes
Contaminated cm” 2.7 0.04 Yes |
CHge * TVW 95 <0.0001 Yes |
Nore ¥ TVW 16 <0.0001 Yes |
Nore * West 124 <0.0001 Yes |
Nevise * Wesr 60 <0.0001 Yes |

between the chilling effect and the Trim/Vacuum/Washing efficiency, between the number of
organisms and the Trim/Vacuum/Washing efficiency, between the number of organisms and the
washing effect, and between the evisceration organisms added and the washing effect are
considered. F values in Table 5-14 indicate that there are no statistically significant effects for
factors such as total number of combo bins to which each carcass contributes, the total number of
infected animals, and the probability of positive cases at both steps of dehiding and evisceration.
Moreover, F values indicate that the interaction terms have statistically significant effects.
Comparing the magnitude of F values for the statistically significant factors indicates that
the chilling effect, the number of organisms, and Trim/Vacuum/Washing efficiency are the three
most sensitive factors. The relative difference of F values for these factors indicates that the rank
of the most sensitive factor is substantially different, although the rank of the second and third
important factors may be comparable. The F values for the chilling effect and the number of
organisms differ by a ratio of 4.2. In contrast, the F values for the number of organisms and

Trim/Vacuum/Washing efficiency differ by a ratio of only 1.1. The robustness of these rankings
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Table 5-15. Evaluation of ANOVA Contrasts Regarding the Interactions Between the Chilling
Effect and the Trim/Vacuum/Washing Efficiency

Contrast Estimate F Pr>F | Significant
Value
Comparing TVW>75" and TVW<60"
when there is 1log increase in number of -2.2 0.2 0.7 No

organisms due to chilling

Comparing TVWeff>7500 and TVWeff<6000
when there is 2logs increase in number of -3.6 0.2 0.7 No
organisms due to chilling

Comparing TVW>75" and TVW,<60"
when there is more than 2logs increase in 442 430 | <0.0001 Yes
number of organisms due to chilling

was evaluated in Section 5.3.2, when the factors were ranked for different uncertainty
realizations.

For factors other than the three most sensitive ones, small F values indicate that these
factors may be unimportant. For example, F values for the evisceration organisms added, the
total numbers of contaminated animals, the number of positive cases at evisceration, and the
contaminated cm” of meat trims, which are ranked fifth to eighth, differ by ratios of 3 to 83
compared to the F value of the third important factor.

Although all interactions have statistically significant effects, the interactions between the
number of organisms on contaminated carcass and the washing effect, and between the chilling
effect and the Trim/Vacuum/Washing efficiency are the most important based upon the
magnitude of F values.

In addition to the inferences obtained by application of ANOVA regarding the sensitivity
of the output to individual factors, additional information regarding sensitivity is achieved by
using contrasts. Contrasts are useful in order to find thresholds in the model response to different
factors, or in understanding the response of the model to interactions between factors. As
discussed in Section 2.2.2, not all contrasts are estimable in unbalanced experiments, because it
is possible that there are not enough data to estimate the result of a contrast.

Contrasts were prepared only for the mixed analysis, since this analysis takes into
account the widest range of possible values of each factor in the context of a single simulation.
Specification of contrasts in ANOVA is done manually and it cannot be automated. Hence, it

was not practical to perform contrasts for the two-dimensional analysis, which would have
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required repeating manual analysis 100 times. The selection of factors to include in the contrasts
was based upon the sensitivity results of the individual factors. The rankings in Table 5-14
indicate that the chilling effect is the most important factor. In addition, there is a significant
interaction effect between the chilling effect and the Trim/Vacuum/Washing efficiency. Hence, a
set of contrasts was prepared to evaluate the response of the model to the interaction between
these two factors. The results of these contrasts are summarized in Table 5-15.

The contrasts in Table 5-15 compare the mean response in the slaughter module at
different levels of the chilling effect when the Trim/Vacuum/Washing efficiency varies between
the highest level (e.g., TVW,<60"") and the lowest level (e. g., TVW.>75"). The ‘Estimate’
column in Table 5-15 presents the estimate of the difference between the mean responses for the
condition mentioned in the contrast. If the estimate is not significant, which means that the Pr>f
is greater than 0.05, there is not enough statistical support indicating that the estimated value for
the contrast is different from zero.

Results in Table 5-15 indicate that changing the efficiency of the decontamination step
from low to high can only affect the contamination in combo bins when there is more than 2 logs
increase occurred in the number of E. coli organisms during the chilling process. Otherwise, if
the amount of E. coli organisms on carcasses does not increase more than 2 logs during the
chilling process, there is no statistically significant difference in the final combo bin
contamination when applying different efficiencies in the decontamination step (i.e.,
Trim/Vacuum/Washing step). For example, the first contrast in Table 5-15 indicates that when
there is less than 1 log increase in the number of E. coli organisms on carcasses during the
chilling process, there is no statistically significant difference between the combo bin
contaminations when applying high and low efficiency of decontamination by using the
Trim/Vacuum/Washing step. The F value of 430 in the last contrast indicates that for carcasses
that had an increase of more than 2 logs in the number of E. coli organisms on their surfaces
during the chilling process, there are on average 442 more E. coli organisms in the combo bins
filled with meat trims coming from these carcasses, when using the low level of efficiency

during the decontamination step.
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Table 5-16. Summary of the ANOVA Results in the Slaughter Module Based on Variability
Only, Variability for Different Uncertainty Realizations, and Co-mingled Variability and
Uncertainty Analyses

Variable Ranks
Analysis 10 Analysis 2® Analysis 3%
Total Number of Combo Bins for Each . 96 N
Carcass )
Total Number of Infected Animals --- 9.4 -—-
Total Number of Contaminated
: 9 5.8 6
Animals
Probability of Positive Cases at Both . 9.1 .
Steps of Dehiding & Evisceration )
Number of Positive Cases at Both Steps 5 75 ]
of Dehiding & Evisceration '
Number Qf Positive Cases at ] 74 7
Evisceration
Chilling Effect 1 1.7 1
Number of Organisms 3 4.4 2
Trim/Vacuum/Washing Efficiency 2 4.2 3
Evisceration Organisms Added 6 8.0 5
Washing Effect 4 4.4 4
Contaminated cm” 7 5.8 8

(1) Ranks based on the variability only analysis.
(2) Mean ranks based on the variability for different uncertainty realizations analysis.
(3) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.

5.3.4 Summary and Comparison of the Results of ANOVA in the Slaughter Module
In Sections 5.3.1 to 5.3.3 ANOVA was applied to three datasets considering variability only,
variability for different uncertainty realizations, and co-mingled variability and uncertainty in
factors. In this section rankings based on these analyses are summarized and compared. Table 5-
16 gives the ranks for each factor based on analyses in Sections 5.31 to 5.3.3.

Table 5-16 indicates that the chilling effect is identified as the most important factor
based upon all three simulations. The number of organisms was identified as the second most
important factor based upon the co-mingling of variability and uncertainty and as the third most
important factor based upon variability only. However, for both of these simulations, the F value
for this factor was not substantially different than the F value for the Trim/Vacuum/Wash
efficiency. Furthermore, the group of top three factors was the same for both simulation
methods. Moreover, in the second analysis taking into account the uncertainty in factors, the

Trim/Vacuum/Wash efficiency and the number of organisms and have mean ranks of 4.2 and
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4.4. Since there is no factor identified with higher mean rank in this analysis, this indicates that
these two factors are placed after the chilling effect regarding their importance. Hence, all three
simulations have agreement on the top four sensitive factors. The variability only and the co-
mingled variability and uncertainty analyses identified the total number of combo bins to which
animals contributes, the total number of infected animals, and the probability of positive cases at
both steps of dehiding and evisceration as statistically insignificant factors. These factors have
mean ranks of 9.6, 9.4, and 9.1 with the second analysis with frequency of being significant of
13.6, 19.3, and 6.8 percent, respectively, in 100 uncertainty iterations.

Therefore, the key similarities among the three probabilistic simulations were with
respect to the identification of the most important factor, secondary importance factors, and the
least important factors. Factors that were of moderate importance based upon each of three
methods were not completely similar. For example, the number of positive cases at both steps of
dehiding and evisceration has a rank of 5 with variability only analysis, while it has mean rank of
7.5 and rank of 8 with the second and third analyses, respectively.

5.4  Analysis of Variance in the Preparation Module

In the preparation module ANOVA was applied to three parts, including growth
estimation, cooking effect, and serving contamination parts. The results of the analyses are
presented in Sections 5.4.1, 5.4.3, and 5.4.4 for each of these three parts. Moreover, Section 5.4.2

presents a discussion regarding the sampling distribution of F values.

5.4.1 Analysis of Variance in the Growth Estimation Part

The growth estimation part is discussed in Section 3.2.3. Three different types of
probabilistic analysis were performed for this part, as described in Section 3.3.3: (1) one-
dimensional simulation of variability based upon mean values of uncertain factors; (2) two-
dimensional simulation of variability for each realization of uncertainty; and (3) one-dimensional
simulation of both variability and uncertainty co-mingled. Section 5.1.3 presents the definition
of levels for each factor and in Table 5-7 the assigned levels are summarized. In this section, the
results of ANOVA for each of these three types of simulations are given.

In the next section, the results of ANOVA are presented based upon simulation of
variability only. In Section 5.4.1.2, results are presented based upon the two-dimensional
simulation of variability for different realizations of uncertainty. Results for the co-mingled one-

dimensional simulation of both variability and uncertainty are given in Section 5.4.1.3. Section
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Table 5-17. The Analysis of Variance Results for the Growth Estimation Part Based Upon
Variability only (R* = 0.81)

Variable F Value Pr > F | Significant | Rank
Storage Temperature, Stage 1 (Temp)) 940 <0.0001 Yes 3
Storage Temperature, Stage 2 (Temp,) 3.7 0.03 Yes 10
Storage Temperature, Stage 3 (Temp;) 1,240 <0.0001 Yes 2
Storage Time, Stage 1 (Time)) 930 <0.0001 Yes 4
Storage Time, Stage 2 (Time,) 0.6 0.4 No -
Storage Time, Stage 3 (Times) 5,390 <0.0001 Yes 1
Maximum Density (MD) 25 <0.0001 Yes 9
Lag Period, Stage 1 (LP)) 300 <0.0001 Yes 5
Lag Period, Stage 2 (LP,) 3 0.03 Yes 11
Lag Period, Stage 3 (LP3) 230 <0.001 Yes 6
Generation Time, Stage 1 (GT)) 40 <0.0001 Yes 8
Generation Time, Stage 2 (GT») 0.4 0.7 No -—-
Generation Time, Stage 3 (GT;) 45 <0.0001 Yes

Temp; * Time, 1,340 <0.0001 Yes |

Temp,* Time, 0.3 0.6 No \\\\\\\\\\\

Temp; * Time; 3,400 | <0.0001 Yes |

5.4.1.4 compares the results from Sections 5.4.1.1 to 5.4.1.3.

As an example case study, the coefficient of determination, R?, is provided for the three
types of probabilistic analysis performed in this part. This coefficient represents the amount of
output variation captured by the model considering the main effects of the factors and the
interaction effects between selected factors. Low values of R” indicate that there may be
additional terms that should be included in the model. Those terms could capture a higher
amount of variation in the output. Such additional terms may include main effect of other factors
or higher order interaction terms, such as three or four way interactions.

54.1.1 Variability Only

This section presents the results of ANOVA applied to a one-dimensional probabilistic
simulation in which variability is only considered for mean uncertainty, based upon the case
study scenario described in Section 3.3.3. The factor levels used in this analysis are the same as
those given in Table 5-7.

Table 5-17 summarizes the results of application of ANOVA to the growth estimation
part for the simulation of variability only. The factors in Table 5-17 are ranked based on the

magnitude of F values. Rankings are presented for statistically significant factors with Pr>F less
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than 0.05. In addition to the main effect of each factor, the interaction effects between the storage
time and the storage temperature at stages 1 to 3 are considered.

F values in Table 5-17 indicate that there are no statistically significant effects for factors
such as the storage time and the generation time at stage 2. Moreover, The F values indicate that
there is no statistically significant interaction between the storage time and the storage
temperature at stage 2. Comparison of the F values for the interaction terms indicates that the
interaction between the storage time and the storage temperature at stage 3 has higher importance
that the interaction between these two factors at stage 1. The F value for the interaction effect
between the storage temperature and storage time at stage 3 differs from the F value for the
interaction between these two factors in stage 1 by ratio of 2.6.

Comparing the magnitude of F values for the statistically significant factors indicates that
the storage time at stage 3, the storage temperature at stage 3, the storage time at stage 1, and the
storage temperature at stage 1 are the four most sensitive factors. The relative difference of F
values for these factors indicates that the ranking of the top factor is robust. The F values for the
storage time and the storage temperature at stage 3 differ by a ratio of 4.4 indicating that the rank
of the storage time at stage 3 is robust. In contrast, comparison of the F values for the storage
temperature at stage 3 and the storage time at stage 1 indicates that the relative ranking of these
two factors are not robust. The F values for these factors differ by a ratio of only 1.3. The
robustness of these rankings is further evaluated in Section 5.4.1.2, when the factors are ranked
for different uncertainty realizations.

For factors rather than the four most sensitive ones, small F values indicate that these
factors may be unimportant. For example, F values for the generation time at stage 1, the
maximum density, the storage temperature at stage 2, and the lag period at stage 2 which are
ranked eight to eleven, differ by ratios of 23, to 1800 compared to the F value of the fourth
important factor.

The coefficient of determination, R% is 0.81. This high value of R? indicates that a
substantial portion of the variation in the output is attributable to the effects included in the
analysis, including both the main effects of factors and two way interactions between selected
factors. Although it may be possible to increase the coefficient of determination by including

additional effects in the analysis, such as additional two way interactions or by including higher
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Table 5-18. Summary of the ANOVA Results for Two-Dimensional Variability Simulation for
Different Uncertainty Realizations (Mean R* = 0.63)

Variable Mean | Minimum | Maximum Frequency Mean | Range of

F Value | F Value F Value Rank Rank

Templ 45.2 0.3 1,208 86 4.0 1-11
Temp2 1.0 0.0 6 5 9.6 4-13
Temp3 72.3 10.6 580 100 2.5 1-4
Timel 45.1 0.8 406 99 2.7 1-6
Time2 0.3 0.0 5 1 12.1 613
Time3 143.8 28.1 1,250 100 1.3 1-4
MD 1.1 0.1 9 7 9.7 5-13
LP1 3.9 0.6 22 69 6.4 4-11
LP2 1.1 0.0 7 13 9.2 5-13
LP3 3.9 0.1 15 73 6 3-11
GT1 1.4 0.3 22 10 9.3 4-13
GT2 1.1 0.0 6 9 9.3 5-13
GT3 1.5 0.2 12 10 8.8 5-13

(1) The percentage of the 100 uncertainty simulations for which the F value was statistically significant.

5.4.1.2 Two-Dimensional Simulation of Variability for Different Uncertainty
Realizations

order interactions, the coefficient of determination based upon this analysis is sufficiently high to
confirm that most of the variation in the output is accounted for. Therefore, in this case, no
additional refinement was made to the analysis.

The application of ANOVA to a two-dimensional simulation in which variability is
simulated for each different realization of uncertainty involves sensitivity analysis for each of the
uncertainty iterations. In this case, for example, there are 100 uncertainty iterations. Within each
uncertainty iteration, 650 samples were generated to represent variability in each factor. Thus,
ANOVA was applied 100 times. The factor levels used in this analysis are the same as those
given in Table 5-7.

The factors included in ANOVA for the two-dimensional simulation were the same as
those for the one-dimensional simulation of variability only as listed in Table 5-17 without
considering the interaction terms.

The results of the 100 analyses with ANOVA are summarized in Table 5-18. The table
includes the mean F value and the minimum to maximum range of F values over the 100

simulations. The percentage of the 100 simulations that produced a statistically significant F
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Figure 5-12. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Factors: Storage Temperature at Stages land 3 (Temp; and Temps); and
Storage Time at Stages 1 and 3 (Time; and Times).

value is quantified. Furthermore, the mean rank and the range of ranks are given for each factor.
The mean ranks indicate that the storage time at stage 3 is the most important factor. There is
100 percent probability that this factor is identified as statistically significant in the uncertainty
realizations. The mean ranks for the storage temperature at stage 3 and the storage

time at stage 1 are estimated as 2.5 and 2.7 indicating that on average the output has
approximately similar sensitivity to these factors. For these factors the probability of being
statistically significant is 99 percent or more. However, although these factors have
approximately similar average and range of rankings indicating that they are of comparable
importance to each other, they are less important than the storage time at stage 3. The storage
temperature at stage 1, lag period at stage 3, and lag period at stage 1 have mean ranks estimated
as 4, 6, and 6.4, respectively. These factors can be considered as a group of moderate importance
factors. The lag period at stage 2, the generation times at stages 1 and 2, the storage temperature
at stage 2, and the maximum density have mean ranks between 9.2 and 9.7 with probability of
being statistically significant varies between 5 to 13 percent indicating that the output shows the
same sensitivity to this group of factors. The output has the lowest sensitivity to the storage time
at stage 2 with mean rank of 12.1. This factor had statistically significant effect in only one of the

uncertainty realizations.
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Figure 5-13. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Factors: Lag Period at Stages 1, 2, and 3 (LP,, LP,, and LP3); and Generation
Time at Stage 3 (GT3).

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each factor based upon the 100 uncertainty
realizations in Figures 5-12 to 5-14. Figure 5-12 displays the CCDFs for four factors that have
the highest average ranks among all of the factors included in the analysis. These factors are
storage time at stage 3, storage temperature at stage 3, storage time at stage 1, and storage
temperature at stage 1. The CCDF for the storage time at stage 3 indicates that for 20 percent of
the simulations, the rank was worse than one, which implies that the rank was equal to one for
80percent of the simulations. Furthermore, the storage temperature at stage 3 was ranked four or
higher for 100 percent of the simulations. In contrast, storage time at stage 1 was ranked first for
10 percent of the simulations and was ranked fifth or higher for 98 percent of the simulations.
The frequencies of being the most important factor for storage temperature at stages 1 and 3 are
5 and 7 percent, respectively. Thus, although the storage time at stage 3 has the highest
frequency of a rank of one, there is some ambiguity regarding which of the other three factors is
the second most important.

When comparing the CCDFs of Figure 5-12, it is apparent that the storage time at stage 3
tends to have a higher rank than the other factors. Furthermore, because the probability that the
storage time at stage 3 has a rank of two or higher is 97 percent, the identification of the storage

temperature as one of the most important factors is robust to uncertainty. In contrast, the storage
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Figure 5-14. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Factors: Storage Temperature and Time at Stage 2 (Temp, and Timey);
Maximum Density (MD); Generation Time at Stages 2 and 3 (GT, and GTj3).

time at stage 1 and the storage temperature at stages 1 and 3 have 32, 8, and 60 percent
probability, respectively, of having a rank higher than two. Thus, these factors are typically less
important than the storage time at stage 3.

Figure 5-13 displays the CCDFs for four factors that have the highest probability of a
middle range of average ranks between six and nine among all of the factors included in the
analysis. These factors are lag period at stages 1 to 3 (LP;, LP,, and LP3) and generation time at
stage 3 (GT3). The CCDF for these factors indicate that for 100 percent of the simulations, the
ranks for these factors were less than two. Although the mean ranks for these factors vary
between six and nine, the probability that the ranks are worse than nine varies from 4 to 42
percent among the four selected factors. Furthermore, these four factors have ranks ranging from
as high as 3 to as low as 13 in some uncertainty simulations. Thus, it is apparent that the
identification of the rank of these factors is not robust to uncertainty. Therefore, there is
ambiguity regarding the rank of each factor as a function of uncertainty in the model factors.

The least important group of factors is depicted in Figure 5-14. These factors include
storage temperature and storage time at stage 2 (Temp, and Time,), maximum density (MD),
generation time at stage 2 (GT,), and generation time at stage 3 (GT3). These factors have a

probability ranging from 83 to 100 percent of having a rank worse than five, and their average
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Figure 5-15. Comparison of the R* Distributions in Two-Dimensional Simulation of the Growth
Estimation Part Based Upon Sample Regression, Rank Regression, and ANOVA.

ranks range from 10 to 13. MD, GT,, and Temp; have similar CCDF distributions. The
similarity of these distributions implies that these three factors are of comparable importance.
There is ambiguity regarding the rank of each factor as a function of uncertainty in the model
factors, although with high probability the ranks are worse than five in different uncertainty
realizations. Time, can be identified as the least sensitive factor based on the CCDF distribution.
Time; has a rank worse than 12 with probability of 72 percent in 100 uncertainty realizations.
Moreover, this factor is almost statistically insignificant and just in one uncertainty iteration it
was identified as a significant factor. Furthermore, even taking into account uncertainty, these
five factors are clearly less important than the most important input, storage time at stage 3.
Figure 5-15 depicts the cumulative probability function (CDF) for the 100 R? values
obtained in the two-dimensional simulation based upon ANOVA. The distributions of the R
values for the rank regression and standardized linear regression methods are also depicted in
this figure in order to compare to that of ANOVA. Results of the rank regression and
standardized linear regression are presented in Chapter 6. The R* value for ANOVA varied
between 0.42 and 0.75 with an average of 0.63. This average is better that those obtained using
standardized sample linear regression and rank regression, which had average R values of 0.50

and 0.55, respectively. ANOVA does not impose any linearity assumption unlike linear
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regression analysis. In this case, ANOVA includes only the main effect of the factors. These
main effects account for average of 63 percent of the output variation. The larger R” values for
ANOVA compared to the sample regression method implies that ANOVA is better able to
respond to nonlinearities in the model. The larger R* values for ANOVA compared to the rank
regression method implies that ANOVA is better able to respond to lack of monotonicity with
respect to at least portions of the input domain. In particular, for some combinations of input
values, growth is zero even though there is some variation in the inputs, or, alternatively, growth
reaches a maximum and does not increase further even if some inputs increase. The average R
value for the results from ANOVA imply that approximately one third of the variance of the
output is not explained by the selected factors and effects. Thus, opportunities may exist to
increase the R? value by including additional interaction effects, such as third order effects.
However, in this case, because the coefficient of determination implies that most of the variation
in the output is accounted for, no additional refinement was made.

5.4.1.3  One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of ANOVA applied to a one-dimensional probabilistic
simulation in which variability and uncertainty are co-mingled, based upon the case study
scenario described in Section 3.3.3. The factor levels used in this analysis are the same as those
given in Table 5-7.

The results of the analysis are given in Table 5-19. Rankings are presented for
statistically significant factors with Pr>F less than 0.05. In addition to the main effect of each
factor, the interaction effects between the storage time and the storage temperature at stages 1 to
3 are considered. F values in Table 5-19 indicate that there are no statistically significant effects
for factors such as the storage time, the storage temperature, and the generation time at stage 2.
Moreover, F values indicate that there is no statistically significant interaction between the
storage time and the storage temperature at stage 2. Comparison of the F values for the
interaction terms indicates that the interaction between the storage time and the storage
temperature at stage 3 has higher importance that the interaction between these two factors at
stage 1.

Comparing the magnitude of F values for the statistically significant factors indicates that
the storage time at stage 3, the storage time at stage 1, the storage temperature at stage 3, and the

storage temperature at stage 1 are the four most sensitive factors. The relative difference of F
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Table 5-19. The Analysis of Variance Results for the Growth Estimation Part Based Upon One-
Dimensional Co-mingled Variability and Uncertainty Simulation (R* = 0.78)

Variable F Value Pr > F | Significant | Rank

Storage Temperature, Stage 1 (Temp) 550 <0.0001 Yes 4
Storage Temperature, Stage 2 (Temp;) 0.1 0.99 No ---
Storage Temperature, Stage 3 (Temps;) 1,035 <0.0001 Yes 3
Storage Time, Stage 1 (Time)) 1,130 <0.0001 Yes 2
Storage Time, Stage 2 (Time,) 0.3 0.6 No ---
Storage Time, Stage 3 (Time;) 5,350 <0.0001 Yes 1
Maximum Density 34 <0.0001 Yes

Lag Period, Stage 1 261 <0.0001 Yes 5
Lag Period, Stage 2 4 0.01 Yes 10
Lag Period, Stage 3 200 <0.0001 Yes 6
Generation Time, Stage 1 52 <0.0001 Yes 7
Generation Time, Stage 2 1.0 0.03 No —
Generation Time, Stage 3 45 <0.0001 Yes

Temp; * Time, 1,190 <0.0001 Yes |
Temp,* Time, 0.04 0.96 No \\\\\\\\\\\
Temp; * Time; 2270 | <0.0001 Yes |

values for these factors indicates that the ranking of the top factor is robust. The F values for the
storage time at stages 3 and 1 differ by a ratio of 4.7 indicating that the rank of the storage time
at stage 3 is robust. In contrast, comparison of the F values for the storage time at stage 1 and the
storage temperature at stage 3 indicates that the relative ranking of these two factors are not
robust. The F values for these factors differ by a ratio of only 1.1. The robustness of these
rankings was further evaluated in Section 5.4.1.2, when the factors were ranked for different
uncertainty realizations.

For factors rather than the four most sensitive ones, small F values indicate that these
factors may be unimportant. For example, F values for the generation time at stage 3, the
maximum density, and the lag period at stage 2 which are ranked eight to ten, differ by ratios 12
to 138 compared to the F value of the fourth important factor.

The coefficient of determination, R, is 0.78 indicating that a substantial proportion of the
variation in the output is captured by including the main effects and interactions between
selected factors. Although including additional effects, such as additional two way interactions or
higher order interactions, may increase the coefficient of determination, the coefficient of

determination based upon this analysis is sufficiently high to confirm that most of the variation
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Table 5-20. Evaluation of ANOVA Contrasts Regarding the Interactions Between the Storage
Temperature and the Storage Time at Stage 1

Contrast Estimate Val;ue Pr>F Significant
T <7.5-11>°C, Time <0-24> and <24-48> hour 0.005 112.21 | <0.0001 Yes
T <7.5-11>°C, Time <24-48> and <48-72> hour 0.026 1283.0 | <0.0001 Yes
T <7.5-11>°C, Time <48-72> and <72-96> hour 0.049 1721.0 | <0.0001 Yes
T <7.5-11>°C, Time <72-96> and <96-120> hour 0.069 1278.0 | <0.0001 Yes
T <7.5-11>°C, Time <96-120> and <120-144> hour 0.074 610.0 | <0.0001 Yes
T <7.5-11>°C, Time <120-144> and <144-168> hour 0.103 455.0 | <0.0001 Yes
T <7.5-11>°C, Time <144-168> and <168-192> hour 0.042 30.8 | <0.0001 Yes
T <7.5-11>°C, Time <168-192> and <192-216> hour 0.031 6.8 0.008 Yes
T <7.5-11>°C, Time <192-216> and <216-240> hour 0.108 38.8 | <0.0001 Yes
T <7.5-11>°C, Time <216-240> and <240-264> hour | ------ 0.16 0.8 No
T <11-14.5>°C, Time <0-24> and <24-48> hour 0.116 | 4062.0 | <0.0001 Yes
T <11-14.5>°C, Time <24-48> and <48-72> hour 0.211 5290.0 | <0.0001 Yes
T <11-14.5>°C, Time <48-72> and <72-96> hour 0.218 2168.0 | <0.0001 Yes
T <11-14.5>°C, Time <72-96> and <96-120> hour 0.119 241.0 | <0.0001 Yes
T <11-14.5>°C, Time <96-120> and <120-144> hour 0.087 48.4 <0.0001 Yes
T <11-14.5>°C, Time <120-144> and <144-168> hour | ------ 0.9 0.6 No
T <18-21.5>°C, Time <0-24> and <24-48> hour 0.55 2630.0 | <0.0001 Yes
T <18-21.5>°C, Time <24-48> and <48-72>hour =~ | --—--- 0.1 0.4 No
T <21.5-25>°C, Time <0-24> and <24-48> hour 0.503 6270 | <0.0001 Yes
T <21.5-25>°C, Time <24-48> and <48-72>hour | ---—-- 24 0.09 No

in the output is captured. Therefore, in this case, no additional refinement was made to the
analysis.

In addition to the inferences obtained by application of ANOVA regarding the sensitivity
of the output to individual factors, additional information regarding sensitivity is achieved by
using contrasts. Contrasts were prepared only for the mixed analysis, since this analysis takes
into account the widest range of possible values of each factor in the context of a single
simulation. The selection of factors to include in the contrasts was based upon the sensitivity
results of the individual factors. The rankings in Table 5-19 indicate that the storage time and the
storage temperature at stages 3 and 1 are statistically significant. Hence, a set of contrasts was
prepared to evaluate the response of the model to the interaction between these factors. The
results of these contrasts are summarized in Tables 5-20 and 5-21.

Contrasts in Tables 5-20 and 5-21 compare the mean response in the growth estimation

part, considering the interaction between the storage temperature and the storage time at stages 1
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Table 5-21. Evaluation of ANOVA Contrasts Regarding the Interactions Between the Storage
Temperature and the Storage Time at Stage 3

Contrast Estimate Vzﬁue Pr=F | Significant
T <7.5-11>°C, Time <0-24> and <24-48> hour 0.003 30 <0.0001 Yes
T <7.5-11>°C, Time <24-48> and <48-72> hour 0.013 227 <0.0001 Yes
T <7.5-11>°C, Time <48-72> and <72-96> hour 0.032 381 <0.0001 Yes
T <7.5-11>°C, Time <72-96> and <96-120> hour 0.055 351 <0.0001 Yes
T <7.5-11>°C, Time <96-120>" and <120-144> hour 0.081 196 <0.0001 Yes
T <7.5-11>°C, Time <120-144> and <144-168> hour 0.04 18.5 0.0007 Yes
T <7.5-11>°C, Time <144-168>" and <168-192>hour | ------ 0.61 0.5 No
T <11-14.5>°C, Time <0-24> and <24-48> hour 0.104 5,122 | <0.0001 Yes
T <11-14.5>°C, Time <24-48> and <48-72> hour 0.198 5,748 | <0.0001 Yes
T <11-14.5>°C, Time <48-72> and <72-96> hour 0.186 1,524 | <0.0001 Yes
T <11-14.5>°C, Time <72-96> and <96-120> hour 0.084 101 <0.0001 Yes
T <11-14.5>°C, Time <96-120> and <120-144> hour | ------ 34 0.08 No
T <14.5-18>°C, Time <0-24> and <24-48> hour 0.55 3,374 | <0.0001 Yes
T <14.5-18>°C, Time <24-48> and <48-72> hour 0.256 1,239 | <0.0001 Yes
T <14.5-18>°C, Time <48-72> and <72-96> hour 0.129 88 0.0006 Yes
T <14.5-18>°C, Time <72-96> and <96-120> hour | ----- 0.7 0.8 No
T <18-21.5>°C, Time <0-24> and <24-48> hour 0.421 18,169 | <0.0001 Yes
T <18-21.5>°C, Time <24-48> and <48-72> hour 0.068 143 <0.0001 Yes
T <18-21.5>°C, Time <48-72> and <72-96> hour 0.035 9 0.03 Yes
T <18-21.5>°C, Time <72-96> and <96-120> hour | ---—-- 0.7 0.8 No
T <21.5-25>°C, Time <0-24> and <24-48> hour 0.433 4,933 | <0.0001 Yes
T <21.5-25>°C, Time <24-48> and <48-72>hour | ---—-- 2.7 0.5 No

and 3. The ‘Estimate’ columns in Tables 5-20 and 5-21 present the estimate of the difference
between the mean responses for the condition mentioned in the contrast. If the estimate is not
significant as indicated by Pr>F greater than 0.05, there is not enough statistical support to
indicate that the estimated value for the contrast is different from zero.

Contrast results in Table 5-20 indicate that when the storage temperature in stage 1 is at
the first level (e.g., between 7.5°C and 11°C) the storage time does matter in the growth of the E.
coli organisms in the ground beef servings until the tenth day. After the tenth day there is no
significant difference between the estimated growth in coming days indicating that the tenth day
is a saturation time for the growth of the E. coli organisms. When the storage temperature at
stage 1 is at the second level (e.g., between 11°C and 14.5°C) the storage time matters only until
the fifth day, indicating that with an increase in the storage temperature the growth of the E. coli

organisms reaches the saturation point in only five days. When the storage temperature at stage 1
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Table 5-22. Summary of the ANOVA Results for Growth Estimation Part Based on Variability
Only, Variability for Different Uncertainty Realizations, and Co-mingled Variability and
Uncertainty Analyses

Variable Ranks
Analysis 10 Analysis 2® Analysis 3%

Storage Temperature, Stage | 3 4.0 4
Storage Temperature, Stage 2 10 9.6 ---
Storage Temperature, Stage 3 2 2.5 3
Storage Time, Stage 1 4 2.7 2
Storage Time, Stage 2 -—- 12.1 -—-
Storage Time, Stage 3 1 1.3 1
Maximum Density 9 9.7

Lag Period, Stage 1 5 6.4 5
Lag Period, Stage 2 11 9.2 10
Lag Period, Stage 3 6 6 6
Generation Time, Stage 1 8 9.3 7
Generation Time, Stage 2 — 9.3 -—-
Generation Time, Stage 3 7 8.8 8

(1) Ranks based on the variability only analysis.
(2) Mean ranks based on the variability for different uncertainty realizations analysis.
(3) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.

increases to the third, forth and fifth levels, the saturation point is reached in four, three, and two
days, respectively. This pattern implies that with increase in the storage temperature, the
saturation time for the growth of the E. coli organisms is reached in shorter time.

Table 5-21 demonstrates the same pattern for the interaction between the storage
temperature and the storage time at stage 3. When the storage temperature in stage 3 is at its first
level (e.g., between 7.5°C and 11°C), the saturation time for the growth is reached in seven days.
An increase in the storage temperature at this stage causes the saturation time for the growth of
the E. coli O157:H7 organisms to happen faster. For example, when the storage temperature is at
its second level, the saturation happens in only five days. The saturation in the growth of E. coli
organisms occurs after 4, 4, and 2 days when the storage temperature at stage 3 is at its third,
fourth and fifth levels, respectively.

5.4.1.4 Summary and Comparison of the Results of ANOVA in the Growth Estimation
Part

In Sections 5.4.1.1 to 5.4.1.3 ANOVA was applied to three datasets considering

variability only, variability for different uncertainty realizations, and co-mingled variability and
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uncertainty in factors. In this section rankings based on these analyses are summarized and
compared. Table 5-22 gives the ranks for each factor based on analyses in Sections 5.31 to 5.3.3.
Table 5-22 indicates that the storage time at stage 3 is identified as the most important factor
based upon all three simulations. The storage temperature at stage 3 was identified as the second
most important factor based upon the variability only simulation and as the third most important
factor based upon co-mingling of variability and uncertainty. However, for both of these
simulations, the F value for this factor was not substantially different than the F-value for the
next ranked factor. Furthermore, the group of top four factors was the same for both simulation
methods. Moreover, in the second analysis taking into account the uncertainty in factors, the
storage time and the storage temperature at stages 3 and 1 are identified as the top four important
factors. Hence, all three simulations have agreement on the top four sensitive factors. The
variability only and the co-mingled variability and uncertainty analyses identified the storage
time and the generation time at stage 2 as statistically insignificant factors. These factors have
average ranks of 12.1 and 9.3 with the second analysis with frequency of being statistically
significant of only 1 and 9 percent, respectively.

All three approaches presented in Sections 5.4.1.1 to 5.4.1.3 yielded similar rankings
with respect to the most important factor, a group of three factors of secondary importance, a

group of five factors with minor importance, and a group of three factors as unimportant.

5.4.2 Uncertainties in Estimates of F Values

The objective of this section is to evaluate the uncertainty associated with point estimates
of F values, such as those produced in earlier sections of this chapter. Because the F value is
estimated based upon a random sample of values for inputs to the model, the F value is itself a
random variable. Thus, a key question is regarding how much the F values of two inputs must
differ in order to infer that the two inputs have substantially different importance with regard to
sensitivity. Because the procedure for estimating uncertainty in F values is computationally
intensive, it was applied to only one case study for a selected part of the E. coli model.
Specifically, the variability only simulation of the growth estimation part of the preparation
module was chosen.

The method of bootstrap simulation was used to generate sampling distributions of
uncertainty for F values. Bootstrap simulation is a numerical method for estimating confidence

intervals of statistics (Efron and Tibshirani, 1993). There are several variants of bootstrap
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Table 5-23. Summary of the ANOVA Results for 200 Bootstrap Simulations for F value
Statistics

. Mean 95(%. . Frequency Var. Mean Range
Variable F Value Probability SD/Mean (Percent) Rank @ | Rank of

Range Rank
Templ 481 (318,606) 0.16 100 3 4.0 3-4
Temp2 1.8 (0.0,9.6) 1.45 17 10 10.9 7-13
Temp3 1010 (810,1180) 0.09 100 2 1.0 1-2
Timel 657 (557,780) 0.09 100 4 2.9 2-4
Time2 0.4 (0.0,2.6) 1.58 1 NS ® 12.3 9-13
Time3 781 (714,915) 0.06 100 1 2.1 1-3
MD 8.6 (1.3,26) 0.71 79 9 8.1 7-13
LP1 50 (35,64) 0.14 100 5 5.9 5-6
LP2 1.5 (0.1,5.0) 0.76 15 11 10.6 9-13
LP3 60 (47,73) 0.11 100 6 5.1 5-6
GT1 16 (9.3,24) 0.26 100 8 7.2 7-8
GT2 1.7 (0.14.8) 0.74 17 NS ®@ 9.9 8-12
GT3 19 (12,25) 0.21 100 7 6.8 6-8

(1) Ranks based on variability only analysis from Table 5-17
(2) Identified as not statistically significant in the variability only analysis

simulation. In this case, an empirical bootstrap method was used. For the variability only
simulation, 65,000 random values were generated for each factor based upon specified
probability distribution models. In the empirical bootstrap approach, an alternative randomized
version of the original Monte Carlo simulation is obtained by sampling with replacement from
the original 65,000 random values. This procedure is computationally faster than generating a
new random sample of 65,000 from the original specified probability distribution models. In
order to estimate confidence intervals, it is typically desirable to simulate thousands of bootstrap
samples. However, because of the computational requirements for each bootstrap sample, it was
feasible to simulate only 200 bootstrap samples. Therefore, 200 bootstrap samples, each based
upon 65,000 samples with replacement, were generated for all model factors. ANOVA was
applied to each of the bootstrap samples to produce a distribution of 200 F values for each factor.
The bootstrap simulation results are summarized in Table 5-23. These results indicate
that there is a substantial range of uncertainty associated with the estimates of the F values. For
example, the storage temperature at stage 3 is estimated to have a mean rank of 1.0. The mean F
value for this factor is 1,010 and the 95 percent probability range of the F value is 810 to 1,180,

or a range of approximately plus or minus 20 percent of the mean value. The storage time at
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Figure 5-16. Coefficient of Variation Versus the Mean for Bootstrap F Values.

stage 3 has a mean rank of 2.1, a mean F value of 781 and a 95 percent probability range of 714
to 915. As will be shown later, the sampling distributions of these two F values are
approximately independent of each other. Therefore, the overlap in their confidence intervals
indicates a possibility that the rank order between these two inputs can reverse, even though on
average the F value for the storage temperature is larger than that for the storage time by a factor
of 1.3. However, the storage temperature at stage 3 has a statistically significantly larger F value
than the factor with the third highest average rank, which is the storage time at stage 1. The
probability ranges for F values of these two factors do not overlap. Therefore, although there is
some ambiguity regarding which of two inputs may be the most important, it is clear that the
storage temperature at stage 3 is more important than the storage time at stage 1.

In fact, it is possible to clearly distinguish several groups of inputs. The first group
includes storage temperature and time at stage 3, with mean F values of 781 to 1,010 and 95
percent probability range enclosing values from 714 to 1,180. The second group includes
storage temperature and time at stage 1, with mean F values of 481 to 657, and intervals
enclosing values from 318 to 780. The third group includes the lag periods at stages 1 and 3,
with mean F values of 50 to 60 with intervals enclosing values from 35 to 74. Thus, the third

group is clearly less important than the second group. The fourth group includes mean F values
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Figure 5-17. Cumulative Distribution Function of the Bootstrap F Values for Selected Factors:
Storage Temperature and Storage Time at Stages 1 and 3 (Templ, Timel, Temp3, and Time3).

from approximately 9 to 19, with intervals including values as low as 1.3 and as high as 26. The
fifth and final group includes mean F values of less than 2.0 with intervals typically from 0.0 to
as much as 10. In this latter group most of the bootstrap samples produced statistically
insignificant F values. With the exception of some overlap in the intervals between factors in the
first and second groups, the intervals among the groups typically do not overlap.

The results from the bootstrap simulation are comparable in many ways to the results
obtained from point-estimates of F values from the original variability only simulation. In
particular, both analyses produced similar rank ordering for groups of factors. Although the
numerical values of the ranks from the variability only simulation often do not agree with the
average ranks from the bootstrap simulation, the differences can be attributed to random
sampling error and the resulting ambiguity in ranks within groups of factors. For example, the
bootstrap simulation results imply that there can be reversals in the rank order of the top two
inputs. Thus, although the top ranked input from the variability only analysis was for the factor
that had a mean rank of 2.1 in the bootstrap simulation, the apparent difference in the rank is not
statistically significant. The variability only analysis correctly identified the storage time and
temperature at stage 1 as less important than the top two factors and as more important than all
other factors. The difference in rank order between the storage time and temperature at stage 1

when comparing the variability only analysis with the bootstrap simulation is attributable to
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Figure 5-18. Cumulative Distribution Function of the Bootstrap F Values for Selected Factors:
Lag Period and Generation Time at Stages 1 and 3 (LP1, GT1, LP3, and GT3).

random sampling error, since the probability ranges for the F values of these two factors overlap
considerably. The third group of factors has similar mean F values and similar probability
ranges; therefore, either of the two factors in this group could be ranked fifth or sixth. The
factors identified as ranked seventh through ninth in the variability only analysis correspond to
the fourth group identified from the bootstrap simulation. The factors ranked tenth or lower,
including statistically insignificant factors, correspond to the fifth group identified based upon
the bootstrap simulation.

In previous sections, relative differences in F values were used to make a judgment as to
whether two F values were substantially different from each other. In order to gain insight
regarding how large the ratio of two F values must be in order for the ranks of the corresponding
factors to be substantially different, the range of the sampling distribution of the F values must
be considered. A compact method for visualizing the range of uncertainty in the F value is to
plot the coefficient of variation, which is the standard deviation divided by the mean, versus the
mean value. Figure 5-16 shows the coefficient of variation versus the mean value based upon
the bootstrap results of Table 5-23. The coefficient of variation is approximately 0.15 or less for
F values greater than approximately 50. For F values smaller than approximately 20, the

coefficient of variation ranges from approximately 0.3 to 1.6. These results suggest that the
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Figure 5-19. Cumulative Distribution Function of the Bootstrap F Values for Selected Factors:
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Figure 5-20. Cumulative Density Function for Correlation Coefficients Between F Values.
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Table 5-24. Correlation Coefficients Between Bootstrap F values for Inputs to the Growth Estimation Part

B 1ot | Temp2 | Temp3 | Time1 | Time2 [ Time3| MD LP1 LP2 LP3 GT1 GT2 GT3
Temp1 1.000 0.144 -0.172 | 0.000 | 0.010 | 0.022 | 0.162 | -0.277 | -0.036 0.049 -0.053 0.056 -0.051
Temp2 1.000 -0.004 | 0.073 | -0.050 | -0.069 | 0.041 -0.025 | -0.206 0.035 -0.154 0.248 -0.150
Temp3 1.000 | -0.188 | -0.079 | 0.142 | 0.272 | -0.197 0.050 -0.273 0.025 0.182 0.028
Time1 1.000 | -0.026 | -0.002 | -0.223 | 0.230 -0.275 0.032 -0.227 0.127 -0.237
Time2 1.000 | 0.009 | -0.075 | 0.146 -0.162 0.233 0.045 -0.044 0.041
Time3 1.000 | 0.130 0.005 0.140 0.040 0.050 0.073 0.047

MD 1.000 | -0.132 0.352 -0.128 -0.239 0.054 -0.259
LP1 1.000 -0.165 0.107 0.010 -0.199 0.012
LP2 1.000 -0.240 0.047 0.182 0.042
LP3 1.000 0.028 -0.232 0.026
GT1 1.000 -0.120 -0.125
GT2 1.000 -0.126
GT3 1.000

Table 5-25. P Values for Estimated Correlation Coefficients Between Bootstrap F values for Inputs to the Growth Estimation Part

B 1ot | Temp2 | Temp3 | Time1 [ Time2 [ Time3| MD LP1 LP2 LP3 GT1 GT2 GT3
Temp1 0.042 0.015 0.996 | 0.885 | 0.754 | 0.022 |<0.0001| 0.613 0.490 0.458 0.427 0.460
Temp2 0.959 0.307 | 0.486 | 0.334 | 0.565 0.726 0.003 0.618 0.029 0.000 0.031
Temp3 0.008 | 0.266 | 0.048 | <0.0001 | 0.005 0.483 <0.0001 0.724 0.010 0.702
Time1 0.712 | 0.982 | 0.002 0.001 | <0.0001 0.657 0.001 0.073 0.001
Time2 0.897 | 0.289 0.039 0.022 0.001 0.526 0.533 0.536
Time3 0.067 0.941 0.048 0.572 0.486 0.305 0.491

MD 0.063 | <0.0001 0.072 0.001 0.450 0.001
LP1 0.020 0.131 0.890 0.005 0.891
LP2 0.001 0.512 0.010 0.517
LP3 0.697 0.001 0.699
GT1 0.091 0.089
GT2 0.090
GT3
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coefficient of variation may be relatively constant for F values that are statistically significant
and substantially large. Since a 95 percent probability range might typically be enclosed by plus
or minus two standard deviations for a symmetric sampling distribution, one might infer in this
case that statistically significant F values that differ by 30 percent or more would typically be
associated with clear differences in the rank order of the corresponding factors. These results are
specific to this model and the simulation sample size of 65,000 used for the Monte Carlo
simulation and should not be used to make quantitative judgments of the significance in
differences between F values obtained based upon other sample sizes or models.

The sampling distributions for the F values are illustrated in Figures 5-17 through 5-19 as
cumulative distribution functions (CDFs). Figure 5-17 shows the two groups of the most
important factors. The distribution for the F values of storage temperature at stage 3 has the
largest F values but overlaps substantially with the distribution of F values for the storage time at
stage 3. Although there is a small amount of overlap of the distribution of F values for storage
time at stage 1 with that of storage time at stage 1, for the most part these two distributions are
substantially different. The distribution of F values for storage temperature at stage 1 does not
overlap with any of the other three and has smaller F values; therefore, this distribution is said to
be stochastically dominated by the others.

Figure 5-19 displays the third and fourth groups of factors. The CDFs within each group
overlap substantially, but the CDFs for factors in one group do not overlap with the CDFs of
factors in the other group. Thus, the distribution of F values in the third group stochastically
dominated the distribution of F values in the fourth group. Figure 5-19 displays the CDFs for the
fifth group, which includes a high proportion of statistically insignificant F values. These four
factors are of approximately comparable unimportance.

When comparing distributions of F values that have substantial overlap, it is important to
know whether the distributions are statistically independent. In order to evaluate the
independence of the sampling distributions of the F values, a correlation matrix was estimated
based upon the 200 bootstrap replications of the F values for all 13 factors, as shown in Table 5-
24. The P-values corresponding to each correlation coefficient are given in Table 5-25.
Correlation coefficients that have a magnitude of less than 0.142 are not statistically significant.

Correlation coefficients between -0.142 and 0.142 are deemed to be not statistically

significantly different from zero and are indicative of statistical independence. The range of
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Table 5-26. The Analysis of Variance Results for the Cooking Effect Part

Variable F Value Pr > F | Significant | Rank
Precooking Treatment (PCT) 8,400 <0.0001 Yes 2
Cooking Place (C,) 4 0.07 No ---
Cooking Temperature (Cr) 10,900 <0.0001 Yes 1
PCT * C, 1 0.4 No
PCT * Cr 380 <0.0001 Yes
C, *Cr 2 0.2 No

correlation coefficients in Table 5-23 is depicted as a CDF in Figure 5-20. Approximately 65
percent of the estimated correlation coefficients are not statistically significant. Approximately
10 percent of the correlations are larger than 0.25. The largest magnitudes of the estimated
correlation coefficients are approximately 0.3. Although such values are statistically significant,
they are nonetheless weak correlations. Thus, a reasonable approximation is that the sampling
distributions of the bootstrap F values are independent or that any correlation between them is
very weak.

The main methodological findings of this analysis are as follows: (1) the sampling
distributions of F values as quantified based upon 200 bootstrap simulations each with a sample
size of 65,000 have a coefficient of variation of approximately 0.15 for large average F values;
(2) differences in F values of approximately 30 percent or more imply a clear discrimination in
rank order; and (3) the sampling distributions of F values are approximately independent of each
other. The main case study-specific findings are that it was possible to separate the 13 inputs
into five groups in which several factors within a group were of comparable importance. These
groups were similar to those obtained based upon point estimation of F values for a single Monte
Carlo analysis. Although the development of bootstrap sampling distributions of F values is
computationally intensive, this is a useful method for gaining insight into the statistical
significance of differences between F values. The results obtained here are specific to the
simulation sample size of 65,000. For smaller simulation sample sizes, the distribution of F
values is expected to be larger; therefore, the relative difference between F values associated
with statistically significant differences in ranks would be larger than for the case study

presented here.
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Figure 5-21. Mean Log Reduction in the Number of E. coli Organisms Due to the Cooking
Effect for Different Precooking Treatments.

5.4.3 Analysis of Variance for Variability in the Cooking Effect Part

As explained in Section 3.4.3.2, factors for the cooking effect part include cooking
temperature, precooking treatment, and cooking place. Distributions for these factors are
summarized in Table 3-13. The output in the cooking effect part is the mean log reduction in the
number of E. coli organisms. In Section 5.1.3, the definition of levels for each factor is explained
and in Table 5-6 the assigned levels are summarized. For the cooking effect part there is a one-
dimensional variability simulation with 65,000 iterations. Table 5-26 summarizes the result of
application of ANOVA to the cooking effect part.

The factors in Table 5-26 are ranked based on the magnitude of F values. Rankings are
presented for statistically significant factors with Pr>F less than 0.05. Rankings are presented
considering the F values only for main effects. In addition to the main effect of each factor, the
interaction effect between precooking treatment and cooking place, between precooking
treatment and cooking temperature, and between cooking place and cooking temperature are also
considered in the model. The F values in Table 5-26 indicate that cooking place is statistically
insignificant. The interaction effect between the precooking treatments and cooking temperature
is statistically significant; however, other interaction terms have no significant effects. The
cooking temperature is the most sensitive factor. Hence, it is ranked first. The precooking
treatment has a rank of two based on the magnitude of the F value. The difference between the F
values of the cooking temperature and precooking treatment indicates that the rankings for these

top two factors may not be robust, since their F values differ by a ratio of only 1.3.
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In order to better understand the relationship between the mean response and levels of the
precooking treatment, the mean response is estimated for each level of this factor in Figure 5-21.
Different levels for the precooking treatment were defined in Table 3-8. The mean value of the
log reduction in the number of E. coli organisms is highest for the precooking treatment / and is
approximately 2.4 times greater than the value estimated based upon the precooking treatment A.

Moreover, precooking treatments G, H, and / have approximately the same mean responses.

5.4.4 Analysis of Variance for Variability in the Serving Contamination Part

As explained in section 3.4.3.1, factors for the serving contamination part include the
ground beef consumption type, serving size, eating location, consumer age, and grinder
contamination. Distributions for these factors are summarized in Table 3-12. The output in this
part is the mean serving contamination. In Section 5.1.3, the definition of levels for each factor is
explained and in Table 5-6 the assigned levels are summarized. For this part there is a one-
dimensional variability simulation with 65,000 iterations, as explained in Section 3.3.3. The case
scenario in the serving contamination part focuses on the high and low prevalence seasons,
separately. Tables 5-27 and 5-28 summarize the result of application of ANOVA to the serving
contamination part in high and low prevalence seasons, respectively.

Factors in Tables 5-27 and 5-28 are ranked based on the magnitude of F values. Rankings
are presented for the main effects of statistically significant factors with Pr>F less than 0.05. In
addition to the main effect for each factor, the interactions between these factors are also
considered in the model. F values in Table 5-27 indicate that the consumer age does not have a
statistically significant effect in the high prevalence season, although its interactions with other
factors such as the serving size, the ground beef consumption type, and the eating location are
significant. F values in Table 5-28 indicate that the consumer age and the eating location are
statistically insignificant in the low prevalence season. The serving size is the most sensitive
factor in both high and low prevalence seasons. The grinder contamination, and the ground beef
consumption type are ranked second and third, respectively, in high and low prevalence seasons.
The difference between the F values indicates that the rank of the first sensitive factor is robust.
The F value for the serving size is approximately 11 times greater than the F value for the grinder
contamination in both high and low prevalence seasons.

F values for the interaction terms indicate that these interactions have statistically

significant effects in both the high and low prevalence seasons. The interaction between the
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Table 5-27. The Analysis of Variance Results for the Serving Contamination in High Prevalence

Season
Variable F Value Pr > F | Significant | Rank

Ground Beef Consumption Type (GBT) 122 <0.0001 Yes 3
Eating Location (Loc) 6 0.02 Yes 4
Consumer Age (C,) 2 0.2 No ---
Serving Size (S) 9,400 <0.0001 Yes 1
Grinder Contamination (Gegon) 820 <0.0001 Yes

C.*S 16 <0.0001 Yes

Loc* S 700 <0.0001 Yes

GBT * S 35 <0.0001 Yes

GBT * C, 30 <0.0001 Yes

GBT * Geon 211 <0.0001 Yes

Loc * C, 62 <0.0001 Yes

GBT * Loc 250 <0.0001 Yes

Table 5-28. The Analysis of Variance Results for the Serving Contamination in Low Prevalence

Season
Variable F Value Pr > F | Significant | Rank

Ground Beef Consumption Type (GBT) 105 <0.0001 Yes 3
Eating Location (Loc) 2 0.2 No -—-
Consumer Age (C,) 2 0.2 No --
Serving Size (S) 9,200 <0.0001 Yes 1
Grinder Contamination (Geon) 925 <0.0001 Yes l
C.*S 42 <0.0001 Yes &\\\\\\\\\\\\\\
Loc * S 825 <0.0001 Yes |
GBT * S 60 <0.0001 Yes |
GBT * C, 35 <0.0001 Yes | |
GBT * Geon 170 <0.0001 Yes &\\\\\\\\\\\\\\j
Loc * C, 80 <0.0001 Yes | |
GBT * Loc 220 <0.0001 Yes | |

eating location and the serving size has the highest F value in both high and low prevalence
seasons indicating that this interaction is most important. F value for the interaction between the
eating location and the serving size differs from the second important interaction term based on
the magnitude of the F value by ratios of 2.8 and 3.8 for high and low prevalence seasons,
respectively.

In addition to the inferences obtained by application of ANOVA regarding the sensitivity

of the output to individual factors, additional information regarding sensitivity is achieved by
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Table 5-29. Contrasts for Checking the Interaction Effects in the Serving Contamination Part

Contrast Estimate | F Value Pr>F
Hamburger vs Eating Location (Home or Away) in 0.0001 131 <0.0001
Winter ) )
Hamburger vs Eating Location (Home or Away) in
Summer 0.0001 114 <0.0001
Meatball vs Eating Location (Home or Away) in
Winter -0.0001 16 <0.0001
Meatball vs Eating Location (Home or Away) in
Summer -0.0001 24 <0.0001
Hamburger vs Age ({5-24} &{25-64}) in Winter 0.0001 137 <0.0001
Hamburger vs Age ({5-24} &{25-64}) in Summer | 0.00007 60 <0.0001
Hamburger vs Age ({25-64} &{64+}) in Winter -0.0001 33 <0.0001
Hamburger vs Age ({25-64} &{64+}) in Summer -0.0001 34 <0.0001
Eating Location (home) vs Serving Size (g)
(£120-150} & {150-801) in Winter 0.0006 1161 <0.0001
Eating Location (home) vs Serving Size (g)
({120-150}&{150-180}) in Summer 0.0006 87 | <0.0001
Eating Location (away) vs Serving Size (g)
({120-150}& {150-180}) in Winter 0.0007 148 1 <0.0001
Eating Location (away) vs Serving Size (g)
(£120-150} & {150-180}) in Summer 0.0007 124 | <0.0001
Eating Location (home) vs Serving Size (g)
(£150-180)& {>1801) in Winter 0.0025 1 209 | <0.0001
Eating Location (home) vs Serving Size (g)
(£150-180)& {>1801) in Summer 0.0023 1597 <0.0001
Eating Location (away) vs Serving Size (g)
(£150-180)& {>1801) in Winter 0.0038 | 3860 | <0.0001
Eating Location (away) vs Serving Size (g)
({150-180)& {>180}) in Summer 0.0033 2897 <0.0001

using contrasts. Contrasts are useful in order to find thresholds in the model response to different
factors, or in understanding the response of the model to interactions between factors.

Table 5-29 summarizes the results of contrasts in the serving contamination part considering the
interactions between factors involving in the simulation. The ‘Estimate’ column in Table 5-29
presents the estimate of the difference between the mean responses for the condition given in the
‘Contrast’ column. If the estimate is not significant, which means that the Pr>F is greater than
0.05, there is not enough statistical support indicating that the estimated value for the contrast is
different from zero. All the estimates in Table 5-29 are statistically significant. According to the

contrasts in Table 5-26, higher contamination for hamburger patties is expected away from home
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in comparison with those servings made at home during both the high and low prevalence
seasons. The positive estimate for this contrast in Table 5-29 indicates that the contamination in
hamburger patties away from home is higher compared to hamburger patties at home. This result
can be justified based on the idea that servings away from home are made from grinders coming
from combo bins, while some of the home servings are produced from grinders coming from
trim boxes. Grinders coming from trim boxes have lower contamination than those grinders from
combo bins (FSIS, 2001). Moreover, according to the contrasts in Table 5-29, meatballs at home
are more contaminated than those meatball servings away from home during high and low
prevalence seasons. For meatballs, unlike the hamburger patties, the interaction between the
grinder beef consumption type and the eating location is dominated by the serving size, which is
bigger at home than away from home (Table 3-7).

Contrasts in Table 5-29 also indicate that hamburger patties consumed by people between
25 and 64 years old are more contaminated than those hamburger patties consumed by people
between 5 and 24. Moreover, hamburger patties eaten by consumers above 65 have lower
contamination than those patties eaten by people between 25 and 64. The larger serving size for
people between 25 and 64 years old is consistent with this conclusion. Based on contrast results
in Table 5-29, with increase in the serving size for any type of ground beef consumed at home or
away from home during high and low prevalence seasons, an increase in the mean serving
contamination is expected.

5.5  Evaluation of ANOVA as a Sensitivity Analysis Method Based on Applications to
the E. coli Model

In this chapter ANOVA was applied to specific modules and parts of the E. coli model in
order to identify the most important factors influencing the response of selected outputs. In some
cases, ANOVA was applied to the same part based upon three different types of probabilistic
analysis, including simulation of variability only, variability and uncertainty in two dimensions,
and variability and uncertainty co-mingled in one dimension.

The slaughter module and the growth estimation part had a two-dimensional variability
and uncertainty characteristic that made it possible to implement three different types of
probabilistic analysis. The results from all three approaches were typically comparable in terms
of the rank ordering of inputs or the identification of groups of inputs of similar importance.

This result is likely to be specific to the case studies evaluated here.
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ANOVA is able to deal with categorical factors. Continuous factors had to be converted
into discrete ranges, referred to as levels. The assignment of levels to a factor is a matter of
judgment. A trade-off in selecting levels is regarding the number of levels and the number of
data points included within a given level. Each method of level definition has its advantages and
disadvantages. In this chapter three methods were used in order to define levels for each factor:
(1) equal intervals; (2) equal percentiles; and (3) visual inspection of the CDF for each factor.

Defining levels with equal intervals helps in identifying the possible threshold in the
model response. For example, in Section 5.4.1.3 equal levels were considered for the storage
time and the storage temperature at stages 1 and 3 in order to estimate the saturation point for the
growth of E. coli organisms in ground beef servings. The saturation points were identified using
contrast in ANOVA. With an increase in the number of levels for these factors and the use of
similar intervals, the saturation point can be estimated with more accuracy. Considering equal
percentiles for definition of levels guarantees an equal number of data points in each level,
thereby leading to a balanced experiment with estimable contrasts. Using the CDF of each factor
in level definition facilitates the evaluation of the model response in the lower or upper tail of the
factor distribution. For example, in Section 5.3.3 this method was used to define the levels for
the Trim/Vacuum/Washing efficiency. Using contrasts from ANOVA, the sensitivity of combo
bin contamination to high and low decontamination efficiencies corresponding to upper and
lower tails of this factor were evaluated for different levels of the chilling process. The results
from the contrasts can be implemented in decision-making regarding practical approaches to
decrease the amount of contamination in the slaughter plants. For example, if there is insufficient
control regarding the storage time and the storage temperature during the chilling process, more
attention should be paid to the decontamination step. With high efficiency during the
decontamination process, using Trim/Vacuum/wash, it is possible to decrease approximately 2.6
logs in the contamination of the combo bins as the final product of the slaughter plants.

The application of ANOVA to identify the importance of the interactions among factors
was demonstrated in this chapter. For factorial experiments with contributions of more than one
factor in the model in addition to the simple effect of each factor, the interaction between factors
should be considered in ANOVA. These interaction terms can be compared to each other based

on the magnitude of the estimated F values.
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Three case studies are provided in the growth estimation part in which the coefficients of
determination, R?, are presented for ANOVA. The R? values in these cases indicate that the
models incorporating the main effects of the factors and interaction effects between selected
factors captured a substantial high amount of variation in the output. For the two-dimensional
probabilistic approach, a comparison was made between the cumulative probability distribution
of R? values obtained in ANOVA with those of standardized linear regression and rank
regression analysis. This comparison indicated that on average ANOVA captured a higher
proportion of variation in the output comparing to the other two methods. This finding implies
that classification of the range of each input to the factor levels performed in ANOVA did not
deteriorate the amount of variability in the output that could be captured.

The uncertainty in point estimates of F values should be taken into account when making
comparisons of the F values of two or more factors. For a Monte Carlo simulation sample size
of 65,000 with a particular model, the range of uncertainty in statistically significant F values
that were substantially large was found to be approximately plus or minus 30 percent or less.
This implies that differences in F values of 30 percent or more for a simulation sample size of
65,000 are associated with clear differences in rank order between factors. In situations where
the F values are similar, factors can be categorized into groups of similar importance. It is also
possible to discriminate between groups of factors such that there are clear differences between
groups. Therefore, ANOVA is a reasonable method for characterizing the sensitivity of model

inputs and it can deal with nonlinearities, thresholds, and categorical inputs.
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6 REGRESSION ANALYSIS FOR THE E. COLI 0157:H7 MODEL

The objective of this chapter is to evaluate regression analysis and related techniques as
methods for sensitivity analysis based upon application to the E. coli food safety risk assessment
model. The specific methods evaluated here include sample (Pearson) correlation coefficients,
rank (Spearman) correlation coefficients, linear sample-based regression, and rank regression.
The details of these methods are discussed in Chapter 2. Although the use of linear regression is
the main focus of this chapter, the correlation and rank regression methods are included in
selective case studies to enable comparisons among these methods. For example, sample and
rank correlations are commonly used by practitioners because these methods are often included
in commercial software packages, such as Crystal Ball, that are used in many risk assessment
studies.

This chapter contains three parts, presenting results of the application of regression
analysis to the production, slaughter, and preparation modules. In the production module, the
feedlot prevalence, within feedlot prevalence, breeding herd prevalence, and within breeding
herd prevalence parts are analyzed separately in Section 6.1. In the slaughter module three
analyses are performed based upon different methods for quantifying variability and uncertainty
as discussed in Section 6.2. In the preparation module, the growth estimation, cooking effect, and
the serving contamination parts are analyzed separately as described in Section 6.3. The growth
estimation part is selected for analyses with the rank regression and correlation coefficients
methods. Results from these two methods are compared with the results obtained from
standardized linear regression analysis. Based on the comparison, key similarities and
differences between these methods are identified. In Section 6-4, regression analysis is evaluated
as a method for sensitivity analysis and the limitations, advantages, disadvantages and key
criteria for application of this method are summarized. Moreover, an evaluation is given for the
rank regression and correlation coefficient methods for sensitivity analysis.

As explained in Section 2.2.1, results from standardized linear regression are sensitive to
the linear assumption regarding the relationship between the output and the inputs to the model.
Hence, for this method of analysis the coefficient of determination, Rz, is provided for each
analysis. The R” value indicates the percent of variation in the model response that is explained
by the inputs considered in the linear model. A high R* value implies that the linearity

assumption for the functional relation between the output and inputs is substantially valid, while
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low R? values indicate deviation from the underlying linearity assumption. Results of the
sensitivity analysis in cases with high R are considered to be reasonably valid.

Regression analysis can be applied to models that include both quantitative (e.g.,
continuous) and qualitative (e.g., categorical) inputs. However, as discussed in Section 2.2.1,
instead of a single coefficient for each qualitative input, a set of coefficients is estimated for
corresponding indicator variables. These coefficients cannot be compared with those of the
quantitative inputs. Therefore, a recommended approach is to use the F value associated with the
qualitative and quantitative inputs, rather than the regression coefficients, as a basis for rank
ordering the importance among the inputs. Furthermore, the importance of the qualitative inputs
can be assessed using a graphical approach. The use of F values and graphics to support
inferences regarding the importance of qualitative inputs is demonstrated in this chapter for the
production module and the serving contamination part of the preparation module.

6.1 Regression Analysis in the Production Module

In the production module, regression analysis is applied to four parts, including the
feedlot prevalence, within feedlot prevalence, breeding herd prevalence, and within breeding
herd prevalence. The results of the analyses for these four parts are presented in Sections 6.1.1 to

6.1.4, respectively.

6.1.1 Uncertainty in the Feedlot Prevalence Part

As described in Section 3.2.1, for feedlot prevalence estimation, the inputs include the
apparent prevalence and the herd sensitivity as quantitative inputs, and the study as a qualitative
one. The output of interest in the feedlot prevalence part is the median feedlot prevalence.
Distributions for the inputs in this part are given in Table 3-9. In order to address qualitative
variables in regression analysis, quantitative indicators for different classes of the qualitative
inputs are employed (Neter ef al., 1996). The indicator variables are frequently also called
dummy variables. Using the CLASS statement in SAS® facilitates definition of the dummy
variables for inputs (SAS, 1996).

The case scenario in Section 3.3.1 includes a one-dimensional uncertainty simulation
with 65,000 iterations. Equation 2-6 is used to normalize the generated data in the feedlot
prevalence part for the herd sensitivity and the apparent prevalence as quantitative inputs. Table

6-1 summarizes the result of the regression analysis in the feedlot prevalence part.
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Table 6-1. Regression Analysis Results for Sensitivity Analysis of Uncertainty in the Feedlot
Prevalence Part of the Production Module (R* = 0.82)

Variable Coefficient | 95" CI® | F Value Pr>F Rank
Study 22,800 <0.0001
Apparent Prevalence 0.06 (0.02, 0.10) 8 0.006 2
Herd Sensitivity -0.25 -0.25® 9,430 <0.0001 1

(a) CI= Confidence Interval for the coefficient
(b) The interval for this coefficient is so tight that it appears as -0.25 to -0.25 when it is rounded to two decimal
places.

The rankings in Table 6-1 are based on the magnitude of the estimated standardized
regression coefficients for quantitative inputs. Rankings are presented for statistically significant
inputs with Pr>F less than 0.05. The effect of different study levels is to shift the fitted linear
model up or down based on the change caused by the specific study level.

Figure 6-1 illustrates the effect of the study on the fitted linear model. The linear relation
between the output and the herd sensitivity is plotted for each study level. The median feedlot
prevalence is more sensitive to the choice of study than to the herd sensitivity. For example, for
a herd sensitivity of 0.5, the median feedlot prevalence varies from approximately 60 to 95
percent depending upon the choice of study, or a range of approximately 35 percentage points.

In contrast, for a given choice of study, such as Hancock (1998), the median feedlot
prevalence varies between approximately 50 and 65 percent, or a range of approximately 15
percentage points. Thus, the typical range of variation in the median feedlot prevalence is much
wider with respect to the choice of study than it is with respect to the value for the herd
sensitivity.

The F values in Table 6-1 indicate that all inputs are statistically significant. Rankings
based on the coefficient estimates indicate that the median feedlot prevalence is most sensitive to
the herd sensitivity, because this input has a coefficient with a larger magnitude than those of
other inputs. Hence, the herd sensitivity is ranked first. The apparent prevalence is ranked
second.

The 95 percent confidence intervals are estimated for quantitative inputs in order to
evaluate how clear the rankings are. Comparison of the 95 percent confidence intervals for the
herd sensitivity and the apparent prevalence indicates that the ranking for the herd sensitivity as
the first ranked input is unambiguous, because the confidence intervals for this input do not

overlap with those of the second ranked input.

153



100% =—=

) i _"_ B ==t
S 0w et 5, Hancock 1988
=
E B0% —\\\ """" ?gaé%atz Hancock
=
E A0 - - —- Elder 2000
Ll
5 —— Snith 1999
ﬁ A%
=
0% T . . i

0 0.2 0.4 0B 0.8 1
Herd Sensitiv ity

Figure 6-1. Regression Lines for Different Study Levels in the Feedlot Prevalence Part.

The use of F values instead of coefficients to gain insight into key inputs would lead to
different rankings. If instead of the coefficient estimates, the magnitude of the F values is used as
a criterion for ranking the inputs, the study would be ranked as the most important input, while
the herd sensitivity and the apparent prevalence would be placed as the second and third
important inputs, respectively.

The use of F values as a method for ranking sensitive inputs that include both qualitative
and quantitative values is compared to the graphical results shown in Figure 6-1. The graphical
results imply that the choice of study has a more substantial impact on the median feedlot
prevalence than does the value for the herd sensitivity. The study has an F value that is
approximately a ratio of 2.4 larger than that for the herd sensitivity. Thus, the comparison of F
values indicates that the effect of the study is stronger than that of herd sensitivity. Therefore,
the use of F values as a means for comparison of the importance of qualitative inputs versus
quantitative inputs appears to have intuitive appeal.

The coefficient of determination, R?, for the linear regression model fitted to the dataset
is 0.82 indicating that the linear assumption for the functional relation between the output and

inputs is substantially valid.
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Table 6-2. Regression Analysis Results for Sensitivity Analysis of Uncertainty in the Within
Feedlot Prevalence Part of the Production Module (R2 = 0.90)

Variable Coefficient | 95" CI® F Value Pr>F Rank
Study 910 <0.0001
Season 300 <0.0001
Apparent Within
Feodlot Prevalence 1.50 (1.49,1.51) 12,700 | <0.0001 1
Test Sensitivity -0.22 -0.22® 8,700 <0.0001 2

(a) CI= Confidence Interval for the coefficient.
(b) The interval for this coefficient is so tight that it appears as -0.22 to -0.22 when it is rounded to two decimal
places.

6.1.2 Uncertainty in Within Feedlot Prevalence Part

Section 3.2.1 explains the within feedlot prevalence part. The key inputs for this part
include the apparent within feedlots prevalence and the test sensitivity as quantitative inputs, and
the study and the season as qualitative inputs. Table 3-9 summarizes the distributions for these
inputs. The output of interest is the average within feedlot prevalence. The case scenario for this
part is based upon a one-dimensional uncertainty simulation with 65,000 iterations as described
in Section 3.3.1. Equation 2-6 is used to normalize the Monte Carlo simulation data for the
quantitative inputs. Table 6-2 summarizes the result of the regression analysis in this part.

The rankings in Table 6-2 are based on the magnitude of the estimated regression
coefficients for quantitative inputs. Rankings are presented for statistically significant inputs with
Pr>F less than 0.05. F values in Table 6-2 indicate that all inputs are statistically significant.
Rankings based on the coefficient estimates indicate that the average within feedlot prevalence is
most sensitive to the apparent within feedlot prevalence. Hence, the apparent within feedlot
prevalence is ranked first. The test sensitivity is ranked second. The study and the season are not
considered in this ranking, because no coefficient is estimated for these inputs.

The 95 percent confidence intervals are estimated for quantitative inputs. There is no
overlap for the estimated confidence intervals for the quantitative inputs. Therefore, the rankings
are considered unambiguous.

If instead of the coefficient estimates, the magnitude of the F values is used as a criterion
for ranking the inputs, the apparent within feedlots prevalence, the test sensitivity, the study and
the season would be ranked first to fourth, respectively. Figure 6-2 illustrates the effect of the

study on the fitted linear model. The linear relationship between the output in summer and the
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Figure 6-2. Regression Lines for Different Study Levels in the Within Feedlot Prevalence Part in
Summer.

apparent within feedlot prevalence is plotted for each study level. The output is more sensitive to
the apparent within feedlot prevalence than to the choice of the study level. For example, for an
apparent within feedlot prevalence of 0.5, the output varies from approximately 68 to 80 percent
depending upon the choice of study, or a range of approximately 12 percentage points. In
contrast, for a given choice of study, such as Hancock (1999), the output varies between
approximately 10 and 100 percent, or a range of approximately 90 percentage points. Thus, the
typical range of variation in the average within feedlot prevalence is much wider with respect to
value for the apparent within feedlot prevalence than it is with respect to the choice of study.
The R? for the linear regression model fitted to the dataset is 0.90, which is quite high.
Thus, the linear assumption for the functional relationship between the output and inputs appears

to be reasonable.

6.1.3 Uncertainty in the Breeding Herd Prevalence Part

As described in Section 3.2.1, for the breeding prevalence estimation, apparent
prevalence and the herd sensitivity are quantitative inputs and the study is a qualitative input.
The output is the median breeding herd prevalence. Distributions for the inputs are given in

Table 3-9. The case scenario in Section 3.3.1 is based upon a one-dimensional uncertainty
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Table 6-3. Regression Analysis Results for Sensitivity Analysis of Uncertainty in the Breeding
Herd Prevalence Part of the Production Module (R* = 0.90)

Variable Coefficient | 95" CI® | FValue | Pr>F | Rank
Study 15,600 | <0.0001 | ---
Apparent Prevalence -0.04 (-0.32,0.24) 0.1 0.8 ---
Herd Sensitivity -0.20 -0.20" 3,600 | <0.0001 1

(a) CI= Confidence Interval for the coefficient
(b) The interval for this coefficient is so tight that it appears as -0.20 to -0.20 when it is rounded to two decimal
places.

simulation with 65,000 iterations. Equation 2-6 is used to normalize the generated data in the
breeding herd prevalence part for the herd sensitivity and the apparent prevalence as quantitative
inputs. Table 6-3 summarizes the result of the regression analysis in the breeding herd
prevalence part.

The rankings in Table 6-3 are based on the magnitude of the estimated regression
coefficients for quantitative inputs. Rankings are presented for significant inputs with Pr>F less
than 0.05. The F values in Table 6-3 indicate that all inputs except the apparent prevalence are
statistically significant. Rankings based on the magnitude of the coefficient estimates indicate
that the median breeding herd prevalence is most sensitive to the herd sensitivity.

If instead of the coefficient estimates, the magnitude of the F values is used as a criterion
for ranking the inputs, the study would be ranked as the most important input, while the herd
sensitivity would be placed as the second important inputs.

Figure 6-3 illustrates the effect of the study on the fitted linear model. The linear relation
between the output and the herd sensitivity is plotted for each study level. The median breeding
herd prevalence is more sensitive to the choice of study than to the herd sensitivity. For
example, for a herd sensitivity of 0.5, the median breeding herd prevalence varies from
approximately 40 to 100 percent depending upon the choice of study, or a range of
approximately 60 percentage points. In contrast, for a given choice of study, such as Garber
(1998), the median breeding herd prevalence varies between approximately 30 and 58 percent, or
a range of approximately 28 percentage points. Thus, the typical range of variation in the
median breeding herd prevalence is much wider with respect to the choice of study than it is with
respect to the value for the herd sensitivity. Hence, the graphical results imply that the choice of
study has a more substantial impact on the median breeding herd prevalence than does the value

for the herd sensitivity. The comparison of the F values for these two inputs reveals that the
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Figure 6-3. Regression Lines for Different Study Levels in the Breeding Herd Prevalence Part.

study has an F value that is approximately a ratio of four larger than that for the herd sensitivity.
Thus, the comparison of F values indicates that the effect of the study is stronger than that of
herd sensitivity. Therefore, the use of F values as a means for comparison of the importance of
qualitative inputs versus quantitative inputs appears to have intuitive appeal.

The R for the linear regression model fitted to the dataset is 0.90. This high value of R?
implies that the linear assumption for the functional relation between the output and inputs is

substantially valid.

6.1.4 Uncertainty in the Within Breeding Herd Prevalence Part

Section 3.2.1 explains the within breeding herd prevalence part. The apparent within
breeding herd prevalence and test sensitivity are quantitative inputs, while study and season are
qualitative inputs. Table 3-9 summarizes the distributions for these inputs. The output is the
average within breeding herd prevalence. The case scenario for this part is based upon a one-
dimensional uncertainty simulation with 65,000 iterations. Equation 2-6 is used to normalize the
generated data in this part for quantitative inputs. The results of the regression analysis in this
part are given in Table 6-4.

The rankings in Table 6-4 are based on the magnitude of the estimated regression
coefficients for quantitative inputs. These rankings are only presented for statistically significant

inputs with Pr>F less than 0.05. The F values indicate that there is not a statistically significant
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Table 6-4. Regression Analysis Results for Sensitivity Analysis of Uncertainty in the Within
Breeding Herd Prevalence Part of the Production Module (R* = 0.84)

Variable Coefficient | 95 CI® | FValue | Pr>F | Rank
Study 2,500 | <0.0001
Season - -— 0.2 0.8 -_—

Apparent Within Breeding 1.17 (1.13,1.20) | 3,150 | <0.0001 | 1
Herd Prevalence

Test Sensitivity -0.30 (-0.32,-0.28) | 2,100 | <0.0001 2

(a) CI= Confidence Interval for the coefficient

effect for the season. In contrast, other inputs have statistically significant effects. Based on the
magnitude of the coefficients, the average within breeding herd prevalence is most sensitive to
the apparent within breeding herd prevalence.

In order to evaluate robustness of rankings, the 95 percent confidence intervals are
estimated for quantitative inputs. Comparison of the 95 percent confidence intervals for the
apparent within breeding herd prevalence and the test sensitivity indicates that the rankings for
these inputs are clear, because there is no overlap for the estimated confidence intervals.

If instead of the coefficient estimates, the magnitude of the F values is used as a criterion
for ranking the inputs, the apparent within breeding herd prevalence, the study, and the test
sensitivity will be ranked first to third, respectively.

Figure 6-4 illustrates the effect of the study on the fitted linear model. The linear relation
between the output and the apparent breeding herd prevalence is plotted for each study level. The
output is somewhat more sensitive to the apparent within breeding herd prevalence than to the
choice of the study level. For example, for an apparent within breeding herd prevalence of 0.3,
the output varies from approximately 45 to 95 percent depending upon the choice of study, or a
range of approximately 50 percentage points. In contrast, for a given choice of study, such as
Hancock/CFSAN (2001), the output varies between approximately 20 and 100 percent with
respect to the apparent within breeding herd prevalence, or a range of approximately 80
percentage points. Thus, the typical range of variation in the average within breeding herd
prevalence is much wider with respect to values for the apparent within breeding herd prevalence
than it is with respect to the choice of study.

The R” for the linear regression model fitted to the dataset is 0.84 implying that the linear

assumption for the functional relation between the output and inputs is substantially valid.
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Figure 6-4. Regression Lines for Different Study Levels in the Within Breeding Herd
Prevalence Part in Summer.

6.2  Regression Analysis in the Slaughter Module

The slaughter module is discussed in Section 3.2.2. Inputs and corresponding
distributions in the slaughter module are summarized in Table 3-10. Three different types of
probabilistic analysis were performed for this module, as described in Section 3.3.2: (1) one-
dimensional simulation of variability based upon mean values of uncertain inputs; (2) two-
dimensional simulation of variability for each realization of uncertainty; and (3) one-dimensional
simulation of both variability and uncertainty co-mingled. In this section, the results of
regression analysis for each of these three types of simulations are given. The case study
scenario for the slaughter module is focused upon steers and heifers in the high prevalence
season.

In Section 6.2.1, the results of regression analysis are presented based upon simulation of
variability only. In Section 6.2.2, results are presented based upon the two-dimensional
simulation of variability for different realizations of uncertainty. Results for the co-mingled one-
dimensional simulation of both variability and uncertainty are given in Section 6.2.3. Section

6.2.4 compares the results from Sections 6.2.1 to 6.2.3.
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6.2.1 Variability Only

This section presents the results of regression analysis applied to a one dimensional
probabilistic simulation in which variability is only considered for mean uncertainty, based upon
the case study scenario described in Section 3.3.2. The results of the regression analysis are
given in Table 6-5. Inputs in Table 6-5 are ranked based on the magnitude of regression
coefficients. These rankings are only presented for statistically significant inputs with Pr>F less
than 0.05.

The chilling effect is the top ranked input with a coefficient of 0.3 and a 95 percent
confidence interval of 0.29 to 0.31. The contaminated cm® is the second ranked input with a
coefficient of 0.16 and a 95 percent confidence interval of 0.11 to 0.20. Because these two
intervals do not overlap, the ranking of the first input is considered to be unambiguous. The
third ranked input, washing effect (W) has a coefficient of 0.13 and a confidence interval of
0.10 to 0.15. Because the confidence intervals for the second and third inputs overlap, the ranks
are ambiguous for these two inputs. There are two inputs ranked fourth because they have
coefficients with the same magnitude of 0.11. These inputs are the number of organisms (No,)
and the total number of contaminated animals (TNC). The magnitudes of the confidence
intervals for these two inputs are 0.09 to 0.13 and 0.05 to 0.17, respectively. Both of these
confidence intervals overlap with those of the third ranked input. Moreover, the interval for
TNC overlaps with that of the second ranked input. Thus, the two fourth ranked inputs may be
of comparable importance to the third ranked input, and one of the fourth ranked inputs could be
of comparable importance to the second ranked input.

The confidence interval for the coefficient of the fifth ranked input, Trim/Vacuum/Wash
efficiency, overlaps with that of the fourth ranked TNC input and of the sixth ranked input. The
confidence interval for the coefficient of the sixth ranked input overlaps with that of the seventh
ranked input. The other four inputs did not have statistically significant coefficients. Therefore,
the latter four were deemed to be insensitive and are not ranked.

Because the coefficient confidence intervals typically overlap among closely ranked
inputs for the third through seventh inputs, it is difficult to separate these inputs into groups that
have clearly different importance. In general, it appears that the first rank is unambiguous. The
second through fourth inputs, which include a total of four variables because two were tied for

fourth, have overlapping confidence intervals as described above such that these four inputs may
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Table 6-5. Regression Analysis Results for the Steer and Heifer Combo Bin Contamination in
Summer for the Variability Analysis (R* = 0.12)

Variable Coefficient 95" C1® F Pr>F | Rank
Value

Total Number of Combo Bin 3

for Each Carcass (TNCB) -7x10 (-0.020, -0.006) ! 0.3 o
Total Number of Infected 4

Animals (TNT) -4x10 (-0.03,0.03) 0.1 0.9 -
Total Number of Contaminated

Animals (TNC) -0.11 (-0.17, -0.05) 15 0.0001 4
Probability of Positive Cases at

both Steps of Dehiding and -5x107 (-0.020,0.009) 0.5 0.5 -

Evisceration (Pyo)
Number of Positive Cases at
both Steps of Dehiding and -0.04 (-0.06, -0.02) 22 <0.0001 6
Evisceration (Npoth)
Number of Positive Cases at

Evisceration (NPE) 0.01 (0,0.02) 2 0.2 o
Chilling Effect (CHegr) 0.3 (0.29,0.31) 1,640 | <0.0001 1
Number of Organisms (Noye) 0.11 (0.09,0.13) 155 | <0.0001
Trim/Vacuum/Washing

Efficiency (TVW) -0.05 (-0.07, -0.03) 28 <0.0001 5
E:I/m.ce)ratlon Organisms Added 0.02 (0.0,0.03) 5 0.03 7
Washing Effect (Weg) 0.13 (0.10,0.15) 160 | <0.0001 3
Contaminated cm” (CCM) 0.16 (0.11,0.20) 45 <0.0001 2

(a) CI= Confidence Interval for the coefficient

be of comparable importance. The inputs ranked fifth, sixth, and seventh have substantially
smaller average coefficients than those of the second through fourth ranked inputs. Although
there is some overlap among the fourth ranked input for TNC with respect to the fifth and sixth
ranked inputs, it is reasonable to consider the fifth through seventh ranked inputs as generally
less important than the group that includes the second through fourth ranked inputs. Thus, the
bottom line is that there appear to be four groups of inputs: (1) the top ranked input; (2) inputs of
comparable but only moderate importance that are ranked second through fourth; and (3) inputs
of comparable but only minor importance that are ranked fifth through seventh; and (4) four
inputs that are of insignificant importance.

If F values were used instead of the magnitude of the coefficients as a basis for ranking,

the results would be somewhat similar but not identical. The top ranked input is the same in
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either case, since the chilling effect has an F value of 1,640, which is approximately an order-of-
magnitude larger than the next largest F value. However, the input ranked second based upon
coefficients does not have the second largest F value. The input with the second largest F value
is the washing effect, which was ranked third based upon coefficients. Although the washing
effect has a smaller coefficient than the contaminated cmz, it has a narrower confidence interval
for the coefficient. Thus, if F values were used as a basis for ranking, the following groups
would emerge: (1) chilling effect clearly has the largest F value; (2) the washing effect and the
number of organisms have comparable F values of approximately 160; (3) the contaminated cm®
has an F value of 45 that is substantially smaller than that of the second group and substantially
larger than that of the third group; (4) the Trim/Vacuum/Wash efficiency and the number of
positive cases at both steps of dehiding and evisceration have comparable F values; (5) the
evisceration organisms added has a small but statistically significant F value; and (6) four inputs
have F values of 2 or less and are considered to be statistically insignificant. Rankings based
upon the F value appear to place more importance on the confidence with which the regression
coefficient is known, as opposed to only the magnitude of the coefficient.

The R? for the linear regression model fitted to the dataset equals 0.12. Thus, ranking
based on the magnitude of the linear regression coefficients may not be reliable. Section 11.1.2
presents the comparison of the results based on the standardized linear regression with other
methods that do not assume specific functional relationships, such as ANOVA and CART. The
results in Table 11-5 indicate that rankings based on the linear regression analysis are
substantially comparable to that of the other methods with respect to the selection of key inputs.
Thus, even though the R” value in this case is low, the ranking of the inputs is similar to that
obtained with other methods.

6.2.2 Two-Dimensional Simulation of Variability for Different Uncertainty

Realizations

This case study is based upon a two-dimensional simulation of variability with respect to
different realizations of uncertainty. The simulation has a total sample size of 65,000, based
upon 650 variability iterations for each of 100 uncertainty iterations. The objective was to
identify the most sensitive inputs with respect to variability. Therefore, regression analysis was
applied for each of the 100 uncertainty iterations, resulting in 100 alternative rankings of the key

inputs.
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Table 6-6. Summary of the Regression Analysis Results for Two-Dimensional Variability
Simulation for Different Uncertainty Realizations (Mean R* = 0.38)

95% Probabilit
Variable ) MeaP Range of ' Frequency @ | Mean | Range of
Coefficient . Rank Rank
Coefficients

TNCB -0.003 (-0.05, 0.04) 5 10.6 7-12
TNI -0.02 (-0.22,0.11) 19 8.3 3-12
TNC -0.09 (-1.26, 0.68) 51 4.5 1-12
Pootn -0.02 (-0.11, 0.04) 18 9.7 412
Nbpoth 0.004 (-0.24, 0.23) 45 8.1 2—-12
NPE -0.03 (-1.37,0.44) 43 6.8 1-12
CHegr 0.62 (0.04, 1.02) 90 2.2 1-8
Norg 0.26 (-0.14, 0.77) 92 4.4 1-11
TVW 0.09 (-0.8, 0.28) 56 6.3 1-12
Nevise 0.09 (-0.45, 0.95) 44 6.5 1-12
Weer 0.057 (-0.38, 0.55) 64 6.2 1-11
CCM 0.158 (-0.44, 1.20) 59 4.3 1-9

(1) See Table 6-5 for definition of variable names.
(2) The percentage of the 100 uncertainty simulations for which the coefficient was statistically significant.

The inputs included in regression analysis for the two-dimensional simulation were the
same as those for the one-dimensional simulation of variability only as listed in Table 6-5. The
results of the 100 regression analyses are summarized in Table 6-6. The table includes the mean
coefficient estimate of each input, 95 percent probability range for each coefficient, and the
range of ranks for each input in 100 uncertainty realizations. The percentage of the 100
simulations that produced a statistically significant coefficient is also quantified. Furthermore,
the mean rank for a given input is specified.

Mean ranks over 100 uncertainty realizations in Table 6-6 indicate that the chilling
effect is the most important input. There is 90 percent probability that the chilling effect is
identified as a statistically significant input in uncertainty realizations and it has a mean rank of
2.2. The mean ranks for the number of organisms, total number of contaminated animals, and
number of contaminated cm” are estimated as 4.4, 4.5, and 4.3 indicating that on average the
output shows approximately the same sensitivity to these inputs. For these inputs the
probabilities of being statistically significant in 100 uncertainty realizations are 92, 51, and 59
percent, respectively. The Trim/Vacuum/Wash efficiency, the number of organisms added due to
evisceration, washing efficiency, and number of positive cases at evisceration have mean ranks

of 6.3, 6.5, 6.2, and 6.8 with probabilities of being statistically significant of 56, 44, 64 and 43
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percent, respectively. Hence, the output shows approximately the same sensitivity to these
inputs. The output shows on average the same sensitivity to the total number of infected animals
and the number of contaminated animals at both steps which have mean ranks of 8.3 and 8.1,
respectively. The output presents the lowest sensitivity to the probability of positive cases at both
steps of dehiding and evisceration and the number of combo bins to which each animal
contributes. These latter two inputs have mean ranks of 9.7 and 10.6.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each input based upon the 100 uncertainty
realizations. Figure 6-5 displays the CCDFs for four inputs that have the highest average ranks
among all of the inputs included in the analysis. These inputs are chilling effect (CH.g), total
number of contaminated animals (TNC), number of contaminated cm?® (CCM), and number of
organisms on the carcass surface (Norg). The CCDF for the chilling effect indicates that for
approximately 45 percent of the simulations, the rank was worse than one, which implies that the
rank was equal to one for 55 percent of the simulations. Furthermore, the chilling effect was
ranked five or higher for 90 percent of the simulations. In contrast, total number of contaminated
animals, number of contaminated cmz, and number of organisms on the carcass surface were
ranked first for 5, 11, and 14 percent of the simulations, respectively, and were ranked fifth or
higher for 59, 62, and 69 percent of the simulations.

When comparing the CCDFs of Figure 6-5, it is apparent that the chilling effect tends to
have a higher rank than the other inputs. Furthermore, because the probability that the chilling
effect has a rank of five or higher is high, the identification of the chilling effect as one of the
most important inputs is robust to uncertainty. In contrast, the total number of contaminated
animals, number of contaminated cm?, and number of organisms on the carcass surface have 41,
38, and 31 percent probability, respectively, of having a rank worse than five. Thus, although
these three inputs typically have a similar importance to each other, they are typically less
important than the chilling effect.

Figure 6-6 displays the CCDFs for four inputs that have the middle average ranks
between five and eight among all of the inputs included in the analysis. These inputs are
Trim/Vacuum/Washing efficiency (TVW), washing efficiency (Werr), number of positive cases
at evisceration (NPE), number of organisms added due to evisceration (Neyisc). The CCDF for the

number of organisms added due to evisceration indicates that for approximately 88 percent of the
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Figure 6-5. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Chilling Effect (CHcg); Total
Number of Contaminated Animals (TNC); Number of Contaminated cm® (CCM); and Number
of Organisms on the Carcass Surface (Nor).

simulations, the rank was worse than one, which implies that the rank was equal to one for 12
percent of the simulations. In contrast, for other inputs, the probability of the rank being worse
than one is approximately 95 percent. The mean ranks of these inputs are between 6.2 and 6.8.
The CCDF graphs indicate that the probability of having ranks worse than eight for these four
inputs ranges from 19 to 36. When comparing the CCDFs, it is apparent that the identification of
the rank of these inputs is not robust to uncertainty. The rank for these inputs varies between one
and twelve based on different uncertainty realizations. Hence, there is ambiguity regarding the
rank of each input as a function of uncertainty in the model inputs.

The least important group of inputs is depicted in Figure 6-7. These inputs include the
total number of combo bins to which each animal contributes (TNCB), probability of positive
cases at both steps of dehiding and evisceration (Pyorm), the total number of positive cases at both
steps of dehiding and evisceration (Nyom), and the total number of infected animals (TNI). These
inputs have a probability ranging from 78 to 100 percent of having a rank worse than five, and
their average ranks range from 8.1 to 10.6. Ny, and TNI have similar CCDF distributions. The
similarity of these distributions implies that these two inputs are of comparable importance. All

four of these inputs are typically ranked seven or worse for approximately 70 to 95 percent of the
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Figure 6-6. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Washing Efficiency (Weg); Number
of Positive Cases at Evisceration (NPE); Number of E. coli Organisms Added Due to
Evisceration (Neyisc); and Trim/Vacuum/Washing Efficiency (TVW).

uncertainty realizations. Moreover, there are a few uncertainty iterations for which these inputs
have ranks as high as three or four.

A comparison of the three figures helps gain insight into how the inputs should be
grouped with respect to their importance. Chilling effect has the highest probability of a rank of
one and the CCDF for this input is clearly different than those of Norg, TNC, and CCM. These
latter three have similar CCDFs and therefore are of comparable but secondary importance
compared to the chilling effect. The four inputs in Figure 6-6 are of comparable importance
because their CCDFs are similar to each other. Furthermore, the group of inputs in Figure 6-6 is
generally less important than the group of three inputs in Figure 6-5 that are of secondary
importance. Thus, the four inputs in Figure 6-6 are judged to comprise a group representing the
third most important set of inputs. The two inputs, Npon and TNI, have similar CCDFs and tend
to have worse ranks than the third most important set of inputs. Therefore, these two inputs are
judged to comprise a group of fourth importance. Finally, the remaining two inputs shown in

Figure 6-5 that have the lowest average ranks are judged to be the least important.
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Figure 6-7. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Probability of Positive Cases at both
Steps of Dehiding and Evisceration (Pyorm); Total Number of Combo Bins (TNCB); Total
Number of Infected Animals (TNI); and Number of Positive Cases at both Steps of Dehiding and
Evisceration (Npoth).

6.2.3 One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of regression analysis applied to a one dimensional
probabilistic simulation in which variability and uncertainty are co-mingled, based upon the case
study scenario described in Section 3.3.2.

Table 6-7 summarizes the results of application of regression analysis to the slaughter
module for the co-mingled simulation of variability and uncertainty. The inputs in Table 6-7 are
ranked based on the magnitude of regression coefficients. Rankings are presented for statistically
significant inputs with Pr>F less than 0.05. The F values in Table 6-7 indicate that the following
inputs are not significant: total number of combo bins to which each carcass contributes; the
total number of infected animals; the number of positive cases at both steps of dehiding and
evisceration; and the number of positive cases at evisceration.

Based upon the magnitude of the coefficients for the statistically significant inputs, the
chilling effect, the number of organisms on contaminated carcasses, and the washing effect are
the top three sensitive inputs. In order to evaluate the robustness of the estimated rankings, the 95
percent confidence intervals are estimated for each coefficient. Estimated confidence intervals

for regression coefficients indicate that the rankings for the top three inputs are robust. For
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Table 6-7. The Regression Analysis Results for Steer and Heifer Combo Bin Contamination in
Summer Based Upon One-Dimensional Co-Mingled Variability and Uncertainty Simulation (R
=0.10)

Variable Coefficient 957" C1® F Value Pr>F Rank
Tptal number of combo 6% 10 (-8,7)x1 03 0.02 0.9 .
bin for each carcass
Total number of
infected animals -0.01 (-0.02,0) 3 0.1 ___
Total number of 0.05 (0.03,0.07) 45 | <0.0001 | 4

contaminated animals
Probability of positive
cases at 2 steps

-0.02 (-0.03, -0.01) 15 0.0001 6

Number of positive 4x10° (-5.14)x10° 0.8 0.4 .
cases at 2 steps

Number of positive 4x10° | (-10.5)x10° | 08 04 | -
cases at evisceration

Chilling effect 0.2 (0.19,0.21) 2,800 | <0.0001 1
Number of organisms 0.13 (0.12,0.14) 920 <0.0001

Trim vacuum washing 20.04 (-0.05, -0.03) 65 <0.0001 5

efficiency

Evisceration organisms 0.05 (0.04,0.06) 170 | <0.0001 | 4
added

Washing effect 0.09 (0.08,0.10) 425 | <0.0001 | 3
Contaminated cm” 0.02 (0.01,0.03) 16 <0.0001 6

(a) CI= Confidence Interval for the coefficient

example, the confidence intervals for the chilling effect, the number of organisms on
contaminated carcasses, and the washing effect do not overlap indicating that their ranks are
robust.

There is overlap in the magnitudes of the 95 percent confidence intervals for the
coefficients when comparing both the fourth and the fifth ranked inputs, and when comparing
both of the sixth ranked inputs (two inputs had the same magnitude for the coefficient). Thus,
there are essentially three groups of inputs. The most sensitive group includes the top three
ranked inputs that are significantly different from each other in importance. The second group
includes the fourth and fifth ranked inputs, which are of comparable importance because their
coefficient confidence intervals overlap. The third group includes inputs ranked sixth that are of

comparable minor yet statistically significant importance.
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The use of F values instead of coefficients to gain insight into key inputs would lead to
similar rankings. The F values not only take into account the magnitude of the coefficient, but
also consider the amount of error corresponding to each coefficient. The top three inputs
identified above has the same rankings when F values are used instead. The same three inputs are
included in the second group of inputs, and the same two inputs are included in the third group.
Within the second group, there is some difference in rankings based upon the F values compared
to those based upon the average coefficients. Because the average coefficients were not
significantly different from each other within this group, the differences in ranking among them
when comparing the two approaches are deemed to be insignificant.

The R for the linear regression model fitted to the dataset is 0.10 indicating that the
ranks based on the magnitude of the linear regression coefficients may not be reliable. Results of
the analysis in this part are compared in Section 11.1.2 to that of the other methods such as
ANOVA and CART that do not impose any specific functional relationships. Table 11-7
indicates that rankings based on the linear regression analysis are substantially comparable to
that of the other methods with respect to the selection of key inputs. Therefore, although the R

value is low the results in this case are similar to those of other methods.

6.2.4 Summary and Comparison of the Results of Regression Analysis in the
Slaughter Module

In Sections 6.2.1 to 6.2.3 regression analysis was applied to three datasets considering
variability only, variability for different uncertainty realizations, and co-mingled variability and
uncertainty in inputs. In this section rankings based on these analyses are summarized and
compared. Table 6-8 gives the ranks for each input based on analyses in Sections 6.2.1 to 6.2.3.

The key similarities among the three probabilistic simulations were with respect to the
identification of the most important input and the least important inputs. All three probabilistic
analysis methods resulted in identification of chilling effect as clearly the most important input.
All three approaches resulted in identification of the total number of combo bins to which each
carcass contributes, the total number of infected animals, the probability of positive cases at both
steps of dehiding and evisceration, the number of positive cases at both steps dehiding and
evisceration, and the number of positive cases at evisceration as among the least important
inputs. Inputs that were of moderate importance based upon each of three methods were similar.

For example, the number of organisms added, total number of contaminated animals, and
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Table 6-8. Summary of the Regression Analysis Results Based on Variability Only, Variability
for Different Uncertainty Realizations, and Co-mingled Variability and Uncertainty Analyses

Variable Ranks
Analysis 1 | Analysis 2 | Analysis 3

Total Number of Combo Bins for Each . 10.6 .
Carcass '
Total Number of Infected Animals --- 8.3 —
Tot.al Number of Contaminated 4 45 4
Animals
Probability of Positive Cases at both . 9.7 6
Steps of Dehiding and Evisceration )
Number of Positive Cases at both Steps 6 2.1 .
of Dehiding and Evisceration '
Number of Positive Cases at

. . - 6.8 ---
Evisceration
Chilling Effect 1 2.2 1
Number of Organisms 4 4.4 2
Trim/Vacuum/Washing Efficiency 5 6.3 5
Evisceration Organisms Added 7 6.5 4
Washing Effect 3 6.2 3
Contaminated cm” 2 4.3 6

(1) Ranks based on the variability only analysis.
(2) Mean ranks based on the variability for different uncertainty realizations analysis.
(3) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.

washing effect were typically in the upper or middle tier of inputs for all three approaches.

There were some inputs for which the rankings appear to be different based upon the
three simulation methods. For example, the contaminated cm® of meat trims is ranked second
based upon variability only, 4.3™ based upon the two-dimensional simulation, and 6" based upon
the one-dimensional simulation of both variability and uncertainty. For the variability only case,
this input was not significantly different from one of the fourth ranked inputs. For the two-
dimensional case, this input was not substantially different in importance compared to two other
inputs. For the co-mingled one-dimensional simulation of both variability and uncertainty, this
input was clearly in the least important statistically significant group. Thus, the results for the
variability only and the two dimensional simulations are approximately similar, but both of these
differ from the results of the one-dimensional simulation of both variability and uncertainty.

Although some of the middle ranked inputs had different rankings when comparing the
three simulation methods, the most important finding is that the ranking of the top input and of

the least important inputs was essentially the same for all three approaches. This implies that

171



any of the three approaches could be used alone in order to make a distinction between the top
input and the unimportant inputs. The differences in rankings for the significant inputs of
moderate importance suggest that the rankings are sensitive to the actual ranges of values used in
the probabilistic simulations. The co-mingled simulation of both variability and uncertainty is
expected to produce the widest ranges of values within a single simulation compared to the
simulation of only variability. Thus, it is expected that the results of these two approaches
should differ. The two dimensional approach distinguishes between variability and uncertainty.
Thus, although the range of values for each input over the course of the entire simulation is
similar to that for the one dimensional approach in which variability and uncertainty are co-
mingled, the range of values for any given realization of variability will typically be comparable
to that of the one dimensional simulation of variability only. Thus, the analysis based upon two-
dimensional simulation is expected to produce results somewhat different than those from the
other two methods.

6.3 Regression Analysis in the Preparation Module

In the preparation module regression analysis was applied to two parts, including growth
estimation and serving contamination parts. The results of the analyses for these two parts are
presented in Sections 6.3.1 and 6.3.5, respectively. In order to compare alternative regression-
based approaches several methods are applied to the growth estimation part. These methods
include Pearson sample correlation coefficients, Spearman rank correlation coefficients, and rank
regression. Results are presented in Sections 6.3.2 and 6.3.3 for correlation coefficients and rank
regression, respectively. Section 6.3.4 presents the comparison of the results based on the
regression analysis, correlation coefficients, and rank regression.

Regression analysis was not applied to the cooking effect part. As given in Table 3-13,
this part has only one quantitative input, with other inputs being qualitative. Although shown in
earlier sections of this chapter that the F values can be used to make inferences regarding the
sensitivity of qualitative inputs, for situations in which qualitative inputs predominate a judgment
was made that other methods, such as ANOVA, are better suited than regression analysis. The

application of ANOVA to the cooking effect part is given in Section 5.4.2.

6.3.1 Regression Analysis in the Growth Estimation Part
The growth estimation part is discussed in Section 3.2.3. Three different types of

probabilistic analysis were performed for this part, as described in Section 3.3.3: (1) one-
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Table 6-9. Regression Analysis Results for the Growth Estimation Part Based Upon Variability
only (R*=0.51)

Variable Coefficient | 95" CI® F Pr>F Rank
Value

Storage Temperature, Stage 1 0.32 031,032) | 5500 | <0.0001 | 3
(Temp,)

Storage Temperature, Stage 2 3x10°3 (-7,13)x 10° 0.4 0.6 .
(Temp,)

Storage Temperature, Stage 3 059 |(058060) |15500 | <0.0001 | 1
(Temps)

Storage Time, Stage 1 (Time)) 0.27 (0.26,0.27) 9,400 | <0.0001 4
Storage Time, Stage 2 (Time,) 7x10” (2,13)x10” 8 0.1
Storage Time, Stage 3 (Times) 0.34 0.34® 15,200 | <0.0001 2
Maximum Density (MD) 0.012 (0.007,0.02) 21 | <0.0001 7
Lag Period, Stage 1 (LP)) -0.012 (-0.019, 0.01) 11 0.0005 7
Lag Period, Stage 2 (LP,) -1x10™ (-0.01,0.01) 0.0 0.3 -—-
Lag Period, Stage 3 (LP3) -1x10~ (-0.01,0.01) 1.1 0.4 ---
Generation Time, Stage 1 (GT)) 0.08 (0.07,0.09) 390 | <0.0001 6
Generation Time, Stage 2 (GT») -4x10~ (-0.014,0.01) 0.5 0.7 -—-
Generation Time, Stage 3 (GT) 0.11 (0.10,0.12) 530 | <0.0001 5

(a) CI= Confidence Interval for the coefficient
(b) The interval for this coefficient is so tight that it appears as 0.34 to 0.34 when it is rounded to two decimal
places.

dimensional simulation of variability based upon mean values of uncertain inputs; (2) two-
dimensional simulation of variability for each realization of uncertainty; and (3) one-dimensional
simulation of both variability and uncertainty co-mingled.

In the next section, the results of regression analysis are presented based upon simulation
of variability only. In Section 6.3.1.2, results are presented based upon the two-dimensional
simulation of variability for different realizations of uncertainty. Results for the co-mingled one-
dimensional simulation of both variability and uncertainty are given in Section 6.3.1.3. Section
6.3.1.4 compares the results from Sections 6.3.1.1 to 6.3.1.3.

6.3.1.1 Variability Only

This section presents the results of regression analysis applied to a one-dimensional
probabilistic simulation in which variability is only considered for mean uncertainty, based upon
the case study scenario described in Section 3.3.3.

Table 6-9 summarizes the results of application of regression analysis to the growth

estimation part for the simulation of variability only. The inputs are ranked based on the
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magnitude of regression coefficients. Rankings are presented for statistically significant inputs
with Pr>F less than 0.05. The F values indicate that there are no statistically significant effects
for inputs the storage temperature, the storage time, lag period, and the generation time at stage 2
and the lag period at stage 3.

The rankings of the inputs based upon the coefficient values are generally unambiguous.
The top ranked input has a coefficient that is significantly larger than that of the second ranked
input, the storage time at stage 3. The inputs ranked second through seventh are significantly
different from each other in importance in that the confidence intervals for their coefficients do
not overlap. There are two inputs with ranked seventh with equal coefficients. The confidence
intervals for these inputs overlap. However, both of these inputs have coefficients that are
substantially smaller than all of the other inputs. Therefore, these two inputs are of little
importance compared to the other ranked inputs.

Because the confidence intervals of the coefficients do not overlap in most cases, other
than for the two seventh ranked inputs, there are few groups of inputs of similar importance. The
inputs with ranks of four or higher have coefficients greater than 0.25. The fifth and sixth ranked
inputs have coefficients between 0.08 and 0.11.

If F values were used instead of coefficients as a basis for ranking, the rankings would be
similar. With the exception of the third ranked inputs for which the F value is substantially
smaller than the fourth ranked input, the rankings based upon F values would be the same as
those based upon the regression coefficients.

The R? for the linear regression model fitted to the dataset is 0.51. Although the R?
value is not very high, it is still in an acceptable range indicating that ranking based on the
magnitude of the linear regression coefficients may be reliable.

6.3.1.2 Two-Dimensional Simulation of Variability for Different Uncertainty
Realizations

The application of regression analysis to a two-dimensional simulation in which
variability is simulated for each different realization of uncertainty involves sensitivity analysis
for each of the uncertainty iterations. In this case, for example, there are 100 uncertainty
iterations. Within each uncertainty iteration, 650 samples were generated to represent variability

in each input. Thus, regression analysis was applied 100 times.
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Table 6-10. Summary of the Regression Analysis Results for Two-Dimensional Variability
Simulation for Different Uncertainty Realizations (Average R* = 0.51)

95% Probabilit
Variable” MeaP Range of ' Frequency @ | Mean | Range of
Coefficient . Rank Rank
Coefficients

Templ 0.31 (0.01, 0.70) 93 3.1 1-13
Temp?2 0.01 (-0.09,0.10) 3 8.5 4-13
Temp3 0.54 (0.29,0.83) 100 1.4 1-3
Timel 0.26 (0.08,0.49) 100 3.5 1-7
Time2 0.00 (-0.04,0.06) 6 10.8 6-13
Time3 0.34 (0.13,0.49) 99 2.7 1-4
MD 0.02 (-0.04,0.07) 11 10.1 5-13
LP1 -0.02 (-0.11,0.07) 21 8.9 3-13
LP2 -0.01 (-0.09,0.06) 5 9.7 5-13
LP3 0.0 (-0.09,0.08) 7 9.7 5-13
GTI 0.07 (-0.02,0.22) 40 7.2 3-13
GT2 0.01 (-0.08,0.09) 4 9.0 5-13
GT3 0.09 (-0.03,0.22) 45 6.4 3-13

(1) See Table 6-9 for definition of variable names
(2) The percentage of the 100 uncertainty simulations for which the coefficient was statistically significant.

The inputs included in regression analysis for the two-dimensional simulation were the
same as those for the one-dimensional simulation of variability only as listed in Table 6-9. The
results of the 100 analyses with regression analysis are summarized in Table 6-10. The table
includes the mean coefficient estimate of each input, 95 percent probability range for each
coefficient, and the range of ranks for each input in 100 uncertainty realizations. The percentage
of the 100 simulations that produced a statistically significant coefficient is also quantified.
Furthermore, the mean rank for a given input is specified.

Mean ranks over 100 uncertainty realizations in Table 6-10 indicate that the storage
temperature at stage 3, which has a mean rank of 1.4, is the most important input. There is 100
percent probability that this input is identified statistically significant. Three inputs have
approximately similar average rankings of 2.7 to 3.5 and similar range of rankings indicating that
they are of comparable importance to each other but less important than the storage temperature
at stage 3. These three inputs are the storage time at stage 3, the storage temperature at stage 1,
and the storage time at stage 1. For these three inputs the probabilities of being statistically
significant among all 100 uncertainty realizations are 99, 93, and 100 percent, respectively.

Inputs related to the second stage such as the storage temperature, the storage time, lag period,
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Figure 6-8. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Storage Temperature at Stages 1and
3 (Temp; and Temp;); and Storage Time at Stages 1 and 3 (Time; and Time;).

and generation time have least importance among all the inputs in 100 uncertainty realizations
with average ranks ranging between 6.5 and 10.8 and probabilities of being statistically
significant ranging between 3 to 6. Other inputs not already mentioned are typically of minor to
little importance with average ranks of 6.4 to 10.1.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each input. Figure 6-8 displays the CCDFs
for four inputs that have the highest average ranks among all of the inputs included in the
analysis. These inputs are storage time at stage 3, storage temperature at stage 3, storage time at
stage 1, and storage temperature at stage 1. The CCDF for the storage temperature at stage 3
indicates that for 28 percent of the simulations, the rank was worse than one, which implies that
the rank was equal to one for 72 percent of the simulations.

Furthermore, the storage temperature at stage 3 was ranked three or higher for 100
percent of the simulations. In contrast, storage time at stages 1 and 3 and storage temperature at
stage 1 were ranked first for 10, 3, and 20 percent of the simulations, respectively. These inputs
were ranked fifth or higher for 93, 98, and 93 percent of the simulations, respectively. Thus, the
storage temperature at stage 3 has the highest frequency of a rank of one. The other three inputs

are of comparable importance and are each less important than the storage temperature at stage 1.
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Figure 6-9. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Storage Temperature at Stage 2
(Temp,); Generation Time at Stages 1 and 3 (GT; and GT3); and Lag Period at Stage 1 (LP)).

Furthermore, the storage temperature at stage 3 was ranked three or higher for 100
percent of the simulations. In contrast, storage time at stages 1 and 3 and storage temperature at
stage 1 were ranked first for 10, 3, and 20 percent of the simulations, respectively. These inputs
were ranked fifth or higher for 93, 98, and 93 percent of the simulations, respectively. Thus, the
storage temperature at stage 3 has the highest frequency of a rank of one. The other three inputs
are of comparable importance and are each less important than the storage temperature at stage 1.

Figure 6-9 displays the CCDFs for four inputs that have average ranks between six and
nine among all of the inputs included in the analysis. These inputs are the storage temperature at
stage 2 (Temp,), generation times at stages 1 and 3 (GT; and GT3), and lag period at stage (LP;).
The CCDF for these inputs indicate that for 90 percent or more of the simulations, the ranks for
these inputs were worse than three. The probability that the inputs have ranks of worse than nine
varies between 15 to 40 percent. The rank for these inputs varies based on different uncertainty
realizations. Hence, there is ambiguity regarding the rank of each input as a function of
uncertainty in the model inputs.

The least important group of inputs is depicted in Figure 6-10. These inputs include
storage time at stage 2 (Time,), maximum density (MD), generation time at stage 2 (GT;), and

lag periods at stages 2 and 3 (LP, and LP;3). These inputs have a probability ranging from 88 to
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Figure 6-10. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Regression Analysis: Lag Period at Stages 2 and 3 (LP»
and LP3); Generation Time at Stage 2 (GT,); Maximum Density (MD); and Storage Time at
Stage 2 (Timey).

100 percent of having a rank worse than five, and their average ranks range from 9 to 11. MD,
LP; and LP5 have similar CCDF distributions. The similarity of these distributions implies that
these three inputs are of comparable importance. There is ambiguity regarding the rank of each
input as a function of uncertainty in the model inputs. Time; can be identified as the least
sensitive input based on the CCDF distribution. Time; has a rank worse than 10 with probability
of 65 percent. Moreover, this input was statistically insignificant for 94 percent of the uncertainty
realizations.

The results shown in the three figures indicate that there are approximately four groups of
inputs. These groups include: (1) the most important input of storage temperature at stage 3; (2)
inputs of secondary importance, including storage time at stages 1 and 3 and storage temperature
at stage 1; (3) inputs of tertiary importance, including generation times at stage 1 and 3; and (4)
inputs of minor or no importance, including storage temperature and time at stage 2, lag periods

at stages 1, 2, and 3, generation time at stage 2, and maximum density.
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Table 6-11. The Regression Analysis Results for the Growth Estimation Part Based Upon One-

Dimensional Co-mingled Variability and Uncertainty Simulation (R* = 0.50)

Variable Coefficient | 95" CI® | F Value Pr>F Rank
Storage Temperature, 0.32 (031,032) | 5900 | <0.0001 | 3
Stage 1
Storage Temperature,
Stage 2 0.01 (0.0,0.02) 5 0.03 ---
Storage Temperature, 0.55 (0.54,0.56) | 13,700 | <0.0001 | 1
Stage 3
Storage Time, Stage 1 0.27 (0.27,0.28) | 10,000 | <0.0001 4
Storage Time, Stage 2 6x10™ (-5,6)x107 0.1 0.8
Storage Time, Stage 3 0.37 (0.37,0.38) 18,700 | <0.0001 2
Maximum Density 0.02 (0.01,0.03) 75 <0.0001 7
Lag Period, Stage 1 -0.02 (-0.03, -.01) 35 <0.0001 7
Lag Period, Stage 2 -0.01 (-0.02,0.0) 1 0.1 ---
Lag Period, Stage 3 -5x10° | (-10,3)x107 2 0.2
Generation Time, Stage 1 0.08 (0.07,0.08) 330 <0.0001 6
Generation Time, Stage 2 0.01 (2,23)x107 0.9 0.1 ---
Generation Time, Stage 3 0.09 (0.08,0.10) 375 <0.0001 5

(a) CI = Confidence Interval for the coefficient

6.3.1.3 One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of regression analysis applied to a one-dimensional
probabilistic simulation in which variability and uncertainty are co-mingled, based upon the case
study scenario described in Section 3.3.3.

Table 6-11 summarizes the results of application of regression analysis to the growth
estimation part for the co-mingled simulation of variability and uncertainty. The inputs are
ranked based on the magnitude of the regression coefficients. Rankings are presented for
statistically significant inputs with Pr>F less than 0.05. The F values in Table 6-11 indicate that
there are no statistically significant effects for the storage time, the storage temperature, the
generation time at stage 2, and lag period at stage 3.

Based upon the magnitude of the coefficients for the statistically significant inputs, the
storage temperature at stage 3, the storage time at stage 3, the storage temperature at stage 1, and
the storage time at stage 1 are the top four inputs. In order to evaluate the robustness of the

estimated rankings, the 95 percent confidence intervals are estimated for each coefficient.
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Estimated confidence intervals for regression coefficients indicate that the rankings for
the top four inputs are unambiguous. For example, the confidence intervals for the storage
temperature and time at stage 3 do not overlap. The confidence intervals for fifth and sixth inputs
have overlap indicating that they are of comparable importance. However, both of these inputs
have coefficients that are substantially smaller than inputs with higher ranks. Therefore, these
two inputs are of little importance compared to the other ranked inputs. The maximum density
and the lag period at stage 1 have the same magnitude of coefficients and confidence intervals.
Hence, both of these inputs were ranked seventh.

If F values were used instead of regression coefficients as a basis for ranking, the results
would be similar but not identical. The largest F value is associated with the input that has the
second largest regression coefficient. In addition, input that has rank third based on the
magnitude of its coefficient has rank fourth based on its F value. Thus, the rankings of the top
two inputs and third and fourth inputs would be in reverse order. With this exception, all of the
other rankings would remain approximately the same.

6.3.1.4 Summary and Comparison of the Results of Regression Analysis in the Growth
Estimation Part

In Sections 6.3.1.1 to 6.3.1.3 regression analysis was applied to three datasets considering
variability only, variability for different uncertainty realizations, and co-mingled variability and
uncertainty in inputs. In this section the rankings based on these analyses are summarized and
compared. Table 6-12 gives the ranks for each input based on analyses in Sections 6.3.1.1 to
6.3.1.3.

The key similarities among the three probabilistic simulations were with respect to
identification of the most important input, a group of three inputs with secondary importance,
and a group of three inputs with moderate importance. There are some differences in rankings for
the least importance inputs based upon these three simulations. The first and third simulations
presented a complete agreement regarding ranking of inputs. All three probabilistic analysis
methods resulted in identification of storage temperature at stage 3 as clearly the most important
input. Storage time at stage 3, storage temperature at stage 1, and storage time at stage 1 were
identified in the group of secondary importance inputs by all three simulations. All three

simulations selected generation time at stages 3 and 1 and lag period at stage 1 in the group of
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Table 6-12. Summary of the Regression Analysis Results Based on Variability Only, Variability
for Different Uncertainty Realizations, and Co-mingled Variability and Uncertainty Analyses

Variable Ranks
Analysis 1 | Analysis 2@ Analysis 3%
Storage Temperature, Stage 1 3 3.1 3
Storage Temperature, Stage 2 --- 8.5 ---
Storage Temperature, Stage 3 1 1.4 1
Storage Time, Stage 1 4 3.5 4
Storage Time, Stage 2 --- 10.8 ---
Storage Time, Stage 3 2 2.7 2
Maximum Density 7 10.1 7
Lag Period, Stage 1 7 8.9 7
Lag Period, Stage 2 -—- 9.7 -—-
Lag Period, Stage 3 -—- 9.7 ---
Generation Time, Stage 1 6 7.2 6
Generation Time, Stage 2 -—- 9.0 ---
Generation Time, Stage 3 5 6.4 5

(1) Ranks based on the variability only analysis.
(2) Mean ranks based on the variability for different uncertainty realizations analysis.
(3) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.

moderate importance inputs. Inputs related to stage 2 were identified as statistically insignificant
by first and third simulations. The second simulation considered mean ranks between 9.0 and
10.8 for these inputs.

There were some inputs for which the rankings appear to be different based upon the
three simulation methods. For example, the storage temperature at stage 2 that has a mean rank
of 8.5 in the second simulation, while it was identified as statistically insignificant by other two
methods. Moreover, maximum density was identified as the seventh important input by first and
third simulations, while it has mean rank of 10.1 based on the second simulation.

Although some of the inputs in least importance group had different rankings when
comparing the three simulation methods, the most important finding is that the ranking of the top
input, secondary importance inputs, and moderate importance inputs were essentially the same
for all three approaches. This implies that any of the three approaches could be used alone in
order to make a distinction between the top, secondary and moderate inputs.

The generation times at stages 1 and 3 are identified in the group of minor importance

inputs by all three simulations, while the lag period at stage 1 and the maximum density are
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classified into the group of minor importance inputs just by the variability only and one-
dimensional co-mingled variability and uncertainty simulations.

Moreover, the variability only and one-dimensional co-mingled variability and
uncertainty analysis have agreement on the storage temperature, the storage time, lag period and
generation time at stage 2 and lag period at stage 3 as inputs with no statistically significant

effects.

6.3.2 Correlation Coefficients in the Growth Estimation Part

The objective of this section is to present the results of applying correlation coefficients,
as a method for the sensitivity analysis, to the growth estimation part. The growth estimation part
was selected for this purpose because the two-dimensional probabilistic simulation, as explained
in Section 3.2.3, makes the application of correlation coefficient challenging and manifests the
capabilities of this method in identifying sensitive inputs in two-dimensional simulations. The
details of the methodology for correlation coefficients methods are provided in Section 2.2.4.
Two methods for correlation coefficient analysis including, Pearson (sample) and Spearman
(rank) techniques are considered. Sections 6.3.2.1 and 6.3.2.2 present the results for these two

methods, respectively.

6.3.2.1 Pearson Correlation Coefficient in the Growth Estimation Part

The application of Pearson correlation coefficients to the two-dimensional probabilistic
simulation involves sensitivity analysis for each of 100 uncertainty iterations. Within each
uncertainty iteration, 650 samples were generated to represent variability for each input. Thus,
correlation coefficients were generated 100 times.

The results of the 100 analyses with Pearson correlation coefficients are summarized in
Table 6-13. The table includes the mean correlation coefficients and the 95 percent probability
range of coefficients over the 100 simulations. The percentage of the 100 simulations that
produced a statistically significant coefficient is quantified. Furthermore, the mean rank and the
range of ranks are given for each input. The inputs included in the Pearson correlation coefficient
analysis were the same as the variables listed in Table 6-9.

The mean ranks indicate that the storage temperature at stage 3 is the most important
input. There is 100 percent probability that this input is identified as statistically significant in the
uncertainty realizations. The mean ranks for the storage time at stage 3 and the generation time at

stage 3 are estimated as 3.9 and 3.8, respectively, indicating that on average the output has
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Table 6-13. Summary of the Pearson Correlation Coefficient Results for Two-Dimensional
Variability Simulation for Different Uncertainty Realizations

Mean 95%. .
Variable | Correlation Probability Frequency Mean | Range of
Coefficient Rang(? of Rank Rank
Coefficients

Templ 0.269 (0.030,0.525) 93 4.3 1-13
Temp2 0.008 (-0.070,0.102) 7 10.9 5-13
Temp3 0.466 (0.290,0.624) 100 1.6 1-6
Timel 0.252 (0.051,0.478) 95 4.7 1-10
Time2 -0.005 (-0.064,0.061) 2 10.9 8-13
Time3 0.339 (0.123,0.491) 98 3.9 1-13
MD 0.027 (-0.052,0.095) 10 10.6 6-13
LPI -0.169 (-0.317,-0.022) 83 7.0 3-13
LP2 -0.009 (-0.104,0.071) 7 10.8 5-13
LP3 -0.311 (-0.45,-0.146) 100 4.8 2-8
GT1 -0.168 (-0.328,0.00) 79 7.1 2-13
GT2 -0.006 (-0.092,0.065) 7 10.7 6-13
GT3 -0.339 (-0.496,-0.162) 100 3.8 2-8

approximately similar sensitivity to these inputs. For these inputs the probability of being
statistically significant is 98 percent or more. However, although these inputs have
approximately similar average rankings indicating that they are of comparable importance to
each other, they are less important than the storage temperature at stage 3. The storage
temperature and time at stage 1, and lag period at stage 3 have mean ranks of 4.3, 4.7, and 4.8,
respectively. These inputs are considered to be of secondary importance. The lag period at stage
1 and the generation times at stage 1 have mean ranks between 7.0 and 7.1 with probability of
being statistically significant of 83 and 79 percent, respectively, indicating that the output has
similar sensitivity to these inputs. The output has the lowest sensitivity to inputs corresponding
to the second stage, transportation, and the maximum density. The mean ranks for these inputs
vary between 10.6 and 10.9. These inputs had statistically significant effects in only 7 to 10
percent of the uncertainty realizations.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each input based upon the 100 uncertainty
realizations in Figures 6-11 to 6-13. Figure 6-10 displays the CCDFs for six inputs that have the

highest average ranks among all of the inputs included in the analysis. These inputs include
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Figure 6-11. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the

Rank of Selected Inputs Based Upon Pearson Correlation: Storage Temperature at Stages land 3

(Temp, and Temps); Storage Time at Stages 1 and 3 (Time; and Times); and Generation Time at
Stage 3 (GT3).

storage time and temperature at stages 1 and 3, and lag period and generation time at stage 3. The
CCDF for the storage temperature at stage 3 indicates that for 35 percent of the simulations, the
rank was worse than one, which implies that the rank was equal to one for 65 percent of the
simulations. Furthermore, the storage temperature at stage 3 was ranked sixth or higher for 100
percent of the simulations. In contrast, storage time at stage 1 was ranked first for 15 percent of
the simulations and was ranked sixth or higher for 80 percent of the simulations. The
frequencies of being the most important input for storage temperature at stage 1 and storage time
at stage 3 are 15 and 5 percent, respectively. Thus, although the storage temperature at stage 3
has the highest frequency of a rank of one, there is some ambiguity regarding which of the other
three inputs is the second most important.

Figure 6-12 shows the CCDFs for two inputs that have average ranks between 7.0 and
7.1, while Figure 6-13 depicts the CCDFs for five inputs of approximately minor importance
with average ranks varying between 10.6 and 10.9. These latter inputs were mostly identified as

not statistically significant.
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The results shown in the three figures indicate that there are approximately four groups of
inputs. These groups include: (1) the most important input of storage temperature at stage 3; (2)
inputs of secondary importance, including storage time at stages 1 and 3 and storage temperature
at stage 1, and generation time and lag period at stage 3; (3) inputs of tertiary importance,
including generation time and lag period at stage 1; and (4) inputs of minor or no importance,
including inputs corresponding to the second stage (i.e., transportation) and the maximum

density.

6.3.2.2 Spearman Correlation Coefficients in the Growth Estimation Part

This section presents the results based upon Spearman (rank) correlation coefficients
applied to the growth estimation part using a two-dimensional probabilistic framework. Details
regarding the Spearman correlation coefficient technique are provided in Section 2.2.4.

The results of the 100 analyses with Spearman correlation coefficients are summarized in
Table 6-14 similar to the summary in Table 6-13 for the Pearson correlation coefficients. Inputs
to the analysis are same as the variables listed in Table 6-9.

The mean ranks indicate that the storage time at stage 3 is the most important input.
There is 100 percent probability that this input is identified as statistically significant in the
uncertainty realizations. The storage time at stage 1 is also identified a top input with a mean
rank and a range of ranks approximately equal to the most important input. Hence, the output
may have comparable sensitivity to the storage time at stages 1 and 3.

There are four inputs with mean ranks varying between 3.3 and 5.4. These inputs include
lag period, generation time, storage temperature at stage 3 and lag period at stage 1. These inputs
are categorized to be of secondary importance and are statistically significant. Two inputs, of
tertiary importance, are storage temperature and generation time at stage 1 with mean ranks of
6.6 and 7.2, respectively. There are five inputs for which most simulations were not statistically
significant and the average ranks were low, including storage temperature, storage time, lag
period, and generation time at stage 1 and the maximum density. These inputs were deemed to be
unimportant.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each input based upon the 100 uncertainty
realizations. Figure 6-14 shows the CCDFs for the six inputs that have the highest average ranks.

Storage times at stages 1 and 3 have a comparable probability of being ranked first. The other
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Table 6-14. Summary of the Spearman Correlation Coefficient Results for Two-Dimensional
Variability Simulation for Different Uncertainty Realizations

Mean 5%
. Probability Mean | Range of
Variable Corr. Frequency
Coefficient Rang(? of Rank Rank
Coefficients

Templ 0.178 (0.070,0.279) 97 6.6 1-9
Temp2 0.024 (-0.050,0.110) 11 10.8 6-13
Temp3 0.263 (0.132,0.398) 100 5.1 1-8
Timel 0.443 (0.258,0.619) 100 1.9 1-5
Time2 0.013 (-0.059,0.081) 7 11.1 7-13
Time3 0.436 (0.232,0.585) 100 1.7 1-6
MD 0.007 (-0.072,0.085) 6 11.1 7-13
LPI -0.234 (-0.335,-0.101) 99 4.9 2-10
LP2 -0.030 (-0.114,0.049) 14 10.7 6-13
LP3 -0.310 (-0.418,-0.188) 100 33 2-7
GT1 -0.166 (-0.280,-0.043) 90 7.2 3-13
GT2 -0.024 (-0.116,0.053) 8 10.9 8-13
GT3 -0.255 (-0.381,-0.140) 100 54 3-8

four inputs are never identified as the most important input in the analysis. The probability that
the storage time at stage 1 has a rank worse than 5 is zero. In contrast several of the other inputs
shown in the figure have ranks as low as eight.

In order to visualize the results of the sensitivity analysis, the complementary cumulative
distribution function (CCDF) of the rank is given for each input based upon the 100 uncertainty
realizations. Figure 6-14 shows the CCDFs for the six inputs that have the highest average ranks.
Storage times at stages 1 and 3 have a comparable probability of being ranked first. The other
four inputs are never identified as the most important input in the analysis. The probability that
the storage time at stage 1 has a rank worse than 5 is zero. In contrast several of the other inputs
shown in the figure have ranks as low as eight.

Figure 6-15 depicts a group of inputs with tertiary importance, including generation time
and storage temperature at stage 1. There is approximately 84 percent probability that these
inputs have ranks worse than five. Figure 6-16 depicts a set of five inputs that are comparatively
insensitive. For these inputs, there is less than 2 percent probability of having a rank higher than
8. These inputs mostly correspond to the second stage (i.e., transportation) indicating that the

transportation stage does not have a significant effect on the output in the growth estimation part.
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Figure 6-15. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Spearman Correlation: Generation Time at Stage 1 (GT1);
and Storage Temperature at Stage 1 (Templ).
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Figure 6-16. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Spearman Correlation: Storage Temperature, Storage
Time, Lag Period, and Generation Time at Stage 2 (Temp2, Time2, LP2, and GT2); and
Maximum Density (MD).

6.3.2.3 Comparison of the Results from the Pearson and Spearman Correlation
Coefficients

In Sections 6.3.2.2 and 6.3.2.3 Pearson and Spearman correlation coefficient methods
were applied to the two dimensional framework of variability and uncertainty in the growth
estimation part. This section summarizes and compares the rankings based on these analyses.
Table 6-15 gives the mean ranks for each input based on the two analyses.

The key similarity among Pearson and Spearman correlation coefficient methods was
with respect to the identification of the least important inputs. Both methods resulted in
identification of second stage inputs as the least important. In addition, maximum density was
also identified in a group of least important inputs by both methods. However, the two differ in
the identification of the most important and the group of secondary importance inputs. For
instance, although storage times at stages 1 and 3 were selected as the most important inputs
based upon Spearman method, these inputs did not achieve a mean rank greater than 3.7 with the

Pearson method. The results from the Spearman-based approach are considered to be more
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Table 6-15. Summary of the Pearson and Spearman Correlation Coefficient Analysis Based
Upon Variability Analysis for 100 Uncertainty Realizations in Growth Estimation Part

Variable Ranks
Pearson Spearman
Storage Temperature, Stage 1 4.3 6.6
Storage Temperature, Stage 2 10.9 10.8
Storage Temperature, Stage 3 1.6 5.1
Storage Time, Stage 1 4.7 1.9
Storage Time, Stage 2 10.9 11.1
Storage Time, Stage 3 3.9 1.7
Maximum Density 10.6 11.1
Lag Period, Stage 1 7.0 4.9
Lag Period, Stage 2 10.8 10.7
Lag Period, Stage 3 4.8 33
Generation Time, Stage 1 7.1 7.2
Generation Time, Stage 2 10.7 10.9
Generation Time, Stage 3 3.8 54

accurate in this case because the growth process is not linear. Although the equation used for the
growth process typically provides a monotonic association between the estimated growth and the
inputs, there are some conditions considered in the model in which growth does not change if
particular inputs are below a threshold or if a maximum growth rate is achieved. In particular,
two conditions in the model include a comparison of the estimated growth with maximum
density and a comparison of the storage time with the available lag period at each stage. These
conditions enforce a constant response in the growth estimation part. For example, if the storage
time is less than the available lag period, no growth is estimated for the number of E. coli
organisms in the ground beef servings. Hence, in these cases, an increase in the storage time is
not accompanied by a simultaneous monotonic change in the estimated growth. This condition to
the model prevents the model from responding in a completely monotonic pattern. Therefore, the
assumption of monotonic association between the output and the input considered in the

Spearman correlation coefficient method is not completely valid in this case.

6.3.3 Rank Regression in the Growth Estimation Part

This section presents the results of the rank regression on the growth estimation part of
the preparation module. Application of the standardized regression analysis to the growth
estimation part in Section 6.3.1 was accompanied with a moderate R* value of approximately

0.5. This value of R” implies that underlying assumption of linear relationship between the
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Table 6-16. Summary of the Rank Regression Results for Two-Dimensional Variability
Simulation for Different Uncertainty Realizations (Mean R2 = (0.55)

95%
. Mean Probabilit Mean Range of
Variable Coefficient Range ofy Frequency Rank Ragnk
Coefficients
Templ 0.016 (-0.053,0.085) 7 93 4-13
Temp2 0.012 (-0.102,0.120) 9 8.1 4-13
Temp3 0.045 (-0.026,0.102) 18 8.0 4-13
Timel 0.401 (0.225,0.555) 100 1.5 1-3
Time2 0.017 (-0.025,0.062) 6 10.4 5-13
Time3 0.381 (0.190,0.539) 100 1.6 1-3
MD 0.001 (-0.037,0.041) 3 11.2 7-13
LP1 -0.175 (-0.268,-0.078) 100 3.6 2-7
LP2 -0.024 (-0.105,0.050) 13 9.0 5-13
LP3 -0.199 (-0.300,-0.097) 100 34 2-8
GTI1 -0.027 (-0.097,0.051) 10 9.0 5-13
GT2 0.008 (-0.086,0.116) 9 8.6 4-13
GT3 0.008 (-0.086,0.116) 43 7.0 4-13

output and inputs to this part of the model is not strongly valid. Hence, rankings of sensitivity
based upon the magnitude of the standardized regression coefficients may be unreliable. Rank
regression can more adequately address nonlinear monotonic relationships than sample
regression. Details regarding rank regression method are provided in Section 2.2.5.
Rank regression was applied to the two-dimensional simulation of variability for 100 uncertainty
realizations in the growth estimation part. The characteristics of the simulation regarding the
number of variability and uncertainty iterations are the same as those in Sections 6.3.1, 6.3.2.1,
and 6.3.2.2. The results of the 100 analyses with the rank regression technique are summarized in
Table 6-16, similar to earlier summaries for other methods. The inputs included in the rank
regression method for the two-dimensional simulation were the same as those listed in Table 6-9.
The mean ranks indicate that both the storage times at stages 1 and 3 are the most
important inputs. Both inputs have range of ranks between 1 and 3 and were statistically
significant in all the uncertainty realizations. The lag periods at stages 1 and 3 are considered to
be of secondary importance inputs with mean ranks ranges between 3.42 and 3.62. A group of
five inputs were deemed to be of minor importance, including generation times at stages 1, 2,

and 3, and storage temperatures at stages 2 and 3. These inputs were statistically significant in
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Figure 6-17. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Rank Regression: Storage Time at Stages 1 and 3 (Timel
and Time3); and Lag Period at Stages 1 and 3 (LP1 and LP3).

only 9 to 43 percent of the uncertainty realizations. Finally, four inputs were grouped as
unimportant, including storage temperature at stage 1, storage time and lag period at stage 2, and
maximum density. These inputs had low average ranks and typically were statistically
insignificant.

The complementary cumulative distribution function (CCDF) of the rank is given for
each input. Figure 6-17 displays the CCDFs for four inputs that have the highest average ranks.
The CCDF for the storage time at stage 3 indicates that the rank was equal to one for 43 percent
of the simulations and was ranked three or higher for 100 percent of the simulations. Storage
time at stage 1 was ranked first in 57 percent of uncertainty realizations and was always higher
than third. The other two inputs shown were never identified as the most important inputs and
typically had much lower ranks.

Figure 6-18 shows the CCDFs for five inputs that have lower importance than those
depicted in Figure 6-17. There was 100 percent probability that these inputs had ranks not better
than third, and a probability of 23 to 52 percent of having a rank worse than 8.
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Figure 6-18. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Rank Regression: Storage Temperature at Stages 2 and 3
(Temp2 and Temp3); and Generation Time at Stages 1, 2, and 3 (GT1, GT2, and GT3).

Figure 6-19. Complementary Cumulative Distribution Functions (CCDFs) of Uncertainty in the
Rank of Selected Inputs Based Upon Rank Regression: Storage Time at Stages 2 (Time 2);
Maximum Density (MD); Lag Period at Stage 2; and Storage Temperature at Stage 1 (Templ1).
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Figure 6-20. R* Distribution for Two-Dimensional Rank Regression in the Growth Estimation
Part.

Figure 6-19 depicts the four inputs with the lowest sensitivity. There was 100 percent
probability that the ranks for these inputs were not better than fourth. Moreover, the probability
that these inputs had ranks worse than 10 ranges between 27 and 69 percent.

Figure 6-20 depicts the cumulative probability function (CDF) for the 100 R? values
obtained in the two-dimensional simulation. The R? value for the rank regression method varied
between 0.31 and 0.67 with an average of 0.55. This average is not substantially better that that
obtained using standardized sample linear regression, which had an average R* value of 0.50.
Although rank regression is robust to the underlying assumption of linearity, this method
assumes that there is a monotonic relationship between the output and inputs to the model.
Section 6.3.2.3 presents a discussion regarding the reason that in the growth estimation part the
model has only a partial monotonic response with respect to variation of the inputs. In particular,
for some ranges of values of specific inputs, either zero growth or maximum growth is estimated.
Therefore, there is not a substantial improvement in the R” value using the rank regression

method.

6.3.4 Summary and Comparison of Results in the Growth Estimation Part
In Sections 6.3.1 to 6.3.3 standardized linear regression, correlation coefficients, and rank
regression were applied to the growth estimation part. This section provides a summary and

comparison of the results based on these methods as shown in Table 6-17.
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Table 6-17. Summary of the Mean Ranks Based on Standardized Linear Regression, Correlation
Coefficients, and Rank Regression in the Growth Estimation Part

. Regression Correlation Coefficients Rank
Variable . .
Analysis Pearson Spearman Regression
Storage Temperature, Stage 1 3.1 4.3 6.6 9.3
Storage Temperature, Stage 2 8.5 10.9 10.8 8.1
Storage Temperature, Stage 3 1.4 1.6 5.1 8.0
Storage Time, Stage | 3.5 4.7 1.9 1.5
Storage Time, Stage 2 10.8 10.9 11.1 10.4
Storage Time, Stage 3 2.7 3.9 1.7 1.6
Maximum Density 10.1 10.6 11.1 11.2
Lag Period, Stage 1 8.9 7.0 4.9 3.6
Lag Period, Stage 2 9.7 10.8 10.7 9.0
Lag Period, Stage 3 9.7 4.8 3.3 34
Generation Time, Stage 1 7.2 7.1 7.2 9.0
Generation Time, Stage 2 9.0 10.7 10.9 8.6
Generation Time, Stage 3 6.4 3.8 54 7.0

According to the results provided in Table 6-17, the two sample-based methods of
standardized linear regression analysis and Pearson correlation coefficients produced
approximately similar ranking for inputs. There is also similarity in rankings between the two
ranked-based methods of rank regression and Spearman correlation coefficients. Generally,
results according to the rank-based techniques for sensitivity analysis are different from those of
the method methods based on the sample data. The differences between sample and rank based
techniques are more apparent with respect to the inputs to which model has higher sensitivity.
For example, while storage temperature at stage 3 was identified as the most important input
using the standardized regression analysis and sample (Pearson) correlation coefficients
methods, this input was attributed low mean ranks of 5.1 and 8.0 using rank (Spearman)
correlation coefficients and rank regression methods, respectively. All methods approximately
identified the same inputs that have low or no importance. For example, inputs associated with

stage 2 and maximum density were attributed low mean ranks between 8.1 and 11.2.

6.3.5 Regression Analysis for Variability in the Serving Contamination Part

The serving contamination part of the preparation module is explained in Section 3.4.3.1.
Inputs include the ground beef consumption type, serving size, eating location, consumer age,
and grinder contamination. Distributions for these inputs are summarized in Table 3-12. The

output in this part is the mean serving contamination. For this part there is a one-dimensional
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Table 6-18. The Regression Analysis Results for the Serving Contamination Part in Summer (R

=0.11)
Variable Coefficient | 95”7 CI® | Fvalue | Pr>F | Rank

Ground Beef . . 1 0.4 .
Consumption Type '
Eating Location --- --- 36 <0.0001 ---
Consumer Age --- --- 0.5 0.7 ---
Serving Size 0.12 (0.11,0.13) 970 | <0.0001
Grinder Contamination 0.32 0.32® 7300 | <0.0001 1

a) CI = Confidence Interval for the coefficient
b) The interval for this coefficient is so tight that it appears as 0.32 to 0.32 when it is rounded to two decimal
places.

Table 6-19. The Regression Analysis Results for the Serving Contamination Part in Winter (R

=0.05)

Variable Coefficient | 95 CI® | Fvalue | Pr>F | Rank
Ground Beef
Consumption Type B o 4 0.03 B
Eating Location --- --- 9 0.003 ---
Consumer Age --- --- 0.5 0.7 ---
Serving Size 0.05 (0.04,0.05) 130 <0.0001 2
Grinder Contamination 0.13 (0.12,0.14) 1,200 | <0.0001 1

(a) CI = Confidence Interval for the coefficient

variability simulation with 65,000 iterations as explained in Section 3.3.3. The case scenario in
the serving contamination part includes separate consideration of high and low prevalence
seasons. The analyses are reported separately for these two seasons.

The results for the high prevalence season are given in Table 6-18. The rankings are
based on the magnitude of the estimated regression coefficients for quantitative inputs. Rankings
are presented for the statistically significant inputs with Pr>F less than 0.05. F values in Table 6-
18 indicate that in the consumer age and the eating location are statistically significant. The
grinder contamination is the most important quantitative input. The 95 percent confidence
intervals for the quantitative inputs are estimated in order to evaluate the unambiguity of the
rankings. The confidence intervals indicate that the rankings between two quantitative inputs are
unambiguous because these intervals do not overlap.

If instead of the coefficient estimates, the magnitude of the F values is used as a criterion
for ranking the inputs, the rankings would be the same. The R* for the linear regression model

fitted to the dataset is 0.11. The estimated value of R* implies that the linear assumption for the
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functional relation between the output and inputs explains only 11 percent of the variability in
the output. Thus, ranking based on the magnitude of the linear regression coefficients may not be
reliable. Section 11.1.3.3 presents the comparison of the results based on the standardized linear
regression with other methods that do not assume specific functional relationships, such as
ANOVA and CART. The results in Table 11-12 indicate that rankings based on the linear
regression analysis are comparable to that of the CART method with respect to the selection of
key inputs, while the rank order of first two inputs is reversed in ANOVA.

The results for the low prevalence season are given in table 6-19. The F values indicate
that in winter the consumer age, ground beef consumption type, and the eating location are not
statistically significant. Comparing the magnitude of the regression coefficients for quantitative
inputs in Table 6-19 indicates that the grinder contamination is the most important input. The
serving size is ranked as second input. The confidence intervals indicate that the rankings are
unambiguous in winter because these intervals do not overlap.

Application of F values as a criterion for ranking inputs does not affect the previous
ranking based on the magnitude of coefficient. The ranks based on the magnitude of the F values
are robust, because F values differ substantially. For example, the F value for the grinder
contamination differs from the F value for the serving size by a ratio of approximately 9.3.

For the low prevalence season results, the R” value of 0.05 is low, indicating that only a
small amount of the variability in the output is addressed by the fitted linear model. However, as
described in Section 11.1.3.3 and Table 11-13, rankings based on the linear regression analysis
are comparable to that of the CART method with respect to the selection of key inputs, while the
rank order of first two inputs is reversed in ANOVA.

Low values of R” in this part of the model indicate that standardized linear regression is
not a reliable sensitivity analysis method in this case. Other variations of regression analysis
might yield better results. Therefore, a comparison is made with other regression based
approaches. In addition to the rank regression technique for capturing nonlinearity, application of
higher order terms in the regression model and/or transformation techniques such as log scale
transformation can improve the amount of variability of the output that can be captured by the
fitted regression model. In order to illustrate this issue, rank regression, log scale transformation,
and application of higher order terms in the regression model were implemented to the serving

contamination part. R values obtained from these analyses are used to compare these methods.
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Table 6-20. Standardized Linear Regression Analysis Results for Serving Contamination in
Hamburger Patties Consumed by People Between 25 and 64 Years Old in Summer (R? = 0.10)

Variable Coefficient 95 C1®@ FValue | Pr>F | Rank
Serving Size 0.115 (0.104,0.126) 432 <0.0001 2
Grinder Contamination 0.304 (0.293,0.315) 3,004 | <0.0001 1

(a) CI=Confidence Interval for the coefficient

Table 6-21. Rank Regression Analysis Results for Serving Contamination in Hamburger Patties
Consumed by People Between 25 and 64 Years Old in Summer (R* = 0.97)

Variable Coefficient 95" C1® F Value Pr>F Rank
Serving Size 0.228 (0.225,0.232) | 18,189 | <0.0001 2
Grinder Contamination 0.959 (0.956,0.962) | 321,151 | <0.0001 1

(a) CI = Confidence Interval for the coefficient

Table 6-22. Results of Standardized Regression Analysis with Log Transformation for Serving
Contamination in Hamburger Patties Consumed by People Between 25 and 64 Years Old in
Summer (R* = 0.99)

Variable Coefficient 95" C1®@ F Value Pr>F | Rank
Serving Size 0.197 (0.196,0.199) | 94,500 | <0.0001 2
Grinder Contamination 0.976 (0.975,0.978) | 2,313,600 | <0.0001 1

(a) CI=Confidence Interval for the coefficient

For these additional analyses, serving contamination in hamburger patties consumed by
people between 25 and 64 years old in summer was selected as the output of interest. Hence,
there were two inputs to the model including serving size and grinder contamination.

Table 6-20 summarizes the results of the linear regression. The R* value estimated for
linear regression was 0.1 indicating that the linear assumption was likely to be inapplicable.
Table 6-21 presents the results of the rank regression analysis. Rank regression improved the R?
value to a high value of 0.97 indicating that fitting a monotonic model to the rank-ordered
dataset captured almost all of the variability of the output. Table 6-22 summarizes the results of
the linear regression when log scale transformation was performed. Log scale transformation
produced an R? of 0.99. Hence, the log transformed model can capture almost all of the variation
in the output.

Table 6-23 summarized the results of the regression analysis when higher order terms
such as interaction, quadratic, and cubic terms were used in the fitted regression model. The R?

value of 0.64 for this case is not as high as those of rank regression and regression with log scale
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Table 6-23. Results of Regression Analysis with Higher Order Terms for Serving Contamination
in Hamburger Patties Consumed by People Between 25 and 64 Years Old in Summer (R? = 0.64)

Variable Coefficient 95" C1® FValue | Pr>F | Rank
Serving Size (S) 6 %10~ (5.8,6.2) x10™ 375 | <0.0001 2
Grinder Contamination (GC) 1.156 (1.133,1.179) 9,692 | <0.0001 1
S x GC 1x10* 0.9,1.1) x10™ 872 | <0.0001 | ---
S xS 3 x10” (0.6,6.1) x107’ 5.6 0.02
SxS xS 0 0.2 0.5
GC x GC 0.215 (0.211,0.220) 8,379 | <0.0001 | ---
GC x GC x GC 0.013 (1.27,1.33) x107 | 7,263 | <0.0001 | ---

(a) CI=Confidence Interval for the coefficient

transformation. However, this R” is substantially higher than that obtained with simple linear
regression.

6.4  Evaluation of Regression Analysis Methods Based on Applications to the E. coli
Model

In Sections 6-1 to 6-3 regression analysis was applied to different modules and parts of
the E. coli model. Regression analysis was evaluated based upon applicability of the functional
form of the model, the use of regression coefficients as an indicator of sensitivity, the use of
confidence intervals for regression coefficients to evaluate the ambiguity of rankings, the use of
F values as a sensitivity measure, and the ease of application.

The need to assume a specific functional relation between inputs and the output in a
regression model is a disadvantage for this method. If the specific functional assumption is not
comparable to the original model, the results from the regression analysis may not be valid. In
these cases the fitted regression model addresses only a portion of the original model response
variation. Estimated R” values of 0.82 to 0.90 in several case studies for the production module
indicate that the linear assumption for the model response is a good approximation. In the
slaughter module, the low R* values of 0.10 to 0.12 imply that there is not a linear relationship
between inputs and the output. In the preparation module, the R* values for the growth
estimation part were 0.51 to 0.52, indicating an approximately plausible goodness-of-fit for the
linear assumption. In contrast, in the serving contamination part, the linear assumption for the
relation between inputs and the output appeared to be poor, based upon R* values of 0.05 to 0.11.

Figure 6-21 depicts the scatter plot for the serving contamination in summer versus the

grinder contamination. A linear regression model was fitted to data points in the scatter plot. The
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Figure 6-21. Comparison Between the Original Model Response in the Serving Contamination
Part and the Linear Assumption.

R’ coefficient is an index for evaluating the goodness-of-fit of the linear model to the data. An R?
of 0.12 for this example indicates that the model explains only a small portion of the variability
in the data. A key reason for the lack of good fit is the nonlinear response of the output to the
input, which is not captured by the regression model. As complementary analyses in Section
6.3.5, rank regression, regression with log scale transformation, and regression with higher order
terms were applied to selected case scenario in the serving contamination part in order to
evaluate how these methods can improve the amount of variability in the output that can be
captured by the fitted regression model. Moreover, comparison of the rankings based on the
results obtained from these methods can give insight regarding the validity of the ranks when
there is a low R? value for a simple linear regression analysis. Results of these analyses indicated
that there was a substantial increase in the R? value using the rank regression or regression with
log scale transformation. Fitted regression models in these cases captured almost all the output
variation. There was also a noticeable increase in the R value using higher order terms including
interaction, quadratic, and cubic terms in the regression model. For the particular case study
presented in Section 6.3.5, ranks of the inputs did not change when using different techniques for
the regression analysis. Although the fitted linear regression model with low R* cannot be used

for prediction purpose, this model can still be used for sensitivity analysis. This finding may
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provide confidence in using the results of the sensitivity analysis based on linear regression even
if the R value is substantially low. But future works would be required to justify this finding in
general. Practitioners should be cautioned that if the R? value is low, other methods should be
used to confirm results or to develop more reliable results, such as alternative regression analysis
using appropriate transformations (e.g., ranks, logarithmic transformations) or other techniques
(e.g., ANOVA).

The growth estimation part was selected for application of the rank regression method to
the two-dimensional simulation of variability under several uncertainty realizations. In this case,
rank regression did not substantially improve the amount of variability captured by the fitted
regression model. Although the equation used in the model for estimation of the growth is
monotonic, there are some conditions in the model enforcing a constant growth even though
there is variation in the model inputs. For example, no growth is estimated for cases where the
storage time is less than the available lag period. These model characteristics prevent the model
from responding in a completely monotonic pattern. Nonetheless, the rankings based on the rank
regression method are somewhat different from that of the standardized linear regression method
with respect to the most important inputs.

The use of regression coefficient estimates as a measure of sensitivity of the output to
individual inputs was demonstrated in this chapter. Corresponding to each regression coefficient
there is a standard error that can be used to derive the confidence interval for the coefficient.
These confidence intervals for the coefficients can be used to evaluate the ambiguity of the
ranks. The output has comparable sensitivity to inputs with overlapping confidence intervals for
the estimated regression coefficients.

In a case with qualitative inputs in the model, coefficients are estimated for the indicator
variables and not for the qualitative inputs. In order to compensate for this disadvantage, F
values estimated for each input can be used as an index of sensitivity. Hence, the inputs can be
ranked based upon the relative magnitude of the F values.

In Sections 6.3.2.1 and 6.3.2.2, Pearson and Spearman correlation coefficients methods
were applied to the two-dimensional framework of variability and uncertainty in the growth
estimation part. The relative magnitude of the correlation coefficient was presented as the
measure of the sensitivity of the output to individual inputs. The assumption of linear association

between the output and individual inputs is a potential disadvantage for the Pearson correlation
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coefficients method. Although the Spearman correlation coefficients method for sensitivity
analysis does not assume any linear functional relation in the model, this method assumes a
monotonic relationship. Hence, for cases in which these assumptions are not satisfied, the results
based upon these methods are not reliable. Moreover, neither the Pearson nor Spearman
correlation coefficients method for sensitivity analysis can identify possible interaction effects in
the model.

Regression analysis is a relatively easy to apply and interpret method for sensitivity
analysis. In order to perform regression analysis, a dataset containing the values of each input in
a Monte Carlo simulation and the corresponding values for each output of interest can be fed into
any statistical software capable of performing regression analysis, such as SAS®. There are
direct measures of sensitivity in the regression analysis that can be used for rank-ordering the

inputs.
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7 CLASSIFICATION AND REGRESSION TREES FOR THE E. COLI O157:H7
MODEL

The purpose of this chapter is to apply CART to different modules and parts of the E. coli
model for purpose of sensitivity analysis. CART is discussed in Section 2.2.3. The E. coli model
is discussed in Chapter 3. Key advantages of CART are that it is possible to deal with both
qualitative and quantitative inputs, to identify thresholds, and to gain insight into the sensitivity
of inputs conditional on the values for other inputs. The importance of an input is indicated by
whether it is selected as the basis for splitting the tree at the highest branches, and whether it is
selected at multiple levels of the tree to further subdivide the data. The final nodes or leaves of
the tree represent databases that have been created by a systematic partitioning of the data. The
partitioned data under different nodes of the same branch have mean values that are significantly
different from each other.

In order to gain additional insight into the sensitivity of model inputs conditional on
partitioned data for different leaves of the regression tree, additional sensitivity analysis methods
can be applied to such databases. For example, regression analysis or ANOVA can be applied
for the purposes of determining which model inputs are most sensitive conditional on a particular
partition of the original input data. One of the partitions will contain data that produces the
largest mean value of the model output compared to other partitions of the data. To the extent
that the results of complementary analyses on different nodal databases produce similar results,
the ranking of sensitive inputs would be shown to be robust with respect to partitioning of the
input data. However, it is more likely the case that the sensitivity analysis results will be
different for different nodal databases. Such an outcome could, for example, help identify the
combinations of input values that would produce the highest exposure or risk estimate.
Therefore, in this work, CART is used as a first step followed by the application of regression
analysis or ANOVA to nodal data.

A disadvantage of CART is that there is not a clear summary statistic via which to clearly
rank the importance of different inputs. However, in Sections 7.3.1.1 and 7.3.1.2 a possible
sensitivity index is explored and evaluated. Two case studies are provided in the growth
estimation part to evaluate the amount of contribution of each selected input in the regression
tree to the reduction of the total deviance as an alternative sensitivity index. Hence, inputs are

ranked based on the percentage of their contribution to the reduction of the total deviance. This
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alternative approach for ranking inputs is compared with rankings based on the visualization of
the regression tree accompanied by complementary analyses.

In order to apply CART to different modules and parts of the E. coli food safety risk
assessment model, S-PLUS® Version 6.1 was used. This software has the ability to perform
CART analysis on a dataset, using a Graphical User Interface (GUI). Moreover, both qualitative
and quantitative inputs can be addressed using the specific options of the software.

This chapter contains four parts, in which results are presented for the production
module, slaughter module and preparation module in Sections 7.1, 7.2, and 7.3, respectively.
Section 7.4 presents an evaluation of CART as a method for the sensitivity analysis. The
limitations, advantages, disadvantages and key criteria for application of this method are

summarized in this section.

7.1 Application of CART to the Production Module
In the production module CART is applied to four parts, including feedlot prevalence,
within feedlot prevalence, breeding herd prevalence, and within breeding herd prevalence. The

results of the analyses are presented in Sections 7.1.1 to 7.1.4 for these four parts, respectively.

7.1.1 Uncertainty in the Feedlot Prevalence Part

As explained in Section 3.2.1, for feedlot prevalence estimation, inputs include the
apparent prevalence and the herd sensitivity as quantitative inputs, and the study as a qualitative
one. Distributions for these inputs are summarized in Table 3-9. The output in this part is the
median feedlot prevalence. For the feedlot prevalence part there is a one-dimensional uncertainty
simulation with 65,000 iterations, as explained in Section 3.3.1.

In Figure 7-1 the result of CART analysis is depicted in the form of a regression tree. In
this figure, HS stands for the herd sensitivity. Each level of the study is presented by a letter (e.g.
a, b, ¢, and d for Dargatz & Hancock 1997, Hancock 1998, Smith 1999, and Elder 2000,
respectively).

The regression tree in Figure 7-1 shows that the data for the feedlot prevalence is divided
into two datasets based on studies. The first node in the regression tree indicates that if the study
is b (i.e., Hancock 1998) the mean response is 0.49, as indicated at the bottom of the left-most
branch of the tree. For other studies (i.e., Dargatz and Hancock 97, Smith 99, and Elder 2000)
the dataset is further classified into two datasets based on the study a which is the Dargatz

Hancock (1997) study and a separate partition based upon studies ¢ and d, which are the Smith
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Study:b

Study:a
0.4900
HS<0.770911
0.8950
— HS<0904009
0.9468 0.7363 0.6326

HS = Herd Sensitivity; Output = Mean of Medians for Feedlot Prevalence

Figure 7-1. The Regression Tree for the Median Feedlot Prevalence.

(1999) and Elder (2000) studies, respectively. For the Dargatz and Hancock (1997) study the
mean response depends on different values of the herd sensitivity, while for the other two studies
the mean response is 0.895, as indicated at the bottom of the right-most branch of the tree. For
the Dargatz & Hancock (1997) study the dataset is subdivided two times based upon the values
of the herd sensitivity to create three partitions: (1) herd sensitivity less than 0.77 with a mean
response of 0.947; (2) herd sensitivity between 0.77 and 0.90 with a mean response of 0.736; and
(3) herd sensitivity greater than 0.90 with a mean response of 0.633.

In CART analysis no restriction was specified for the number of nodes in the regression
tree. Hence, the mean responses presented in Figure 7-1 account for all of the variability in the
output that could be captured by partitioning the dataset. Figure 7-1 indicates that the median
feedlot prevalence is most sensitive to the study, because this input is placed at the first splitting
node. Furthermore, the vertical distance below each split indicates the portion of deviance that is
reduced because of the split. Thus, the long vertical distance below the first split for the study

illustrates that separating study b from the other three studies accounts for most of the
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AWFP<0.|0691421

— AWFP<0.0376115
0.05036 0.08297
0.24050 0.37680

AWFP = Apparent Within Feedlot Prevalence;
Output = Mean of Averages for Within Feedlot Prevalence

Figure 7-2. The Regression Tree for the Average Within Feedlot Prevalence.

explainable variability in the model output. Herd sensitivity has a rank of two, because it is
placed in the lower nodes of the tree and under the splits based on the study. Moreover, mean
values of the output range between 0.49 and 0.95 among the leaves, which illustrates that
partitioning the data leads to approximately a factor of two difference in mean values at the

leaves.

7.1.2 Uncertainty in the Within Feedlot Prevalence

Section 3.2.1 explains the within feedlot prevalence part of the production module. The
inputs for this part include the apparent within feedlot prevalence and the test sensitivity as
quantitative inputs, and the study and the season as qualitative inputs. Table 3-9 summarizes the
distributions for these inputs. The output of interest is the average within feedlot prevalence. The
case scenario for this part is based upon a one-dimensional uncertainty simulation with 65,000
iterations as described in Section 3.3.1.

In Figure 7-2 the result of CART analysis is depicted in the form of a regression tree. The
first node in the regression tree subdivides the dataset into two divisions: (1) apparent within
feedlot prevalence less than 0.069; and (2) apparent within feedlot prevalence greater than 0.069.

The datasets corresponding to high and low values of the apparent within feedlot prevalence are
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classified into four subdivisions based on values of 0.301 and 0.038 for the same input,
respectively.

A high value of the response corresponds to high values of the apparent within feedlot
prevalence and other inputs do not contribute to the explainable variability of the output. The
highest mean response of 0.38 corresponds with the case that the apparent within feedlot
prevalence is more than approximately 0.30. Furthermore, the long vertical distance below the
first split for the apparent within feedlot prevalence illustrates that classifying the dataset based
on the value of 0.069 of the apparent within feedlot prevalence accounts for most of the
variability in the model output that can be captured by partitioning the data. Because only the
apparent within feedlot prevalence was selected in the tree, the apparent within feedlot

prevalence is ranked as the most important input.

7.1.3 Uncertainty in the Breeding Herd Prevalence Part

As described in Section 3.2.1, for breeding herd prevalence estimation, the inputs include
the apparent prevalence and herd sensitivity as quantitative inputs, and study as a qualitative one.
The output is median breeding herd prevalence. Distributions for the inputs are given in Table 3-
9. The case scenario in Section 3.3.1 is based upon a one-dimensional uncertainty simulation
with 65,000 iterations. In CART analysis for this part the number of leaves of the tree was
specified as 7. Hence, in Figure 7-3 there are 7 mean responses presented in the regression tree.
This number of nodes accounts for almost 95 percent of the variability in the output that can be
captured if no restriction in the number of nodes was considered. The restriction on the size of
the returned tree provides a more understandable tree with fewer splitting nodes and branches.

In Figure 7-3 the result of CART analysis is depicted in the form of a regression tree.
Each level of the study is presented by a letter (i.e. a, b, ¢, d, e, fand g for Garber 1998, Sargeant
2000, Hancock/CFSAN 2001, Hancock 1997a, Hancock 1998, Lagreid 1998, and Hancock
19970, respectively).

The regression tree shows that the data for the breeding herd prevalence is divided into
two datasets based on the study. When the study is a, b, ¢, or d, the dataset is subdivided into
four leaves based upon herd sensitivity and apparent prevalence. For other studies (i.e. e, f, or g)
there is a split on the right side of the tree based on the study. If the study is g, the mean response
depends on different values of herd sensitivity, while in cases that the study is e or fthe mean

response is 0.919, as indicated in the bottom of the right-most branch of the tree. The highest
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Study:abed

HS<0.380339 g
<
08134 - 0.8309 0.8247 0.9190
0.4900 0.4664 0.2679
HS = Herd Sensitivity AP = Apparent Prevalence

Output = Mean of Medians for Breeding Herd Prevalence

Figure 7-3. The Regression Tree for the Median Breeding Herd Prevalence.

mean response corresponds with the studies e or f'with a value of 0.919. Furthermore, the long
vertical distance below the first split for the study illustrates that classifying the dataset based on
two sets of studies with a, b, ¢, and d in one group and e, f, and g in another group explains most
of the variability that can be captured in the model output. Thus, the median breeding herd
prevalence is most sensitive to the study.

The fact that study was selected as the first basis for splitting the data and that herd
sensitivity was selected repeatedly throughout the lower notes of the tree suggest that these two
inputs are important. Furthermore, it is clear from the tree that the highest values of median
breeding herd prevalence, such as those mean values of 0.92 and higher beneath the nodes under
the right branch of the tree, are associated with the use of specific studies. Therefore, to better
understand or confirm which of the other inputs aside from study are important, the results of the
CART analysis were supplemented with statistical sensitivity analysis methods applied to two
datasets. One dataset was for model results associated with studies a, b, ¢, and d and the other
was for model results based upon the other studies. The statistical method used was regression

analysis. This method is explained in Sections 2.2.1, and was applied to the E. coli model as
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described in Chapter 5. The results of the application of regression analysis to these two
datasets are given in Table 7-1.

The rankings in Table 7-1 are based on the magnitude of the standardized regression
coefficients. Rankings are presented for statistically significant inputs with Pr>F less than 0.05.
The F values indicate that for the first dataset all inputs are statistically significant, while for the
second dataset only study is statistically significant. Because study is a qualitative input, there is
no coefficient estimate for this input. The results of the regression analysis imply that the herd
sensitivity and apparent prevalence are ranked first and second, respectively. The 95 percentile
confidence intervals are estimated in order to evaluate the robustness of the rankings. These
intervals indicate that rankings are robust because there is no overlap.

Considering the results of the regression tree and the complementary sensitivity analysis,
the study, herd sensitivity, and apparent prevalence are ranked first, second and third,

respectively.

7.1.4 Uncertainty in the Within Breeding Herd Prevalence Part

Section 3.2.1 explains the within breeding herd prevalence part of the production module.
Inputs in this part include the apparent within breeding herd prevalence and the test sensitivity as
quantitative inputs, and the study and the season as qualitative inputs. Table 3-9 summarizes the
distributions for these inputs. The output is the average within breeding herd prevalence. The
case scenario for this part is based upon a one-dimensional uncertainty simulation with 65,000
iterations. In CART analysis for this part the number of leaves of the tree was specified as 7.
Hence, in Figure 7-4 there are 7 mean responses presented in the regression tree. This number of
nodes accounts for almost 85 percent of the variability in the output that can be captured if no
restriction on the number of nodes was considered. The restriction on the size of the returned tree
provides a more understandable tree with fewer splitting nodes and branches. In Figure 7-4, each
level of the study is presented by a letter (i.e. a, b, ¢, d, e, and f for Garber 1998, Besser 1997,
Rice 1997, Hancock 1994, Sargeant 2000, and Hancock/CFSAN 2001, respectively.

The regression tree in Figure 7-4 shows that the test sensitivity was selected for the first
split and that this split accounts for a large reduction in deviance. The first node in the regression
tree subdivides the dataset into two divisions: (1) test sensitivity less than 0.118; and (2) test
sensitivity greater than or equal to 0.118. For cases with the test sensitivity less than 0.118, the

dataset is subdivided further based upon test sensitivity as follows: (1) test sensitivity less than
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Table 7-1. Regression Analysis Results for the Median Breeding Herd Prevalence (R* = 0.65 for
the first dataset and R? = 0.43 for the second dataset)

Variable | Coefficient | 95" CI® | Fvalue | Pr>F | Rank
Garber 1998, Sargeant 2000, Hancock/CFSAN 2001, Hancock 1997a (a, b, ¢, and d)

Study --- — 6,500 <0.0001 ---
Apparent Prevalence -0.13 (-0.14, -0.12) 350 <0.0001 2
Herd Sensitivity -0.44 (-0.45, -0.44) 35,000 | <0.0001 1

Hancock 1998, Lagreid 1998, Hancock 1997b (e, f, and g)

Study --- --- 10,000 | <0.0001 ---
Apparent Prevalence 0.26 (0.16, 0.36) 1 0.54 -
Herd Sensitivity -0.001 (-5,3)x107 1.5 0.25

(a) CI = Confidence Interval for the coefficient

0.06 with a mean response of 0.88; and (2) test sensitivity between 0.06 and 0.118 with a mean
response of 0.55. For high values of the test sensitivity, presented in the right side of the
regression tree, the data are subdivided based on study and then further divided based upon
apparent breeding herd prevalence and test sensitivity. The highest average within breeding herd
prevalence of 0.88 corresponds to cases where test sensitivity is less than 0.06.

The fact that test sensitivity was selected as the first basis for splitting the data and that it
was selected repeatedly throughout the lower nodes of the tree suggest that this input is
important. Therefore, to better understand or confirm which of the other inputs are important, the
results of the CART analysis were supplemented with statistical sensitivity analysis methods
applied to two datasets classified based on test sensitivity. Thus, ANOVA was used as a
complementary sensitivity analysis in order to rank the inputs conditional on test sensitivity. The
first dataset includes data with test sensitivity less than 0.117 and the second dataset contains
data with test sensitivity greater than or equal to 0.117. The results of the complementary
analyses are given in Table 7-2.

The rankings in Table 7-2 are based on the magnitude of the F values. Rankings are
presented for statistically significant inputs with Pr>F less than 0.05. For both datasets all inputs
are statistically significant. The magnitudes of the F values indicate that in both datasets study,
apparent within breeding herd prevalence, and season are ranked first, second, and third,
respectively. The large difference between the F values for statistically significant inputs

indicates that the rankings are robust. For example, the F value for study is approximately 3.9

210



TS<Oi1 17952

< study:abef

0.88460 0.55220 AWBHP<0.0217347 — TS<0.46 )9RRHP<0 10699
0.01397 0.06159 0.27790 0.13640 0.23030

TS = Test Sensitivity AWBHP = Apparent Within Breeding Herd Prevalence
Output = Mean of Averages for Within Breeding Herd Prevalence

Figure 7-4. The Regression Tree for the Average Within Breeding Herd Prevalence.

Table 7-2. ANOVA Results for the Median Breeding Herd Prevalence

Variable \ F Value \ Pr>F | Significant | Rank
Test Sensitivity <0.117
Study 4,250 <0.0001 Yes 1
Season 12 0.0005 Yes 3
Apparent Within Breeding Herd 1,100 <0.0001 Yes )
Prevalence
Test Sensitivity >= 0.117
Study 8,830 <0.0001 Yes 1
Season 23 <0.0001 Yes 3
Apparent Within Breeding Herd 3.230 <0.0001 Yes )
Prevalence
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and 2.8 times greater than the F value for the apparent within breeding herd prevalence in the
first and second dataset, respectively.

Considering the regression tree and results of the complementary sensitivity analysis, test
sensitivity, study, apparent within breeding herd prevalence, and season are ranked first, second,
third, and fourth, respectively.

7.2 Application of CART to the Slaughter Module

The slaughter module is discussed in Section 3.2.2. Inputs and corresponding
distributions in the slaughter module are summarized in Table 3-10. The output of interest in the
slaughter module is the contamination in combo bins. Three different types of probabilistic
analysis were performed for this module, as described in Section 3.3.2: (1) one-dimensional
simulation of variability based upon mean values of uncertain inputs; (2) two-dimensional
simulation of variability for each realization of uncertainty; and (3) one-dimensional simulation
of both variability and uncertainty co-mingled.

In CART analysis, since inputs are ranked based on visual inferences from the regression
tree, and in some cases by incorporation of complementary sensitivity analysis, application of
CART for the second simulation considering variability for several uncertainty realizations was
impractical. Thus, in the slaughter module, CART analysis was only applied to the first and third
analyses. The results of CART analysis for variability only and one-dimensional co-mingled
variability and uncertainty simulations are presented in Sections 7.2.1 and 7.2.2, respectively.

Moreover, Section 7.2.3 compares the results from Sections 7.2.1 and 7.2.2.

7.2.1 Variability Only

This section presents the results of CART analysis applied to a one dimensional
probabilistic simulation in which variability is only considered for mean uncertainty, based upon
the case study scenario described in Section 3.3.2. The results of CART analysis are depicted in
Figure 7-5 in the form of a regression tree.

The regression tree in Figure 7-5 shows that the data were divided into two datasets based
upon the chilling effect. The first node in the regression tree subdivides the dataset into two
divisions as follows: (1) chilling effect less than 0.39 logs; and (2) chilling effect greater than or
equal to 0.39 logs. For the former case, the mean response is 0.51 as presented in the left-most
terminal node of the tree. For the latter case, the dataset is subdivided twice considering values of

the number of organisms and chilling effect. Thus, there are three mean responses based on the
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Figure 7-5. The Regression Tree for the Combo Bin Contamination from Steer and Heifer in
Summer for the Variability only Analysis.

values of these inputs as follows: (1) chilling effect greater than or equal to 0.39 logs and the
initial number of organism less than 259 with a mean response of 13.58; (2) chilling effect
between 0.39 and 0.67 logs and number of organism greater than or equal to 259 with a mean
response of 40.4; and (3) chilling effect greater than or equal to 0.67 logs and number of
organism greater than or equal to 259 with a mean response of 103. The regression tree implies
that high values of combo bin contamination (i.e. 103 E. coli organisms or 2 logs of
contamination) correspond with cases in which the chilling effect is more than an approximate
value of 0.67 logs and number of organisms is greater than 259.

In CART analysis no restriction was specified for the number of nodes in the regression
tree. Hence, the mean responses presented in Figure 7-5 account for all of the variability in the
output that could be captured by partitioning the dataset. The regression tree implies that the
combo bin contamination is most sensitive to the chilling effect, because this input is placed at
the first node of the tree. Hence, the chilling effect is ranked first. The number of organisms is

ranked second. Other inputs were not selected in the regression tree by CART analysis.
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Therefore, the other inputs are likely to be less sensitive than the ones that were selected in the

tree.

7.2.2 One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of CART analysis applied to a one dimensional
probabilistic simulation in which variability and uncertainty are co-mingled, based upon the case
study scenario described in Section 3.3.2. The results of CART analysis are depicted in Figure 7-
6 in the form of a regression tree. In CART analysis for this module, the maximum number of
leaves of the tree is specified as 8. Hence, in Figure 7-6 there are 8§ mean responses presented in
the regression tree. This number of nodes account for almost 90 percent of the variability in the
output that can be captured if no restriction on the number of nodes was considered.

The regression tree in Figure 7-6 shows that the data was divided into two datasets based
upon the chilling effect. The first node in the regression tree subdivides the dataset into two
divisions as follows: (1) chilling effect less than 2.2 logs; and (2) chilling effect greater than or
equal to 2.2 logs. These datasets are further subdivided in the left and right branches of the
regression tree using values for inputs such as number of organisms, chilling effect, and washing
effect for the left branch, and number of organisms and contaminated cm” of meat trim in the
right branch. The highest combo bin contamination corresponds with cases in which the initial
number of organisms on carcasses is greater than approximately of 128 organisms and the
chilling effect is higher than 2.2 logs. The mean response for these cases is 3641 E. coli
organisms or approximately 3.6 logs of contamination. The mean responses range between 3.9
and 3640 E. coli organisms per combo bin.

The long vertical distance below the second right split for the number of organisms
illustrates that classifying the dataset based on a value of 127.9 for the number of organisms
when the chilling effect is greater than or equal to 2.2 logs explains most of the variability that
can be captured in the model output. The regression tree implies that the combo bin
contamination is most sensitive to both the chilling effect and the number of organisms. The
chilling effect is placed at the first node of the tree. However, although the number of organisms
was not selected until the second node in the right-most branch, this input discriminates the mean
response of 3641 from other leaves with mean responses of 130 to 528. Thus, the partitioning of
data for large values of chilling effect with respect to the number of organisms accounts for a

wide range of variation in the response. Therefore, there appears to be an important interaction
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Figure 7-6. The Regression Tree for the Combo Bin Contamination from Steer and Heifer in
Summer for One-Dimensional Variability and Uncertainty Analysis.

between chilling effect and number of organisms. For low values of chilling effect, the mean
response varies from 4.0 to 1358 depending on more refined ranges of chilling effect, number of
organisms, and washing efficiency. For high values of chilling effect, the number of organisms is
the most important input. Therefore, it may be the case that chilling effect and number of
organisms are of comparable importance. The other inputs selected in the tree are of minor
importance. Inputs not selected in the tree are deemed to be unimportant. To gain further insight
into which inputs are important conditional on the chilling effect, regression analysis was applied
for two cases.

Table 7-3 summarizes the results of the complementary regression analysis applied to the
dataset with chilling effect of less than 2.2 logs. The inputs in Table 7-4 are ranked based on the
magnitude of regression coefficients. These rankings are only presented for statistically

significant inputs with Pr>F less than 0.05. The F values indicate that there is no statistically
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Table 7-3. Regression Analysis Results for the Dataset with Chilling Effect Less than 2.2 logs
(R*=0.11)

Variable Coefficient 95" C1® F Pr>F Rank
Value

Total Number of Combo

Bin for Each Carcass -0.010 (-0.018,-0.003) 7 0.008 11

Total Number of Infected

Animals -0.030 (-0.045, -0.019) 23 <0.0001 7

Total Number of

Contaminated Animals -0.024 (-0.038,-0.010) 11 0.009 9

Probability of Positive
Cases at both Steps of -0.032 (-0.041, -0.024) 59 <0.0001 6
Dehiding and Evisceration

Number of Positive Cases
at both Steps of Dehiding 0.012 (0.002,0.022) 6 0.018 10
and Evisceration

Number of Positive Cases

) . -0.008 (-0.018, -0.002) 2 0.13 ---
at Evisceration
Chilling Effect 0.157 (0.145,0.169) 622 <0.0001
Number of Organisms 0.235 (0.226,0.243) 2865 <0.0001 1
Trim/Vacuum/Washing 0.137 | (-0.149,-0.125) | 506 | <0.0001 | 3
Efficiency
Evisceration Organisms
Added 0.029 (0.021,0.036) 59 <0.0001 8
Washing Effect 0.110 (0.10,0.12) 572 <0.0001 4
Contaminated cm” 0.100 (0.09,0.11) 359 <0.0001 5

significant influence for the number of positive cases at evisceration. Therefore, the output is not
sensitive to the variability in this input.

Based upon the magnitude of the coefficients for the statistically significant inputs,
number of organisms, chilling effect, Trim/Vacuum/Washing efficiency, and washing effect
arethe most sensitive inputs. In order to evaluate the robustness of the estimated rankings, the 95
percentile confidence intervals are estimated for statistically significant coefficients. Estimated
confidence intervals for regression coefficients indicate that the rank of the number of organisms
is robust. The confidence interval for this input does not overlap with the confidence interval of
the second ranked input. In contrast, the ranks for the second and third important inputs are not

robust, because their confidence intervals overlap.
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Table 7-4. Regression Analysis Results for the Dataset with Chilling Effect Greater than or
Equal to 2.2 logs (R*= 0.54)

Variable Coefficient 95" C1® F Pr>F Rank
Value

Total Number of Combo

Bin for Each Carcass 0.089 (0.035,0.140) 11 <0.0001 9

Total Number of Infected

Animals 0.125 (0.05,0.20) 11 <0.0001 7

Total Number of

Contaminated Animals 0.180 (0.092,0.269) 16 <0.0001 6

Probability of Positive
Cases at both Steps of 0.016 (-0.036,0.069) 0.4 0.7 -
Dehiding and Evisceration

Number of Positive Cases
at both Steps of Dehiding -0.117 (-0.196, -0.037) 9 0.0008 8
and Evisceration

Number of Positive Cases

) . 0.188 (0.107,0.269) 21 <0.0001 5
at Evisceration
Chilling Effect 0.406 (0.33,0.48) 114 <0.0001 2
Number of Organisms 0.338 (0.276,0.400) 114 <0.0001 3
Trim/Vacuum/Washing 0.229 (0.161,0.296) 45 | <0.0001 | 5
Efficiency
Evisceration Organisms
Added 0.234 (0.179,0.289) 71 <0.0001 4
Washing Effect 0.450 (0.338,0.512) 200 <0.0001 1
Contaminated cm” -0.012 (0.086,0.062) 0.1 0.8 10

Table 7-4 summarizes the results of the complementary regression analysis applied to the
dataset with chilling effect greater than or equal to 2.2 logs. The inputs in Table 7-5 are ranked
based on the magnitude of regression coefficients. These rankings are only presented for
statistically significant inputs with Pr>F less than 0.05. The F values indicate that there is no
statistically significant influence of the probability of positive cases at both steps of dehiding and
evisceration. Therefore, the output is not sensitive to the variability in this input.

Based upon the magnitude of the coefficients for the statistically significant inputs,
washing effect, chilling effect, number of organisms, and evisceration organisms added are the
most sensitive inputs. In order to evaluate the robustness of the estimated rankings, the 95
percent confidence intervals are estimated for statistically significant coefficients. There is

overlap of confidence intervals for regression coefficients in some cases. For example, the top
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Table 7-5. Summary of the CART Analysis Results Based on Variability Only and Co-mingled
Variability and Uncertainty Analyses

Variable : (}){anks —TP))
Analysis 1 Analysis 3

Total Number of Combo Bins for Each Carcass NS©® 119
Total Number of Infected Animals NS© 7@
Total Number of Contaminated Animals NS© 9@
Probability of Positive Cases at both Steps of NS® e
Dehiding and Evisceration
Number of Positive Cases at both Steps of Ns® 0@
Dehiding and Evisceration
Number of Positive Cases at Evisceration NS® NA ©
Chilling Effect 1 1
Number of Organisms 2 2
Trim/Vacuum/Washing Efficiency Ns® 3@
Evisceration Organisms Added NS© 5@
Washing Effect NS® 4@
Contaminated cm” NS® 6@

(1) Ranks based on the variability only analysis.

(2) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.
(3) NS =Not selected in the regression tree.

(4) Ranked based upon the complementary regression analysis.

(5) NA = Rank not available in the complementary regression analysis.

ranked input is significantly more important than the fourth and lower ranked inputs, but the
second and third ranked input could be of comparable importance to the first ranked input. Thus,
there is some ambiguity in the rankings.

The results for the high and low partitions of the data based upon the chilling effect were
qualitatively similar. In both cases, chilling effect, number of organisms, Trim/Vacuum/Washing
efficiency, and the washing efficiency were identified as a group of top four important inputs.
Since chilling effect was selected by CART as the first basis for subdividing the data, chilling
effect, number of organisms, washing effect, and Trim/Vacuum/Washing efficiency are deemed

to be the most important inputs.

7.2.3 Summary and Comparison of the Results of CART Analysis in the Slaughter
Module

In Sections 7.2.1 and 7.2.2, CART analysis was applied to two datasets considering
variability only and co-mingled variability and uncertainty in inputs, respectively. In this section
rankings based on these analyses are summarized and compared. Table 7-5 gives the ranks for

each input based on analyses in Sections 7.2.1 and 7.2.2.
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CART analysis identified the chilling effect and number of organisms on contaminated
carcasses as the most important inputs for both the variability only and one-dimensional co-
mingled variability and uncertainty analyses. The regression tree in the former analysis did not
select other inputs. For the latter case, regression analysis was used as a complementary method
for ranking the input considering information from the regression tree. Thus, more inputs were
ranked in this case. The results were similar for the top two inputs based upon both probabilistic
simulation approaches.

7.3 Application of CART to the Preparation Module

In the preparation module CART analysis was applied to three parts: (1)growth
estimation; (2) cooking effect; and (3)serving contamination part. The results of the analyses are

presented in Sections 7.3.1 to 7.3.3 for each of these three parts, respectively.

7.3.1 Application of CART to the Growth Estimation Part

The growth estimation part is discussed in Section 3.2.3. Three different types of
probabilistic analysis were performed for this part, as described in Section 3.3.3: (1) one-
dimensional simulation of variability based upon mean values of uncertain inputs; (2) two-
dimensional simulation of variability for each realization of uncertainty; and (3) one-dimensional
simulation of both variability and uncertainty co-mingled.

In the growth estimation part CART analysis was only applied to the first and third
analyses. The results of CART analysis for variability only and one-dimensional co-mingled
variability and uncertainty simulations are presented in Sections 7.3.1.1 and 7.3.1.2, respectively.
Moreover, Section 7.3.1.3 compares the results from Sections 7.3.1.1 and 7.3.1.2.

Two case studies are provided in the growth estimation part in which a new sensitivity
index is presented for CART. As presented in previous sections, the ranking of the inputs in
CART is based on visualization of the regression tree and judgment. Complementary analyses on
sub-divided datasets with other sensitivity analysis methods such as regression and ANOVA can
be also informative. As explained in Section 2.2.3, CART reduces the total deviance in the
dataset by subdividing the original dataset into more homogeneous subgroups. Hence, for each
input selected at splitting nodes there is an associated reduction in the total deviance. Therefore,
inputs selected in the regression tree can be ranked based on their contribution to the amount of

reduction of the total deviance. In order to use this sensitivity index no limitation should be
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considered in the total number of nodes in the regression tree, in order to achieve the maximum
possible total reduction in deviance.

7.3.1.1 Variability Only

This section presents the results of CART analysis applied to a one-dimensional
probabilistic simulation in which variability is only considered for mean uncertainty, based upon
the case study scenario described in Section 3.3.3. The results of CART analysis are depicted in
Figure 7-7 in the form of a regression tree.

In CART analysis for this part the maximum number of leaves of the tree was specified
as 10. Hence, in Figure 7-7 there are 10 mean responses presented in the regression tree. This
number of nodes account for almost 85 percent of the variability in the output that can be
captured if no restriction in the number of nodes was considered. The restriction in the size of the
returned tree provides a more understandable tree with fewer splitting nodes and branches.

The temperature at stage 3 was the first input selected as the basis for partitioning data. The time
at stage 3 was selected at the second node under both branches of the first node. The
temperature at stage 3 and the time at stage 3 appear in some of the subordinate nodes. These
two inputs alone result in partitions of the data set with mean responses that vary from 0.07 to
0.52, as represented by the four leaves on the right of the tree. For stage 3 storage temperatures
of less than 14.7 °C and storage times of less than 59 hours, several other inputs were selected to
partition the data as shown in the six left-most leaves of the tree. The mean response in these six
leaves varies from 0.008 to 0.47. The mean response of 0.47 is associated with a stage 3 storage
temperature of less than 14.7 °C, a stage 3 storage time of less than 59 hours, a stage 1 storage
time of greater than 72 hours, and a stage 1 storage temperature of greater than 10 °C. This
implies that a long storage time and a high storage temperature in stage 1 can lead to large
growth even if the storage time and temperature in stage 3 are kept low. Conversely, as
indicated by the right most leaf of the tree that has an average response of 0.52, if the storage
time and temperature of stage 3 are greater than 14.7 °C and 19 hours, respectively, then on
average there is high growth irrespective of the time and temperature history of other stages.
Another high growth scenario with an average response of 0.45 is based upon a stage 3 storage
temperatures between 10.5 and 14.7 °C for stage 3 storage times of greater than 59 hours.

The results for the three nodes with average responses of 0.47 to 0.52 illustrate that there

are different ways in which high growth can occur. Therefore, these results illustrate that the

220



Temp3i<14 7019

Time3<58.5955 Time3<18.8994
Time1<F1.6075 Temp3d 72
| P1<1P.1172 Temp1< 62
|
0.30920 Time3< <5gLi&MW 0.10230 0.46920 0.08742 0.52350
0.00757 0.06942 0.45480

0.02356 0.21610

Temp = Storage Temperature Time = Storage Time LP = Lag Period
Output = Mean Log Growth in Ground Beef Servings

Figure 7-7. The Regression Tree for the Growth Estimation Part for the Variability Only
Analysis.

regression tree is able to reflect complex interactions among the input values. These interactions
occur because of nonlinear responses of growth rates to different combinations of time and
temperature for different stages. Furthermore, because growth rates are small for small
temperatures and/or short storage times, there are practical thresholds below which growth is
comparatively insignificant. Thus, the results of CART analysis provide insight into the possible
existence of such nonlinearities and thresholds.

The largest mean values of the response are associated with specific combinations of
stage 3 storage time and temperature and are also influenced by the stage 1 storage time and
temperature. Thus, these four inputs collectively appear to comprise the most important group of
inputs. Other inputs, such as lag period at stages 1 and 3 (LP; and LP3), were selected in the
bottom left-most nodes of the tree. However, these inputs discriminate among mean responses

0f 0.007 to 0.31, which are considerable smaller than those in the range of 0.47 to 0.52 described
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above. Thus, these latter two inputs are not as important as the first four. The response is likely
to be insensitive to inputs that were not selected in the tree.

In order to further explore the sensitivity of the response to different inputs, regression
analysis was performed for data partitioned based upon a stage 3 storage temperature of 14.7 °C.
The regression analysis results are summarized in Table 7-6.

In Table 7-6, the inputs are ranked based on the magnitude of standardized regression
coefficients. Rankings are presented for statistically significant inputs with Pr>F less than 0.05.
Based upon the F values, storage temperature, lag period, and generation time at stage 2 when
the storage time at stage 3 is less than 14.7 °C are not statistically significant. When the storage
time at stage 3 is greater than or equal to 14.7 °C, storage temperature and storage time at stage
2, lag period and generation time at stages 1 and 2, and storage temperature at stage3 are not
statistically significant.

Based upon the magnitude of the coefficients for the statistically significant inputs when
the storage temperature at stage 3 is less than 14.7 °C, the storage temperature at stage 1, the
storage time at stage 3, the storage temperature at stage 3, and the storage time at stage 1 are the
top four important inputs. In order to evaluate the robustness of the estimated rankings, the 95
percent confidence intervals are estimated for coefficients. Estimated confidence intervals for
regression coefficients indicate that the rankings for the storage temperature at stage 1 is robust,
because the confidence interval for this input does not overlap with the confidence intervals of
the worst ranked inputs. The ranks for the other top three inputs are not robust. The confidence
intervals for the second and third inputs and for the third and fourth inputs overlap indicating that
they may be of comparable importance.

When the storage temperature at stage 3 is greater than or equal to 14.7 °C, the storage
time at stage 3, the storage temperature at stage 1, the lag period and the generation time at stage
3 are top four important inputs. The 95 percent confidence intervals are estimated for statistically
significant coefficients to evaluate the robustness of rankings. Estimated confidence intervals for
regression coefficients indicate that the rankings for the top input is robust, because the
confidence intervals for this input and the second ranked input do not overlap. The inputs ranked
second to fourth do not have robust rankings, because their confidence intervals overlap. Hence,

these inputs are of comparable importance.
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Table 7-6. Regression Analysis Results for the Growth Estimation Part for Variability Only
Analysis (R* = 0.45 for the first dataset and R* = 0.72 for the second dataset)

Variable | Coefficient | 957 CI® | Fvalue | Pr>F | Rank
Storage Temperature, Stage 3 <14.7°C
Storage Temperature, 0.42 (0.41,043) | 8200 | <0.0001 | 1
Stage 1
Storage Temperature,
Stage 2 0.01 (-0.01,0.03) 1 0.2 ---
Storage Temperature, 0.34 (0.33,035) | 3,400 | <0.0001 | 3
Stage 3
Storage Time, Stage 1 0.325 (0.32,0.33) 12,400 | <0.0001 4
Storage Time, Stage 2 0.01 (0.0,0.02) 5 0.002 9
Storage Time, Stage 3 0.35 (0.347,0.353) | 14,150 | <0.0001 2
Maximum Density 0.01 (0.004,0.016) 10 <0.0001 9
Lag Period, Stage 1 -0.02 (-0.03,-0.01) 20 <0.0001 8
Lag Period, Stage 2 -0.004 (-0.013,0.005) 1 0.2 -—-
Lag Period, Stage 3 -0.03 (-0.04,-0.02) 47 <0.0001 7
Generation Time, Stage 1 0.11 (0.10,0.12) 540 <0.0001 5
Generation Time, Stage 2 0.002 (-0.009,0.012) 0.1 0.8 ---
Generation Time, Stage 3 0.06 (0.05,0.07) 134 <0.0001 6
Storage Temperature, Stage 3 >=14.7°C
Storage Temperature, 0.19 0.16022) | 132 | <0.0001 | 2
Stage 1
Storage Temperature, 0.01 (:0.03,005) | 02 07 | -
Stage 2
Storage Temperature, 0014 | (-0.032,0.06) | 0.4 06 | -
Stage 3
Storage Time, Stage | 0.12 (0.10,0.14) 137 <0.0001 5
Storage Time, Stage 2 -0.016 (-0.036,0.005) 2 0.1 -—-
Storage Time, Stage 3 0.77 (0.75,0.79) 5,300 <0.0001 1
Maximum Density 0.09 (0.07,0.11) 73 <0.0001 6
Lag Period, Stage 1 0 (-0.03,0.03) 0 0.9 —
Lag Period, Stage 2 -0.003 (-0.04,0.03) 0 0.9 -—-
Lag Period, Stage 3 -0.136 (-0.17,-0.11) 71 <0.0001 3
Generation Time, Stage 1 0.03 (0.0,0.06) 3 0.06 -—-
Generation Time, Stage 2 0.008 (-0.031,0.046) 0.2 0.7 -—-
Generation Time, Stage 3 -0.13 (-0.17,-0.09) 40 <0.0001 4

(a) CI = Confidence Interval for the coefficient.
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Based upon the results from both CART and the complementary regression analysis, a
judgment was made that the most important inputs are ranked in the following order, starting
with the most important: (1) stage 3 storage temperature; (2) stage 3 storage time; (3) stage
Istorage temperature; and (4) stage 1 storage time. The regression results confirmed that the
stage | storage temperature and time were important inputs, conditional on specific ranges of the
stage 3 storage temperature.

The amount of contribution of each input to the reduction of the total deviance is
considered as an alternative sensitivity index. The dataset for the variability only analysis in the
growth estimation part has a total deviance of 807. If no condition is considered for the number
of nodes, the regression tree can capture 84 percent of the deviance (i.e., 677.3). Table 7-7
summarizes the contribution of each input to the reduction of total deviance. Eight inputs were
selected in the regression tree. These inputs include storage times at stages 1 and 3, storage
temperatures at stages 1 and 3, maximum density, lag period at stage 3, and generation time at
stage 3. Table 7-7 indicates that there were 7 levels in the regression tree. Except for the first
level of the tree, there are multiple branches at a given level. Therefore, an input may appear
several times under different branches of a given level. Each such appearance is denoted with a
numerical entry in this table. Storage temperature at stage 3 was selected in the first split of the
tree. Dividing the dataset based on the condition provided for the storage temperature at stage 3
in the first splitting node reduced the total deviance by approximately 20 percent. Storage time at
stage 3 was selected twice in the second level of the tree. Selection of storage time at stage 3 in
the second level led to approximately 20 percent reduction in the total deviance. At the seventh
level of the tree, three inputs were selected. Storage time at stage 1 was selected twice, while
storage time at stage 3 and lag period at stage 1 were selected once. Selection of these inputs at
this level leaded to approximately 0.7, 3.5, and 1.0 percent reduction in the total deviance,
respectively.

For each input in Table 7-7 the percent of contribution to the total reduction in the
deviance is identified. These contributions vary between 0.5 and 36.5 percent. Selected inputs in
the regression tree are ranked based on their contribution to the total deviance reduction. The
ranking indicates that storage temperature at stage 3, storage time at stage 3, and storage time at

stage 1 were selected as the top three inputs to the model. Based on the rankings the input
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Table 7-7. Reduction in Deviance Associated with Selected Inputs in the Regression Tree
Generated in the Growth Estimation Part for the Variability Only Analysis

Selected Inputs in the Regression Tree @)
Level of the Tree 1= T Time, | Temp; | Temps | MD | LPy | LP; | GT,
1 Level 163.3
nd 44.1
2™ Level 118.7
rd 73
3" Level 39.7 13.7 83.6
4™ Level 98 | 316 32 | 323 ;2
5% Level 14 7.0 13.8 2.9
6.3
6" Level ;? 28.0 7.9
h 16.7
7" Level 20 3.6 5.6
Sum 78.8 44.1 31.6 | 246.9 3.2 52.7 20.1 18.8
Percent of
Contribution @ | 116 33.2 4.7 36.5 0.5 7.8 3.0 2.8
Rank 3 2 5 1 8 4 6 7

(1) Time = Storage Time, Temp = Storage Temperature, MD = Maximum Density, LP = Lag period, and GT =
Generation Time. Subscript numbers indicate corresponding stage of the growth process.
(2) Total deviance of the dataset is 807. The amount of deviance captured by the regression tree is 677.2.

selected at the first splitting node has the highest contribution to reduction of the total deviance.
Moreover, except the input selected in the first splitting node, the greater the number of times
each input is selected in the tree, the higher is the corresponding rank.

Rankings based on the input contribution to the reduction of the total deviance suggest
four groups of inputs. The first group, including storage temperature and storage time at stage 3,
represents the most important inputs with percentages of contribution to reduction in total
deviance clearly higher than the other inputs. The second group represents inputs with medium
importance, including storage time and lag period at stage 1. The group of inputs with low
importance includes maximum density, generation time at stage 3, lag period at stage 3, and
storage temperature at stage 1. There are five inputs in the group of inputs with no importance
including inputs associated with the second stage of the growth process and generation time at

stage 1.

225



Temp3~|:1 3.9875

Time3<76.4823 Time3<22 9683

GT1<1.8047 GT3<5166657

Ti < 99 Time1<70.4439

0.5510000.117600

0.1084000.578300 <28 5387 Te < 71
Ti < 56 0.0933300.530200

0.008785

0.1064000.438800
0.0267000.275600

Temp = Storage Temperature; Time = Storage Time; LP = Lag Period
GT = Generation Time; Output = Mean Log Growth in Ground Beef Servings

Figure 7-8. The Regression Tree for the Growth Estimation Part for One-Dimensional
Variability and Uncertainty Analysis.

The rankings based on the contribution of inputs to the reduction in the total deviance are
compared with those from visualization of the regression tree and complementary analyses in
Section 7.3.1.3.

7.3.1.2 One-Dimensional Simulation of Variability and Uncertainty

This section presents the results of CART analysis applied to a one-dimensional
probabilistic simulation in which variability and uncertainty are co-mingled, based upon the case
study scenario described in Section 3.3.3. The results of CART analysis are depicted in Figure 7-
8 in the form of a regression tree.

In CART analysis for this part the maximum number of leaves for the tree was specified
as 11. Hence, in Figure 7-8 there are 11 mean responses presented in the regression tree. This
number of nodes account for almost 85 percent of the variability in the output that can be
captured if no restriction in the number of nodes was considered.

The results of the CART analysis for the co-mingled variability and uncertainty analysis

are qualitatively similar to those for the variability only analysis of the previous section.
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Specifically, the storage temperature at stage 3 is selected as the most important input. In this
case a temperature of 14.0 °C is the basis of the split, compared to 14.7 °C in the previous case.
The storage time at stage 3 is selected as the basis for the next split in both of the main branches
of the tree. A high mean response of 0.53 is associated with the right most leaf based upon high
values of both the temperature and storage time in stage 3, irrespective of the values of any other
inputs. Another high mean response of 0.58 is associated with a stage 1 storage time of greater
than 16 hours for a short stage 1 generation time and comparably low values of stage 3 storage
time and temperature. Another large mean response of 0.55 is associated with large values of
stage 3 storage time combined with the lower range of partitions with respect to stage 3
generation time. Thus, there are a variety of interactions among different inputs that can give
rise to large growth. These interactions are influenced by nonlinearities and thresholds, as
described in the previous section.

The CART results imply that the storage temperature at stage 3 is the most sensitive
input, since it was selected as the basis for the first split in the tree. The storage time in stage 3 is
deemed to be the second most important input, since it was selected in both of the second level
nodes of the tree. Other inputs, such as the storage time and temperature at stage 1, the lag
period in stage 3, and the generation time in stages 1 and 3, were selected in some of the lower
nodes of the tree, especially on the left side of the tree. The left-most leaves correspond to
comparably low values of stage 3 storage time and temperature. Thus, if these latter two
variables have comparably low values, it is possible to have high growth depending on values of
the other selected inputs.

In order to gain further insight regarding the sensitivity of the response to inputs other
than the stage 3 storage time and temperature, regression analysis was conducted for two
partitions of the data based upon a stage 3 storage temperature of 14 °C. These results are
summarized in Table 7-8.

For a stage 3 storage temperature of less than 14 °C, the four most sensitive inputs are the
stage 3 storage time, stage 1 storage time, stage 1 storage temperature, and stage 3 storage
temperature. The confidence intervals of the first three inputs overlap. Thus, these inputs are of
comparable importance. Other inputs for which there is a minor but statistically significant
sensitivity include the generation time at stage 1 and lag periods at stages 3 and 1. Statistically

insignificant inputs include the stage 2 storage time, lag period, and generation time.
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Table 7-8. Regression Analysis Results for the Growth Estimation Part for One-Dimensional
Variability and Uncertainty Analysis (R* = 0.48 for the first dataset and R? = 0.66 for the second

dataset)
Variable Coefficient 95% CT® v F Pr>F | Rank
alue
Storage Temperature, Stage 3 <14°¢

Storage Temperature, 0.38 (037,039) | 7.470 | <0.0001 | 3
Stage 1

Storage Temperature, 0.012 0.002,0022) | 5 | 0002 | 10
Stage 2

Storage Temperature, 0.25 (024,026) | 1,935 | <0.0001 | 4
Stage 3

Storage Time, Stage 1 0.386 (0.38,0.39) 17,620 | <0.0001 2
Storage Time, Stage 2 0.004 (-0.002,0.01) 2 0.08 -—-
Storage Time, Stage 3 0.394 (0.388,0.399) | 18,372 | <0.0001 1
Maximum Density 0.013 (0.008,0.02) 21 <0.0001 9
Lag Period, Stage 1 -0.027 (-0.035, -0.02) 52 <0.0001 7
Lag Period, Stage 2 -0.002 (-0.011,0.006) 0.3 0.6 -
Lag Period, Stage 3 -0.032 (-0.039,-0.024) 63 <0.0001 6
Generation Time, Stage 1 0.077 (0.068,0.085) 302 | <0.0001 5
Generation Time, Stage 2 0.006 (-0.005,0.02) 1 0.2 -—-
Generation Time, Stage 3 0.026 (0.016,0.037) 26 <0.0001 8

Storage Temperature, Stage 3 >=14°C

Storage Temperature, 0.13 (0.10,0.16) 77 | <0.0001 | 3
Stage 1

Storage Temperature, 20.001 (-0.04,0.03) | 02 0.7
Stage 2

Storage Temperature, 0.119 (-0.162,-0.076) | 30 | <0.0001 | 4
Stage 3

Storage Time, Stage 1 0.15 (0.13,0.17) 240 | <0.0001 2
Storage Time, Stage 2 -0.002 (-0.02,0.02) 0.2 0.7 -—-
Storage Time, Stage 3 0.72 (0.70,0.74) 5,550 | <0.0001 1
Maximum Density 0.09 (0.07,0.11) 90 <0.0001 7
Lag Period, Stage 1 -0.016 (-0.04,0.009) 2 0.08 -—-
Lag Period, Stage 2 0.006 (-0.024,0.035) 0.1 0.8 ---
Lag Period, Stage 3 -0.108 (-0.142,-0.075) 41 <0.0001 5
Generation Time, Stage 1 0.005 (-0.025,0.034) 0.1 0.8 ---
Generation Time, Stage 2 0.008 (-0.028,0.044) 0.2 0.7 -—-
Generation Time, Stage 3 0.094 (0.05,0.14) 14 0.005 6

(a) CI = Confidence Interval for the coefficient
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The results for the case of stage 3 storage temperature of greater than 14 °C are
qualitatively similar, although there are some quantitative differences. For example, in this case,
the rankings assigned to the first and second most important inputs are considered to be
substantially different, since the confidence intervals of the standardized regression coefficients
for these two inputs do not overlap.

Taking into account both the CART and the regression results, a judgment is made that
the top four inputs are as follows, in decreasing order of importance: (1) stage 3 storage
temperature; (2) stage 3 storage time; (3) stage 1 storage temperature; and (4) stage 1 storage
time. The first two are identified and ranked based upon the results of the regression tree. The
latter two are implied by the results of the regression tree, but their importance was more clearly
identified based upon the complementary regression analyses. Although some other inputs were
identified as statistically significant in the regression analysis, their regression coefficients were
substantially smaller than those of the storage time and temperature at stage 1. Therefore, they
are judged to be of minor importance compared to the four inputs listed here.

Similar to the approach presented in Section 7.3.1.1, the amount of contribution of each
input to the total reduction of the dataset deviance is considered as a sensitivity analysis index.
The dataset provided for the commingled analysis of variability and uncertainty in the growth
estimation part has a total deviance of 1008. If no condition is considered for the number of
nodes in the tree, approximately 84 percent (i.e., 845.2) is addressed by the fitted regression tree.
Nine inputs are selected in the regression tree. These inputs include storage times at stages 1 and
3, storage temperatures at stage 1 and 3, lap periods at stages 1 and 3, generation time at stages 1
and 3, and maximum density.

Table 7-9 summarizes the amount of reduction in the total deviance associated with
selection of these inputs in the regression tree. This table indicates that there were 8 levels in the
regression tree. There were multiple branches at a given level of the tree other than the first level.
Hence, each input could appear several times in each level. Therefore, corresponding to each
appearance of the input in the specific level of the tree, there is an associated numerical value
representing the amount of reduction in the total deviance. The largest individual reduction in the
total deviance is associated with the selection of storage temperature at stage 3 at the first
splitting node. The total reduction in the deviance associated with each input is based upon the

cumulative effect of repeated splits at lower levels of the regression tree.
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Table 7-9. Reduction in Deviance Associated with Selected Inputs in the Regression Tree
Generated in the Growth Estimation Part for the Variability Only Analysis

Level of the Selected Inputs in the Regression Tree )
Tree Time, Time; | Temp; | Temps MD LP, LP; GT; | GT;
1 Level 186.7
nd 64.9
2" Level 165.2
3" Level 13.3 17.6 53.6 | 63.2
th 31.9 12.0 39
47 Level 49.6 19.4 6.1 10.9
5% Level 335 15.1 3.6
’ 4.8 ’
6™ Level 8.7 36.0 7.6 4.0
7™ Level 16.6 ‘2"2 3.6 4.3
8™ Level 2.2
Sum 109 317.9 37.1 204.3 6.1 11.9 19.9 57.6 | 81.6
Percent of
Contribution 12.9 37.6 4.4 24.2 0.7 1.4 24 6.8 9.7
2)
Rank 3 1 6 2 9 8 7 5 4

(1) Time = Storage Time, Temp = Storage Temperature, MD = Maximum Density, LP = Lag period, and GT =
Generation Time. Subscript numbers indicate corresponding stage of the growth process.
(2) Total deviance of the dataset is 1008. The amount of deviance captured by the regression tree is 845.4.

The rankings in Table 7-9 are based on the amount of contribution of each input to the
total reduction of the dataset deviance. The rankings indicate that storage time at stage 3 is the
most important input, although this input is not selected at the first splitting node. Storage
temperature at stage 3 is selected at the first splitting node and has a rank of second. The
rankings indicate that there are four groups of inputs. The first group, corresponding to the most
important inputs, includes storage time and storage temperature at stage 3. These inputs have
clearly a higher contribution to the reduction in the total deviance. The second group includes
three inputs with medium importance, including generation time at stages 1 and 3 and storage
time at stage 1. The third group represents the inputs with low importance including maximum
density, lag periods at stages 1 and 3, and storage temperature at stage 1. Finally there are four
inputs that are not selected in the regression tree representing inputs with no importance. Inputs

associated with the second stage of the growth process include in this group.
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Table 7-10. Summary of the CART Analysis Results Based on Variability Only and Co-mingled
Variability and Uncertainty Analyses

Ranks ©
Variable Analysis 17 Analysis 3?
Visual Deviance Visual Deviance
Storage Temperature, Stage | 3@ 5 3@ 6
Storage Temperature, Stage 2 NSO® NS©@ NSO® NS®
Storage Temperature, Stage 3 1 1 1 2
Storage Time, Stage 1 4@ 3 49 3
Storage Time, Stage 2 NS@® NS® NS@® NS®
Storage Time, Stage 3 2 2 2 1
Maximum Density 9@ 8 9@ 9
Lag Period, Stage 1 5@ 4 g 8
Lag Period, Stage 2 NSO® NS©@ NS@® NS©
Lag Period, Stage 3 g 6 79 7
Generation Time, Stage 1 7@ NS® 5@ 5
Generation Time, Stage 2 NS@® NS® NS@® NS®
Generation Time, Stage 3 6 7 6" 4

(1) Ranks based on the variability only analysis.

(2) Ranks based on the one-dimensional co-mingled variability and uncertainty analysis.

(3) NS = Not statistically significant.

(4) Ranked based upon the complementary regression analysis.

(5) Rankings are based on two sensitivity indices: (1) visual index with complementary analysis; and (2) deviance
index

The rankings based on the contribution of inputs to the reduction in the total deviance are
compared with those from visualization of the regression tree and complementary analyses in
Section 7.3.1.3.

7.3.1.3 Summary and Comparison of the Results of CART Analysis in the Growth
Estimation Part

In this section, the results of the sensitivity analyses with CART applied to the growth
estimation part based upon two different probabilistic analysis approaches are compared. The
two approaches include simulation of only variability and simulation of both variability and
uncertainty in a single dimension. These two approaches were described in the previous two
sections. A summary of the results of the sensitivity analysis for each approach is given in Table
7-10. For each probabilistic approach results are presented based upon two sensitivity indices
including visualization of the regression tree with using complementary analyses and the
measure of sensitivity considering the amount of contribution of each input to the reduction of

the total deviance.
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The results from both approaches were comparable. The rankings for the top inputs were
the same, and the same set of inputs was identified as statistically insignificant. Storage
temperature and storage time at stage 3 were identified as the top two important inputs in both of
the probabilistic approaches and with alternative sensitivity indices. Thus, the results in this
instance are unambiguous regardless of which probabilistic simulation approach is employed.
Moreover, two sensitivity indices presented in this section for ranking inputs approximately
provide the same ranking with respect to the identification of the insignificant inputs and the
most important inputs. Rankings based on visualization of the regression tree assume that the
input selected in the first splitting node is the most important input. A case study provided in the
growth estimation part for the one-dimensional co-mingled analysis of variability and
uncertainty indicated that this assumption is not always valid. For example, it is possible that an
input selected repeatedly in the lower levels of the tree could have a larger cumulative
contribution to reduction in deviance compared to the input selected for the first split.

The sensitivity index based upon the contribution of each input to total reduction in
deviance can give slightly different insights than a direct inspection of the tree. For example,
although storage temperature at stage 3 appears at the first split in the tree, this input is not
associated with the largest total reduction in deviance. The input that is the basis for the first split
in the tree is typically associated with the largest single incremental reduction in deviance, but
not necessarily the largest cumulative reduction in the deviance. Thus, the first variable selected
in the tree is often an important input, but may not necessarily be the most important input in
every case. It appears to be the case that the input selected for the first split in the tree will
typically be an important input, even if it is not the most important input. Since these findings are
based upon only two case studies, additional evaluations should be performed in order to
recommend the best sensitivity index for CART. Moreover, rankings obtained based on other
sensitivity analysis methods, such as regression analysis and ANOVA, can be compared with

those provided based on CART. These comparisons are presented in Chapter 11.

7.3.2 Application of CART to the Cooking Effect Part

As explained in Section 3.4.3.2, inputs for the cooking effect part inputs include cooking
temperature, precooking treatment, and cooking place. Distributions for these inputs are
summarized in Table 3-13. The output in the cooking effect part is the mean log reduction in the

number of E. coli organisms. For the cooking effect part there is a one-dimensional variability
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Figure 7-9. The Regression Tree for the Cooking Effect Part.

simulation with 65,000 iterations, as explained in Section 3.3.3. The results of CART analysis
are depicted in Figure 7-9 in the form of a regression tree.

Figure 7-9 illustrates that the cooking temperature is the most important input. This is the
first input selected. Furthermore, the proportional reduction in deviance is largest for the first
partitioning of the database than for any of the subsequent partitions under the two main
branches. The cooking temperature appears repeatedly throughout many of the lower nodes of
the tree, which is also indicative of the importance of this input. The precooking treatment
appears several times in the tree, suggesting that this input is of secondary importance. There are
nine levels of precooking treatment. The partitions with respect to this input typically separate
the first few such treatments from the remainder. For example, in the second level of nodes on

the right side of the tree, which is conditional on a cooking temperature of greater than 68 °C,
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Figure 7-10. The Regression Tree for the Serving Contamination Part in Summer.

treatments a and b are partitioned into one data set and the remaining treatments ¢ through 7 are
partitioned into another data set.

The mean log reduction in E. coli organisms is greatest for the right-most leaf of the tree,
corresponding to an average reduction of a factor of 12.14. This average reduction is based upon
a cooking temperature of greater than 85 °C and cooking pretreatments of ¢ through i. In
contrast, the lowest reduction is based upon a cooking temperature of less than 58 °C irrespective
of the type of pretreatment, as indicated by the left-most leaf of the tree. For cooking
temperatures between 58 and 68 °C, the average log reduction ranges from 2.60 to 4.62
depending upon the cooking pretreatment. Interactions between the cooking temperature and the
pretreatment for cooking temperatures greater than 68 °C are lead to average reductions ranging
from 3.64 to 12.14. The larger average reductions are typically associated with higher cooking
temperatures and with pretreatments other than a and b.

Overall, it is clear that the cooking temperature is the most important input but that there

is also an important interaction between the cooking temperature and the cooking pretreatment.
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Figure 7-11. The Regression Tree for the Serving Contamination Part in Winter.

The partitioning of the data with respect to temperature suggests that there could be a
temperature threshold below which there is little reduction in E. coli organisms because of
cooking. In particular, for temperatures less than 58 °C the log reduction in E. coli organisms
was substantially smaller than for any other temperature range. The interactions between
pretreatment and temperature for higher temperatures suggests that both of these inputs are of

importance with respect to obtaining the highest possible reduction.

7.3.3 Application of CART to the Serving Contamination Part

As explained in section 3.4.3.1, inputs to the serving contamination part include the
ground beef consumption type, serving size, eating location, consumer age, and grinder
contamination. Distributions for these inputs are summarized in Table 3-12. The output in this
part is the mean serving contamination prior to cooking. The case scenario in Section 3.3.3
focused on the serving contamination during high and low prevalence seasons. The results of

CART analysis are depicted in Figures 7-10 and 7-11 for high and low prevalence seasons,
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respectively, in the form of regression trees. No restriction was specified for the number of nodes
in the regression tree. Hence, the mean responses presented in Figures 7-10 and 7-11 account for
all of the variability in the output that could be captured by partitioning the dataset.

For the summer session, the first node in the regression tree subdivides the dataset into
two divisions as follows: (1) grinder contamination less than —2.45 logs; and (2) grinder
contamination greater than or equal to —2.45 logs. Data are further subdivided in lower levels
based on values of the grinder contamination and serving size. The highest mean serving
contamination of 1.5 as shown in the right-most leaf corresponds with high values of grinder
contamination and large serving size.

The results in Figure 7-10 indicate that the mean serving contamination in summer is
most sensitive to the grinder contamination, because this input is placed in the first node of the
regression tree. Furthermore, there is large reduction in deviance for the first node as depicted by
the long vertical distance of the first branches. Hence, the grinder contamination is ranked first.
The serving size is considered as the second important input, because it is placed in lower nodes
of the tree. The selection of just grinder contamination and serving size in the tree indicates that
other inputs are not important based on the CART analysis.

For the winter session as shown in Figure 7-11, the first node in the regression tree
subdivides the dataset into two divisions as follows: (1) grinder contamination less than —2.2
logs; and (2) grinder contamination greater than or equal to —2.2 logs. For the latter case, the
mean serving contamination is 1.6 E. coli organisms. When the grinder contamination is less
than —2.2 logs, the dataset is subdivided twice based on the grinder contamination and the
serving size.

The results in Figure 7-11 indicate that the mean serving contamination in winter is most
sensitive to the grinder contamination, because this input is placed in the first node of the
regression tree. Furthermore, partitioning the data based upon this input leads to a large reduction
in deviance, as illustrated by the comparably long vertical distance of the first level of branches
compared to the lower levels of branches. Hence, the grinder contamination is ranked first. The
serving size is considered as the second important input, because it is placed in lower nodes of
the tree. Selection of just grinder contamination and serving size in the tree indicates that other

inputs are not important based on the CART analysis.
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The results for serving contamination were qualitatively similar for both the summer and
winter seasons. In both cases, the grinder contamination is clear the most important input. The
serving size is of secondary importance. Other inputs, such as eating location and consumer age,
were not selected in the tree and therefore are comparably less important. Therefore, the
findings regarding key sensitive inputs are robust with respect to season.

7.4  Evaluation of CART as a Sensitivity Analysis Method Based on Applications to the
E. coli Model

In this chapter CART was applied to specific modules and parts of the E. coli model in
order to identify the most important factors influencing the response of selected outputs. CART
is a powerful method that is able to address both qualitative and quantitative inputs without any
pre-processing of the dataset. Moreover, CART does not assume a specific functional relation
between the model inputs and the model response. Hence, for models that have nonlinearity or
thresholds application of CART does not force any under-estimation or over-estimation
regarding the sensitivity of the output to each input.

CART does not have a specific sensitivity index. The ranking of the inputs in CART is
typically based on visualization of the regression tree and judgment. For example, the regression
trees indicate the proportional reduction in deviance associated with each node based upon the
vertical distance of the branches. In some cases, the application of other sensitivity analysis
methods as a complement to CART is needed to gain insight regarding the rank of each input.
Because CART does not produce a sensitivity index similar to those of methods such as
ANOVA or regression analysis, it is difficult to automate CART for application to many
iterations. For example, when variability is simulated separately for multiple realizations of
uncertainty in a two-dimensional probabilistic framework, it is difficult to summarize and
compare the results of the CART analysis for each of the uncertainty realizations. Thus, the lack
of a quantitative sensitivity index is a practical limitation that makes it difficult to automate
CART for use with two-dimensional probabilistic analysis.

As an alternative sensitivity index, the contribution of each input to the reduction of total
deviance of the dataset was presented in two case studies in the growth estimation part. This
approach provided approximately the same ranking in comparison with the visualization of the
regression tree incorporating the results of the complementary sensitivity analysis methods. In

one case, the top ranked input as identified by inspection of the tree was fund to have the second
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largest contribution to reduction in total deviance, but was also identified as substantially more
important than the next ranked input. However, in order to further explore the validity of this
sensitivity index more case studies should be performed to compare and evaluate rankings based
on these approaches.

The software used for CART analysis does not directly provide the amount of
contribution of each input to the reduction of the total deviance. Hence, the output provided by
the software should be analyzed in order to estimate this sensitivity index. Evaluation of this
sensitivity index based on the output file provided by the software is time consuming and
tedious. Therefore, only two case studies were provided for application of this alternative
sensitivity index. For further evaluation of this approach, a code should be developed to
automate the process of ranking the inputs based on this alternative sensitivity index.

As noted in specific examples throughout this chapter, CART is able to respond in an
intuitively appropriate manner to nonlinearities, thresholds, and interactions among inputs. For
example, with respect to the cooking effect, it is clear from the CART analysis that low cooking
temperatures do not provide a substantial reduction in E. coli organisms. However, for high
temperatures, the reduction is substantial but depends also on the type of pretreatment used.
Thus, this is an example in which the model responds in a nonlinear manner, has an apparent
threshold, and has an important interaction between two inputs. This type of insight would be
difficult to obtain with some of the other sensitivity analysis methods, such as linear standardized
regression analysis.

Thus, although CART has limitations regarding development of a clear rank ordering of
inputs, particularly for inputs other than the first or second most important ones, CART does
provide critical insights regarding the combination of conditions that lead to either the highest or
the lowest exposure (and, hence, risk). Opportunities to extend the utility of CART via

development of a new sensitivity index should be explored.
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8 APPLICATION OF SCATTER PLOTS TO THE E. COLI O157:H7 MODEL

The objective of this chapter is to present the results of sensitivity analysis of the E. coli
model based upon scatter plots. The details of the methodology for scatter plots analysis are
provided in Section 2.3.1. Scatter plots are used to assess possible trends in the data and
potentially complex dependencies between inputs and the outputs of interest. Scatter plots for
different modules and parts of the E. coli model are provided for selected important inputs that
were identified based on other sensitivity analysis methods.

This chapter contains four sections. Section 8-1 presents scatter plots for the production
module. Section 8-2 presents scatter plots for the slaughter module and Section 8-3 presents the
scatter plots for the preparation module. In Section 8-4, the method of using scatter plots for the
sensitivity analysis is evaluated and the advantages, disadvantages and key criteria for
application of this method are summarized.

8.1 Application of Scatter Plots to Production Module

In the production module scatter plots are provided for four parts, including the feedlot
prevalence, within feedlot prevalence, breeding herd prevalence, and within breeding herd
prevalence. The scatter plots are presented for each of these four parts in Sections 8.1.1 to 8.1.4,

respectively.

8.1.1 Feedlot Prevalence Part

The feedlot prevalence part in the production module is explained in Section 3.2.1 and
inputs for this part are given in Table 3-9. The output of interest is the median feedlot
prevalence. There is a one-dimensional uncertainty simulation in this part as discussed in Section
3.3.1. Based upon the results of other sensitivity analysis methods, such as ANOVA and
regression analysis, the study and herd sensitivity were identified as the two most important
inputs. The study is a qualitative variable. Thus, for purposes of developing a scatter plot, the
median feedlot prevalence was plotted versus herd sensitivity for each of the four studies. The

result is shown in Figure 8-1. The number of data points in the figure is 10,000.

239



Humber of Data Points: 10,000

=k}
S 80% -
=%}
™
i oDamatz Hancock 1997
a B0% o Hancock 1998
E [N OO0 O T OO
% 40% A ASmith 1999
e Elder 2000
¥
= 0%
o
=

0% : . : .

0 0.2 0.4 0.6 0.8 1

Herd Sensifivity

Figure 8-1. Scatter Plot for the Median Feedlot Prevalence Versus the Herd Sensitivity for
Dargatz Hancock 1997, Hancock 1998, Smith 1999, and Elder 2000.

Figure 8-1 depicts that for three of the studies (Hancock 1998, Smith 1999, and Elder
2000) variation in the herd sensitivity does not have any effect on the median feedlot prevalence.
However, for the Dargatz and Hancock (1997) study, an increase in the herd sensitivity leads to a
decrease in the output above an apparent threshold. The definition of the herd sensitivity in
Section 3.2.1 indicates that with an increase in the herd sensitivity the feedlot prevalence should
decrease. However, the distribution considered for the herd sensitivity depends on the number of
samples collected within herds and the detectable prevalence of infected animals in the infected
herds. The median feedlot prevalence depends on the number of feedlot tested and number of
positive feedlots. The information regarding each study in Table 3-1 indicates that the Dargatz
and Hancock (1997) study has the highest number of tested cattle and lowest ratio of positive
cattle to tested cattle among other studies. Moreover, the Dargatz and Hancock (1997) study has
the highest number of tested feedlots. Thus, the study characteristics regarding the number of
samples affected the way each study responds to the variation of the herd sensitivity.

The scatter plot in Figure 8-1 implies that the choice of study has a comparable impact on
the median feedlot prevalence compared to the range of values for the herd sensitivity. For

example, for a herd sensitivity of 0.5, the output varies from approximately 49 to 97 percent
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Figure 8-2. Scatter Plot for the Average Within Feedlots Prevalence Versus the Test Sensitivity
for ‘0.1g SMACct’ and ‘10g IMS’ Testing Methods in Summer.

depending upon the choice of study, or a range of approximately 48 percentage points. In
contrast, for a given choice of study, such as Dargatz and Hancock (1997), the output varies
between approximately 60 and 100 percent, or a range of approximately 40 percentage points.
Thus, the typical range of variation in the median feedlot prevalence is comparable with respect
to values for the herd sensitivity as it is with respect to the choice of study. Moreover, there is an
interaction effect between the study and the herd sensitivity, because for some studies the herd
sensitivity does not have any effect, while for Dargatz and Hancock (1997) the response varies

based on different values of the herd sensitivity.

8.1.2 Within Feedlot Prevalence Part

The within feedlot prevalence part is described in Section 3.2.1 and its inputs are
summarized in Table 3-9. The output of interest is the average within feedlot prevalence in the
high and low prevalence seasons. The case study for this part is based upon a one-dimensional
simulation of uncertainty as discussed in Section 3.3.1. Based upon results with other sensitivity
analysis methods, the apparent within feedlot prevalence and the test sensitivity were identified
as the most important inputs and are the focus of analysis using scatter plots. Moreover, summer
was identified as the season with higher average within feedlot prevalence. Thus, the average

within feedlots prevalence for the summer season, which is the high prevalence season, is plotted
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versus test sensitivity in Figure 8-2 and versus the apparent within feedlots prevalence in Figure
8-3. Each figure includes 10,000 randomly simulated data points.

Figure 8-2 indicates that the average within feedlot prevalence is relatively insensitive to
test sensitivity for the “0.1 g SMA Cct” test method compared to the “10g IMS” method. In the
latter case, the test sensitivity ranges between approximately 0.7 and 1.0, corresponding to output
values ranging from 30 percent to more than 50 percent. The test sensitivity for the former
method is generally lower, with a range from approximately 0.3 to 0.9, with a corresponding
range of output values from as high as 10 percent to as low as three percent. For both methods,
an increase in the test sensitivity is associated with a decrease in the average within feedlot
prevalence.

The scatter plot in Figure 8-2 indicates that “10g IMS” testing method presents more
accuracy in testing cattle in feedlots. Test sensitivity for “10g IMS” testing method ranges
between almost 0.75 and 1.0, while for the “0.1g SMACct” testing method the test sensitivity
varies between 0.25 and 0.9, indicating lower accuracy of the method.

The generated values for apparent within feedlots prevalence depend on the
characteristics of the study such as number of samples within the infected feedlot. The scatter
plot in Figure 8-3 indicates that there is an approximate linear relation between the average
within feedlot prevalence and the apparent within feedlot prevalence. The parameters of the
distribution for the apparent within feedlot prevalence given in Table 3-9 vary for each study.
These parameters include the number of positive animals in a feedlot and the number of cattle
tested in positive feedlots. Thus, the range of generated values for the apparent within feedlot
prevalence varies for different study levels. This pattern is depicted in Figure 8-3 with
discontinuity in the range of generated values for the apparent within feedlot prevalence and

different slopes of the response in each range.

8.1.3 Breeding Herd Prevalence Part

The breeding herd prevalence part in the production module is explained in Section 3.2.1
and inputs for this part are given in Table 3-9. The output of interest is the median breeding herd
prevalence. There is a one-dimensional uncertainty simulation in this part as discussed in Section
3.3.1. Based upon the results of other sensitivity analysis methods, such as ANOVA and
regression analysis, study and herd sensitivity were identified as the two most important inputs.

Thus, for purposes of developing a scatter plot, the median breeding herd prevalence was
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Figure 8-3. Scatter Plot of the Average Within Feedlot Prevalence Versus the Apparent Within
Feedlot Prevalence in Summer.

plotted versus herd sensitivity for each of the seven studies. The result is shown in Figure 8-4.
The number of data points in the figure is 10,000.

Figure 8-4 depicts that for four of the studies (Sargeant 2000, Hancock 1998,
Hancock/CFSAN 2001, and Hancock 1997a) variation in the herd sensitivity does not have any
effect on the median breeding herd prevalence. However, for the Garber 1998 study, an increase
in the herd sensitivity leads to a decrease in the output. The definition of the herd sensitivity in
Section 3.2.1 indicates that with increase in the herd sensitivity the breeding herd prevalence
should decrease. However, the distribution considered for the herd sensitivity depends on the
number of samples collected within herds and the detectable prevalence of infected animals in
the infected herds and the median breeding herd prevalence depends on the number of herds
tested and number of positive herds. The information regarding each study in Table 3-3 indicates
that the Garber (1998) has the highest number of tested cattle and lowest ratio of positive cattle
to tested cattle among other studies. Moreover, Garber (1998) has the highest number of tested
herds. Thus, the study characteristics regarding the number of samples affected the way each

study responds to the variation of the herd sensitivity.
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Figure 8-4. Scatter Plot for the Median Breeding Herd Prevalence Versus the Herd Sensitivity
for Garber 1998, Sargeant 2000, Hancok/CFSAN 2001, Hancock 1997a, Hancock 1998, Lagreid
1998, and Hancock 1997b.

The scatter plot in Figure 8-4 implies that the choice of study has a comparable impact on
the median breeding herd prevalence compared to the range of values for the herd sensitivity.
For example, for a herd sensitivity of 0.6, the output varies from approximately 30 to 95 percent
depending upon the choice of study, or a range of approximately 65 percentage points. In
contrast, for a given choice of study, such as Garber (1998), the output varies between
approximately 25 and 70 percent, or a range of approximately 65 percentage points. Moreover,
there is an interaction effect between the study and the herd sensitivity, because for some studies
the herd sensitivity does not have any effect, while for Garber (1998) the response varies based

on different values of the herd sensitivity.

8.1.4 Within Breeding Herd Prevalence Part

The within breeding herd prevalence part is described in Section 3.2.1 and its inputs are
summarized in Table 3-9. The output of interest is the average within breeding herd prevalence
in the high and low prevalence seasons. The case study for this part is based upon a one-
dimensional simulation of uncertainty as discussed in Section 3.3.1. Based upon results with
other sensitivity analysis methods, the apparent within breeding herd prevalence and the test
sensitivity were identified as the most important inputs and are the focus of analysis using scatter

plots. Moreover, summer was identified as the season with higher average within breeding herd
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Figure 8-5. Scatter Plot for the Average Within Breeding Herd Prevalence Versus the Test
Sensitivity for 1g SMACct TSB, 0.1g SMACct, 0.1g SMAC, and 10g IMS Testing Methods in
Summer.

prevalence. Thus, the average within breeding herd prevalence for the summer season, which is
the high prevalence season, is plotted versus test sensitivity in Figure 8-5 and versus the apparent
within breeding herd prevalence in Figure 8-6. Each figure includes 10,000 randomly simulated
data points.

Figure 8-5 indicates that the average within breeding herd prevalence is relatively
insensitive to test sensitivity for the “0.1 g SMA Cct”, “10g IMS”, and “1g SMACct, TSB” test
methods compared to the “0.1g SMAC” method. In the latter case, the test sensitivity ranges
between approximately 0.05 and 0.025, corresponding to output values ranging from 10 percent
to 100 percent. The test sensitivity for the former methods is generally higher, with a range
from approximately 0.3 to 1.0, with a corresponding range of output values from as high as 18
percent to as low as three percent. For all methods, an increase in the test sensitivity is associated
with a decrease in the average within breeding herd prevalence.

The scatter plot in Figure 8-5 indicates that the “10g IMS” testing method presents more
accuracy in testing cattle in breeding herds. The test sensitivity for the “10g IMS” testing method
ranges between 0.75 and 1.0, while for the “0.1 g SMA Cct”, “0.1g SMAC”, and “1g SMACct”
testing methods the test sensitivity varies between 0.30 and 0.8, 0.05 and 0.25, and 0.30 and 0.8,

respectively, indicating lower accuracy of these methods.
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Figure 8-6. Scatter Plot for the Average Within Breeding Herds Prevalence Versus the Apparent
Within Breeding Herds Prevalence in Summer.

The scatter plot in Figure 8-6 indicates that there is an approximate linear relationship
between the average within breeding herd prevalence and the apparent within breeding herd
prevalence. The parameters of the distribution for the apparent within breeding herd prevalence
given in Table 3-9 vary for each study. These parameters include the number of positive animals
in a herd and the number of cattle tested in positive herds. Thus, the range of generated values
for the apparent within breeding herd prevalence varies for different study levels. This pattern is
depicted in Figure 8-6.

8.2  Application of Scatter Plots to the Slaughter Module

Section 3.2.2 explains the slaughter module in the E. coli model. Inputs to the slaughter
module are summarized in Table 3-10. The output of interest is the contamination in combo bins.
The slaughter module includes both variability and uncertainty simulations. For scatter plots in
the slaughter module a simulation of 650 variability and 100 uncertainty iterations was
performed as a case representing all the possible values of inputs including both variability and
uncertainty. The case study scenario for the slaughter module is focused upon steers and heifers

in the high prevalence season.
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Figure 8-7. Scatter Plot for the Combo Bin Contamination from Steers and Heifers Versus the
Chilling Effect in Summer.

Based upon results with other sensitivity analysis methods, chilling effect, number of
organisms, and Trim/Vacuum/Wash efficiency were identified as the most important inputs and
are the focus of analysis using scatter plots. In Figures 8-7 to 8-9 the scatter plots for chilling
effect, Trim/Vacuum/Wash efficiency, and number of organisms are depicted, respectively.

Figure 8-7 presents a scatter plot for combo bin contamination versus the chilling effect.
Values of the chilling effect between —4 logs and 4 logs are depicted in this figure. There are a
few data points with chilling effect of —5 logs representing cases with no contamination with E.
coli organisms. These points are not depicted in Figure 8-7. Based on the temperature during the
chilling process the number of E. coli organisms on carcasses might increase or decrease (FSIS,
2001). The scatter plot in Figure 8-7 depicts that there is a linear relationship between the combo
bin contamination and the chilling effect. Not all values from the simulation are shown. The
chilling effect ranges between —4 logs and 3 logs. The chilling effect, the combo bin
contamination varies between —3 logs and 4 logs. The 95 percent probability range of the chilling
effect is between —3.5 logs and 1.86 logs with a median value of 0.7 logs. The median combo bin

contamination is —1.2 logs.
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Figure 8-8 presents the scatter plots for the combo bin contamination versus the
Trim/Vacuum/Wash efficiency. For this scatter plot, the values in the X axis representing the
Trim/Vacuum/Wash efficiency are subdivided into three ranges: (1) TVW efficiency between
80% and 100%; (2) TVW efficiency 60% and 80%; and (3) TVW efficiency less than 60%.
Classifying the generated values for the TVW efficiency facilitates the inference from the scatter
plots. When there is a high efficiency in the decontamination step for contaminated carcasses
using Trim/Vacuum/wash process (i.e., efficiency more than 80 percent), number of E. coli
organisms in combo bins made from these carcasses is usually less than 2 E. coli organisms.
There are also combo bins with near 1 log of contamination when using high efficiency in the
decontamination step. With lower decontamination efficiency less than 80%, the number of E.
coli organisms increases and most of the combo bins have contamination as high as 2.3 logs and
as low as 1 log. There are also combo bins with approximately 3 logs of contamination. The
scatter plot in Figure 8-8 implies that in order to keep the combo bin contamination less than 1
log, the efficiency of the decontamination step using the Trim/Vacuum/wash process should be
above 80 percent.

Figure 8-9 presents a scatter plot for combo bin contamination versus the number of
organisms on contaminated carcasses. The scatter plot in Figure 8-9 depicts that there is a linear
relation between the combo bin contamination and the number of organisms. The 95 percent
probability for the range of the number of organisms is between —2 logs and 3.1 logs with the
median value of 1.1 logs for the chilling effect. The median combo bin contamination is 0 log.
Values of the number of organisms between —2 logs and 5 logs are depicted in this figure. There
are a few data points with chilling effect of -5 logs representing cases with no contamination

with E. coli organisms. These points are not depicted in Figure 8-9.
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Figure 8-8. Scatter Plot for the Combo Bin Contamination for Steers and Heifers Versus the TVW Efficiency Effect in Summer.
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Figure 8-9. Scatter Plot for the Combo Bin Contamination from Steers and Heifers Versus
the Number of Organisms on Contaminated Carcasses in Summer.

8.3 Application of Scatter Plots to the Preparation Module

In the preparation module scatter plots are prepared for three parts, including the
growth estimation, the cooking effect, and the serving contamination parts. The scatter plots

are presented for each of these three parts in Sections 8.3.1 to 8.3.3, respectively.

8.3.1 Application of Scatter Plots to the Growth Estimation Part

The growth estimation part in the preparation module is explained in Section 3.2.3
and inputs for this part are given in Table 3-11. The output of interest is the mean growth of
the E. coli organisms in ground beef servings. The growth estimation part includes both
variability and uncertainty simulations. For scatter plots in this part a simulation of 650
variability and 100 uncertainty iterations was performed as a case representing all the
possible values of inputs including both variability and uncertainty. The generated values
were co-mingled in one dimension for the analysis using the scatter plot.

Based upon results with other sensitivity analysis methods, storage time and storage
temperature at stage 3 (i.e., home) were identified as the most important inputs and are the
focus of analysis using scatter plots. In Figures 8-10 to 8-11 the scatter plots for the mean
growth versus the storage time and the storage temperature at stage 3 are presented,

respectively.

250



Figure 8-10 implies that when the storage time at home is more than 112 hrs there is
no serving with zero growth in the number of E. coli organisms. In contrast, when the storage
time is less than 112 hrs there are servings with no growth. This trend indicates that with the
storage time less than 112 hrs it is possible to stop the growth of E. coli organisms in ground
beef servings by controlling other inputs such as the storage temperature. For longer storage
times no condition can stop the E. coli organisms from growing in ground beef servings.
Although there is no clearly defined threshold, the scatter plot implies that growth is typically
larger for the larger storage times, especially above 112 hrs.

Figure 8-11 depicts that with increase in the storage temperature the contamination in
ground beef servings increases. For temperatures less than 10°C most of the servings have
growth estimation of less than 0.1 logs. In contrast, when the storage temperature increases to
a value between 10°C and 15°C, there are more ground beef servings with contamination
above 0.5 logs due to the growth of E. coli organisms. Moreover, there is a gap in Figure 8-
11, and it seems that the storage temperatures between 16°C and 18°C were not generated in
the random simulation. This pattern happened because of the cumulative distribution
considered for the storage temperature at home in the original E. coli model. This distribution

could not generate values between 16°C and 18°C.

8.3.2 Application of Scatter Plots to the Cooking Effect Part

The cooking effect part in the preparation module is explained in Section 3.2.3 and
inputs for this part are given in Table 3-13. The output of interest is the log reduction in the
number of E. coli organisms due to cooking. There is a one-dimensional variability
simulation in this part as discussed in Section 3.3.3. Based upon the results of other
sensitivity analysis methods, such as ANOVA, the cooking temperature identified as the most
important input. Thus, for purposes of developing a scatter plot, the log reduction in the
number of E. coli organisms due to cooking was plotted versus the cooking temperature. The
result is shown in Figure 8-12.

Scatter plot in Figure 8-12 implies that there is a linear relationship between the log
reduction in the number of E. coli organisms due to cooking and the cooking temperature.
The scatter plot presents several lines for the relationship. Each line represents a specific
precooking treatment. The lines presented in the scatter plot are not parallel indicating that
there is an interaction between the cooking temperature and the precooking treatment
identified by the scatter plot. Because of the interaction, the response of the model differs for

low and high cooking temperature depending upon choice of the precooking treatment.
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Figure 8-10. Scatter Plot for the Growth of E. coli Organisms versus the Storage Time at Home.
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Figure 8-11. Scatter Plot for the Growth of E. coli Organisms versus the Storage Temperature at Home.
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Figure 8-12. Scatter Plot for the Log Reduction in the Number of E. coli Organisms versus the
Cooking Temperature at Home

For example, for a cooking temperature of 60°C the log reduction in the number of E. coli
organisms due to cooking varies between 1 and 4 logs depending upon the choice of precooking
treatment, or a range of 3 logs. In contrast, for a cooking temperature of 90 °C the log reduction
in the number of E. coli organisms due to cooking varies between 7 and 13 logs depending upon
the choice of precooking treatment, or a range of 6 logs.

There is a threshold in the response of the model to the cooking temperature. Cooking
temperatures of less than a range between 47°C and 53°C, depending on the precooking

treatment, have no effect on the reduction in the number of E. coli organisms.

8.3.3 Application of Scatter Plots to the Serving Contamination Part

The serving contamination part in the preparation module is explained in Section 3.2.3
and inputs for this part are given in Table 3-12. The output of interest is the mean serving
contamination. There is a one-dimensional variability simulation in this part as discussed in
Section 3.3.3. Based upon the results of other sensitivity analysis methods, such as regression
analysis and CART, the grinder contamination was identified as the most important input. Thus,
for purposes of developing a scatter plot, the mean serving contamination was plotted versus the

grinder contamination in summer. The result is shown in Figure 8-13.
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Figure 8-13. Scatter Plot for the Serving Contamination Versus the Grinder Contamination in
Summer.

The scatter plot in Figure 8-13 implies that there is an apparent threshold in the response
of the model to the grinder contamination. When the grinder contamination is less than an
approximate value of —2.5 logs, the grinder contamination has negligible effect on the
contamination of the ground beef servings. In contrast, when the contamination in the grinder
loads increases above the threshold value of —2.5 logs, there is a nonlinear relationship between
the serving contamination and the grinder contamination, and ground beef servings become
contaminated with more than one E. coli organism.

8.4 Evaluation of Scatter Plots as a Sensitivity Analysis Method Based on Applications
to the E. coli Model

In Sections 8-1 to 8-3 scatter plots was applied to different modules and parts of the E.
coli model. Scatter plots were implemented in order to clarify the relationship between the output
and inputs such as non-linearity, thresholds, discontinuity, and interaction effects between inputs.
Scatter plots cannot be used to explicitly rank the inputs. However, the possibility of clarifying
special relationships is an advantage of this method of sensitivity analysis.

Non-linearity in the model response to specific inputs can be identified using scatter
plots. For example, in Section 8.3.3 there is a non-linear response of the model to the variation of
the grinder contamination. This trend cannot easily be identified by a sensitivity analysis method
such as linear regression analysis, which assumes a specific functional relationship between
output and inputs. Thus, identification of the non-linearity in the model response with scatter

plots implies that the application of sensitivity analysis methods with pre-defined functional
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relationships, such as regression analysis, should be accompanied with concern. It is possible that
the results of the sensitivity analysis based on such methods are not reliable.

Thresholds in the model response to a specific input can be identified using scatter plots.
For example, in Section 8.3.3 a threshold in the model response to the grinder contamination was
identified. The ability to identify thresholds with scatter plots can be used in order to validate the
results from other sensitivity analysis methods. For instance, Chapter 7 explained that CART
could be used in order to identify thresholds, but that support from other sensitivity analysis
methods are needed to justify the identified thresholds. For example, in Section 7.3.3 the grinder
contamination of —2.45 logs was selected in the first node of the regression tree. Figure 7-10
indicated that the highest serving contamination was associated with cases that the grinder
contamination was higher than —2.45 logs. However, based solely upon the CART analysis there
was ambiguity as to whether this value could be considered as a threshold. Because
approximately the same grinder contamination is identified as a threshold using the scatter plot,
the result from CART is verified.

Scatter plots can be implemented in order to clarify interaction effects between inputs.
For example, in Section 8.3.2 a scatter plot was used to identify the interaction between the
cooking temperature and the precooking treatment in the cooking effect part.

It can be difficult to discern the interaction effect between inputs using scatter plots. In
order to reveal such effects using scatter plots, it is helpful if one of the inputs is qualitative. In
an example presented in Section 8.3.2, the precooking treatment was a qualitative input with 9
levels. Thus, 9 distinct patterns of points were identified representing precooking treatments.
These distinct patterns facilitated the simultaneous evaluation of the precooking treatment and
the cooking temperature effects on the log reduction in the number of E. coli organisms.

The capability of revealing interaction effects using scatter plots can be verified using
other sensitivity analysis techniques such as ANOVA or regression that directly address the
interaction effects between inputs. Table 5-26 indicates that there is a statistically significant
interaction effect between the cooking temperature and the precooking treatment identified using

ANOVA. This interaction effect was also identified using a scatter plot in Figure 8.12.
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9 CONDITIONAL SENSITIVITY ANALYSIS FOR THE E. COLI O157:H7 MODEL

The objective of this chapter is to present the results of sensitivity analysis of the E. coli
model based upon the conditional sensitivity analysis method. The details of the methodology for
conditional sensitivity analysis are provided in Section 2.3.2. Conditional sensitivity analysis is
used to assess possible trends in the data and potentially complex dependencies between inputs
and the outputs of interest. This method is applied to different modules and parts of the E. coli
model for selected important inputs that were identified based on other sensitivity analysis
methods.

This chapter contains four sections. Section 9-1 presents results of the conditional
sensitivity analysis for the production module. Sections 9-2 and 9-3 present results of the
conditional sensitivity analysis for the slaughter and preparation modules, respectively. In
Section 9-4, the method of using conditional sensitivity analysis is evaluated and the advantages,
disadvantages and key criteria for application of this method are summarized.

9.1 Application of the Conditional Sensitivity Analysis to the Production Module

In the production module conditional sensitivity graphs are provided for two parts,
including the feedlot prevalence and within feedlot prevalence. These two parts were identified
to have higher infection prevalence based on other sensitivity analysis methods. The conditional
sensitivity graphs are presented for each of these two parts in Sections 9.1.1 and 9.1.2,

respectively.

9.1.1 Application of Conditional Sensitivity Analysis to the Feedlot Prevalence Part

The feedlot prevalence part in the production module is explained in Section 3.2.1 and
inputs for this part are given in Table 3-9. The output of interest is the median feedlot
prevalence. There is a one-dimensional uncertainty simulation in this part as discussed in Section
3.3.1. Based upon the results of other sensitivity analysis methods, such as ANOVA and
regression analysis, the study and herd sensitivity were identified as the two most important
inputs. Thus, for purposes of developing conditional sensitivity plots, the median feedlot
prevalence was plotted versus herd sensitivity for each of the four studies considering all other
inputs conditioned at minimum, mean, and maximum values. The nominal values for each input
were derived based on the input distribution. The nominal values for inputs to this part are given

in Table 9-1.

257



Table 9-1. Nominal Values for Apparent Prevalence and Herd Sensitivity in the Feedlot
Prevalence Part

Variable Study Minimum | Mean | Maximum | Unit
= 2 Dargatlz,9;{7ancock 0 2.8 100 Percent
£
g s Hancock 1998 0 3.7 100 Percent
j; @ Smith 1999 0 23 100 Percent

A Elder 2000 0 36 100 Percent
2 Dargatz, Hancock 0 2.7 100 Percent
- 5 1997
g = Hancock 1998 0 3.6 100 Percent
T g Smith 1999 0 22 100 | Percent
i Elder 2000 0 30 100 Percent

Although there are two specific distributions for herd sensitivity and apparent prevalence
given in Table 3-9, the parameters of these distributions are function of the study features such as
number of samples in feedlots. Hence, nominal values for these inputs differ for each study.

For the conditional sensitivity analysis, for each study three simulations with 2,000
iterations were performed. In each simulation, the herd sensitivity for that study was varied based
on its distribution, while all other inputs were conditioned at either minimum, mean or maximum
values.

Figure 9-1 depicts the conditional relationship between the median feedlot prevalence
and the herd sensitivity for the Dargatz and Hancock (1997) study. The graph implies that a herd
sensitivity less than approximately 0.5 does not have a substantial effect on the median feedlot
prevalence. For cases in which the herd sensitivity is less than 0.5 the median feedlot prevalence
varies in a narrow range of 99 to 100 percent. However, an increase in the herd sensitivity above
0.5 leads to a decrease in the output. Furthermore, there appears to be a large change in the slope
of the curve near a herd sensitivity of 0.6. Thus, the value of 0.6 for the herd sensitivity can be
considered as a threshold. Moreover, Figure 9-1 shows that the results are the same regardless of
the values of other model inputs.

Figure 9-2 depicts the conditional relationship between the median feedlot prevalence
and the herd sensitivity for the Hancock (1998) study. The graph implies that variation of the
herd sensitivity does not have any effect on the median feedlot prevalence for this study.

Moreover, The median feedlot prevalence varies between approximately 65% and 100%, or a
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Figure 9-1. Conditional Sensitivity Analysis of the Herd Sensitivity, Dargatz, Hancock 1997
Study.
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Figure 9-2. Conditional Sensitivity Analysis of the Herd Sensitivity, Hancock 1998 Study.

range of approximately 35 percentage points, depending on whether all other inputs are at the
minimum or maximum values.

Figure 9-3 depicts the conditional relationship between the median feedlot prevalence
and the herd sensitivity for the Smith (1999) study. For this study the variation of the herd

sensitivity does not have any effect on the median feedlot prevalence. The median feedlot
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Figure 9-3. Conditional Sensitivity Analysis of the Herd Sensitivity, Smith 1999 Study.

prevalence varies between approximately 65% and 100%, or a range of approximately 35
percentage points, depending on whether all other inputs are at their maximum or minimum
values. Most of the values for the herd sensitivity are generated in a range between 0.9 and 1.0
for the Smith (1999) study.

Figure 9-4 depicts the conditional relationship between the median feedlot prevalence
and the herd sensitivity for the Elder (2000) study. The graph implies that variation of the herd
sensitivity does not have any effect on the median feedlot prevalence for this study. The median
feedlot prevalence varies between approximately 65% and 100%, or a range of approximately 35
percentage points, depending on whether all other inputs are at their maximum or minimum
values.

9.1.2 Application of Conditional Sensitivity Analysis to the Within Feedlot

Prevalence Part

The within feedlot prevalence part in the production module is explained in Section 3.2.1
and inputs for this part are given in Table 3-9. The output of interest is the average within feedlot
prevalence. There is a one-dimensional uncertainty simulation in this part as discussed in Section
3.3.1. Based upon the results of other sensitivity analysis methods, such as ANOVA and
regression analysis, the study, apparent within feedlot prevalence, and test sensitivity were
identified as the top three important inputs. Moreover, analysis with ANOVA clarified that the

average within feedlot prevalence is higher during summer in comparison with winter. In
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Figure 9-4. Conditional Sensitivity Analysis of the Herd Sensitivity, Elder 2000 Study.

Table 9-2. Nominal Values for the Apparent Within Feedlot and the Test Sensitivity in the
Within Feedlot Prevalence Part

Variable Study Minimum | Mean | Maximum | Unit

. Dargatz, Hancock 0 2.8 100 | Percent
Eow 2 1997
E é % LE Hancock 1999 0 2.5 100 Percent
S § ;-3 z Hancock 1998 0 3.7 100 Percent
< 'y Smith 1999 0 23 100 Percent
Elder 1999 0 36 100 Percent
Dargatz, Hancock

z 1997 0 58 100 Percent
2 & Hancock 1999 0 58 100 Percent
=2 Hancock 1998 0 58 100 Percent
7 Smith 1999 0 96 100 Percent
Elder 1999 0 96 100 Percent

addition, Table 3-2 indicates that Dargatz Hancock (1997) and Smith (1999) have the highest
weight among the studies. Thus, for purposes of developing conditional sensitivity plots, the
average within feedlot prevalence was plotted versus apparent within feedlot prevalence and test
sensitivity for these two studies during the high prevalence season considering other inputs

conditioned at minimum, mean, and maximum values. The nominal values for each input were
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derived based on the input distribution. The nominal values for inputs to this part are given in
Table 9-2.

Although there are two specific distributions for test sensitivity and apparent within
feedlot prevalence given in Table 3-9, the parameters of these distributions are function of the
study features such as number of samples in feedlots. Hence, nominal values for these inputs
differ for each study.

For the conditional sensitivity analysis, for each study three simulations with 2,000
iterations were performed. In each simulation, the apparent within feedlot prevalence for that
study was varied based on its distribution, while other inputs were conditioned at minimum,
mean and maximum values. For the test sensitivity, apparent within feedlot prevalence was
conditioned at its nominal values during the simulations, while the test sensitivity was allowed to
vary based on its distribution. For the test sensitivity there are two testing methods: (1) “0.1g
SMACct”; and (2) “10g IMS.

Figure 9-5 depicts the conditional relationship between the average within feedlot
prevalence and the test sensitivity for the “0.1g SMACct” testing method. There is a nonlinear
response to the variation of the test sensitivity when other inputs are conditioned at mean value.
In this case, average within feedlot prevalence varies between approximately 8% and 20%, or a
range of approximately 12 percentage points when the test sensitivity varies between 0.32 and
0.8. When other inputs are conditioned at maximum or minimum values, the average within
feedlot prevalence remains constant at 100 and zero percent, respectively, with respect to the
variation of the test sensitivity.

Figure 9-6 depicts the conditional relationship between the average within feedlot
prevalence and the test sensitivity for “10g IMS” testing method. The conditional sensitivity
graph in this figure implies that there is approximately a linear response to the variation of the
test sensitivity when other inputs are conditioned at their mean values. In this case, average
within feedlot prevalence varies between approximately 20% and 30%, or a range of
approximately 10 percentage points when the test sensitivity varies between 0.7 and 1.0. When
other inputs are conditioned at maximum or minimum values, the average within feedlot
prevalence remains constant at 100 and zero percent, respectively, with respect to the variation of

the test sensitivity.
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Figure 9-6. Conditional Sensitivity Analysis of the Test Sensitivity, 10g IMS Testing Method.

Figure 9-7 depicts the conditional relationship between the average within feedlot
prevalence and apparent within feedlot prevalence for Dargatz Hancock (1997) study. The
conditional sensitivity graph in this figure implies that there is approximately a linear response to

the variation of the apparent within feedlot prevalence. When other inputs are conditioned at
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Figure 9-7. Conditional Sensitivity Analysis of the Apparent Within Feedlots Prevalence,
Dargatz, Hancock 1997 Study.

minimum values, average within feedlot prevalence remains constant at 100 percent with respect
to the variation of the apparent within feedlot prevalence.

Figure 9-8 depicts the conditional relationship between the average within feedlot
prevalence and apparent within feedlot prevalence for Smith (1999) study. The conditional
sensitivity graph in this figure implies that there is a linear response to the variation of the
apparent within feedlot prevalence. When other inputs are conditioned at minimum values,
average within feedlot prevalence remains constant at 100 percent with respect to the variation of
the apparent within feedlot prevalence.

9.2 Application of Conditional Sensitivity Analysis to the Slaughter Module

Section 3.2.2 explains the slaughter module in the E. coli model. Inputs to the slaughter
module are summarized in Table 3-10. The output of interest is the contamination in combo bins.
The slaughter module includes both variability and uncertainty simulations. For simplicity, for
conditional sensitivity analysis the variability only simulation was used. The case study scenario

for the slaughter module is focused upon steers and heifers in the high prevalence season.
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Figure 9-8. Conditional Sensitivity Analysis of the Apparent Within Feedlot Prevalence, Smith
1999 Study.

Table 9-3. Nominal Values for Inputs to the Slaughter Module

Variable Minimum | Mean | Maximum | Unit
Total Number of Combo Bin for Each
2 4 6 -
Carcass
Total Number of Infected Animals 0 34 117 -
Tot'al Number of Contaminated 0 54 117 .
Animals
Probability of Positive Cases at 2 0 05 1 .
Steps
Number of Positive Cases at 2 Steps 0 0 2 -
Number of Positive Cases at
. i 0 0 2 —
Evisceration
Chilling Effect -1 0 2.5 Log
Number of Organisms 0 9 3500 -
Trim Vacuum Washing Efficiency 0 68 98 Percent
Evisceration Organisms Added 0 9 3500 -
Washing Effect 0 90 99 Percent
Contaminated cm’ 0 115 5600 -

Based upon results with other sensitivity analysis methods, chilling effect, number of
organisms, Trim/Vacuum/Wash efficiency, and washing effect were identified as the most
important inputs and are the focus of analysis using conditional sensitivity. For purposes of

developing conditional sensitivity plots, the combo bin contamination was plotted versus chilling
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Figure 9-9. Conditional Sensitivity Analysis of the Chilling Effect.

effect, number of organisms, Trim/Vacuum/Wash efficiency, and washing effect considering
other inputs conditioned at minimum, mean, and maximum values. The nominal values for each
input were derived based on the input distribution. The nominal values for inputs to this part are
given in Table 9-3.

In order to apply the conditional sensitivity analysis to each input, a simulation with
5,000 variability iterations was performed. In each case, a selected input was varied based on its
distribution, while other inputs were conditioned at minimum, mean or maximum values.

Figure 9-9 presents conditional sensitivity plot for combo bin contamination versus the
chilling effect. Based on the temperature during the chilling process the number of E. coli
organisms on carcasses might increase or decrease (FSIS, 2001). This figure indicates that there
is a nonlinear response to the variation of the chilling effect when other inputs are conditioned at
their mean or maximum values. A large amount of combo bin contamination corresponds to
cases for which the chilling effect is greater than an apparent threshold. For a chilling effect of
less than 1 log there are approximately no E. coli organisms in combo bins when other inputs are
conditioned at mean or maximum values. Moreover, when other inputs are conditioned at mean
or maximum values, there is high amount of contamination (i.e., more than 2 logs or 100

organisms) when the chilling effect is larger than 2.5 logs. When other inputs are held at
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Figure 9-10. Conditional Sensitivity Analysis of the Trim/Vacuum/Wash Effect.

minimum values there will be no contamination in combo bins even if there is a high value of the
chilling effect.

Figures 9-10 presents conditional sensitivity plot for combo bin contamination versus the
Trim/Vacuum/Wash efficiency. There is a linear response to the variation of the
Trim/Vacuum/Wash efficiency. When other inputs are conditioned at their maximum values, the
contamination levels are substantial even at the highest possible Trim/Vacuum/Wash efficiency.
This indicates that performing the decontamination step with the highest efficiency may not
guarantee a low value of combo bin contamination. However, when other inputs are at their
mean or minimum values, the contamination level is relatively insensitive to the
Trim/Vacuum/Wash efficiency. These results imply that Trim/Vacuum/Wash efficiency is
important only if other inputs are at sufficiently high values. Thus, there is an interaction
between Trim/Vacuum/Wash efficiency and other inputs.

Figures 9-11 presents a conditional sensitivity plot for combo bin contamination versus
the washing effect. The washing effect presents the same pattern as Trim/Vacuum/Wash
efficiency in Figure 9-10. There is a linear response to the variation of the washing effect. When
other inputs are conditioned at their maximum values, the contamination levels are substantial
even at the highest possible washing efficiency. This indicates that even the highest efficiency

during the decontamination step using washing may not guarantee a low value of combo bin
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Figure 9-11. Conditional Sensitivity Analysis of the Washing Effect.
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Figure 9-12. Conditional Sensitivity Analysis of the Number of Organisms.

contamination. However, when other inputs are at their mean or minimum values, the
contamination level is relatively insensitive to the washing efficiency. These results imply that
washing efficiency is important only if other inputs are at sufficiently high values. Thus, there is
an interaction between this input and other inputs.

Figures 9-12 presents a conditional sensitivity plot for combo bin contamination versus
the number of organisms on contaminated carcass. When other inputs are conditioned at
maximum values, there is a linear relationship between the combo bin contamination and the

number of organisms on contaminated carcasses. When other inputs are conditioned at their
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Table 9-4. Nominal Values for Inputs to the Growth Estimation Part

Variable Minimum | Mean | Maximum Unit
Storage Time at Retail 0 24 340 Hour
Storage Temperature at Retail 46 47.6 73 °F
Storage Time at Transportation 0 1 6.5 Hour
Storage Temperature at Transportation 46 48.8 73 °F
Storage Time at Home 0 24 340 Hour
Storage Temperature at Home 46 48.3 73 °F
Maximum Density 5 7.5 10 log

mean or minimum values there is no combo contamination regardless of the number of
organisms. These results imply that there is an interaction between the number of organisms on
contaminated carcasses and other inputs.

9.3  Application of Conditional Sensitivity Analysis to the Preparation Module

In the preparation module conditional sensitivity analysis was applied to two parts,
including the growth estimation and the serving contamination parts. Because the relationship
between the output and inputs in the cooking effect part is pre-defined in the form of linear
models for each precooking treatment, application of the conditional sensitivity analysis to the
cooking effect part is not informative. Thus, the conditional sensitivity plots are presented for the

growth estimation and serving contamination parts in Sections 9.3.1 and 9.3.2, respectively.

9.3.1 Application of Conditional Sensitivity Analysis to the Growth Estimation Part

The growth estimation part in the preparation module is explained in Section 3.2.3 and
inputs for this part are given in Table 3-11. The output of interest is the mean growth of the E.
coli organisms in ground beef servings. The growth estimation part includes both variability and
uncertainty simulations. For simplicity, for conditional sensitivity analysis in this part variability
only simulation was considered by holding all uncertain inputs at their point estimates.

Based upon results with other sensitivity analysis methods, the storage time and the
storage temperature at stages 1 and 3 were identified as the most important inputs and are the
focus of analysis using conditional sensitivity. For purpose of developing conditional sensitivity
plots, the mean growth in the ground beef servings was plotted versus the storage temperature
and the storage time at stages 1 and 3 considering other inputs conditioned at minimum, mean,
and maximum values. The nominal values for each input were derived based on their input

distributions. The nominal values for inputs to this part are given in Table 9-4.
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Figure 9-13. Conditional Sensitivity Analysis of the Storage Temperature at Retail.

In order to apply the conditional sensitivity analysis to each input, a simulation with
5,000 variability iterations was performed. In each case, the selected input was varied based on
its distribution, while other inputs were conditioned at minimum, mean and maximum.

Figure 9-13 presents a conditional sensitivity plot for the mean growth versus the storage
temperature at stage 1. When other inputs are held at their mean values, there is no growth unless
the storage temperature at stage 1 is greater than approximately 12°C. In this case, when the
storage temperature increases this value, there is a nonlinear response to the increase of the
storage temperature. The approximate value of 12 °C can be considered as a threshold in the
model response to the variation of the storage temperature at stage 1, when other inputs are
conditioned at their mean values. If other inputs are held at their maximum values there is a large
amount of growth for ground beef servings even at low temperature. With increase in the storage
temperature the growth in the ground beef serving increases nonlinearly until the saturation point
for the growth of E. coli organisms is reached at temperature of approximately 8.7°C. After this
temperature there is a nonlinear decrease in the maximum possible growth of the E. coli
organisms. The decrease in the estimated growth after reaching the saturation point is because of
the decrease in the maximum population density factor. The maximum population density is
function of the storage temperature and it decreases with increase in the storage temperature

(FSIS, 2001). In addition, there is a gap in Figure 9-13. The storage temperature at stage 1
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Figure 9-14. Conditional Sensitivity Analysis of the Storage Time at Retail.

between 14°C and 21°C were not generated in the random simulation. This is likely attributable
to an error in the original model.

Figure 9-14 presents a conditional sensitivity plot for the mean growth versus the storage
time at stage 1. When other inputs are held at their mean values, there is no growth unless the
storage time is greater than approximately 68 hrs. In this case, when the ground beef servings are
stored more than 68 hrs, there is a nonlinear response to the increase of the storage time. The
approximate value of 68 hrs can be considered as a threshold in the model response to the
variation of the storage time at stage 1, when other inputs are conditioned at their mean values.
The threshold for the growth in the ground beef servings due to the storage time at stage 1 when
other inputs are conditioned at their minimum values is higher with an approximate value of 86
hrs indicating that there is an interaction between the storage time and other inputs. If other
inputs are held at their maximum values the threshold for the growth of the E. coli organisms is
approximately 4.5 hrs. When other inputs are conditioned at their maximum values the saturation
point for the growth of E. coli organisms is reached after approximately 31 hrs. In contrast, when
other inputs are held at their minimum or mean values the saturation point is not achieved even
with storing the ground beef servings for a long time.

Figure 9-15 presents a conditional sensitivity plot for the mean growth versus the storage
temperature at stage 3. When other inputs are held at their mean values, there is no growth unless

the storage temperature at stage 3 of approximately 12.7°C. In this case, there is a nonlinear
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Figure 9-15. Conditional Sensitivity Analysis of the Storage Temperature at Home.

response to the increase of the storage temperature above this value. The approximate value of
12.7°C can be considered as a threshold in the model response to the variation of the storage
temperature at this stage, when other inputs are conditioned at their mean values. If other inputs
are held at their maximum values there is a large growth rate for ground beef servings even at
low storage temperatures. With an increase in the storage temperature the growth in the ground
beef serving increases nonlinearly until the saturation point for the growth of E. coli organisms is
reached at temperature of approximately 8.7°C. Above this temperature there is a nonlinear
decrease in the maximum possible growth of the E. coli organisms. In addition, there is a gap in
Figure 9-13. The storage temperature at stage 3 between 16°C and 18°C were not generated in
the random simulation. This is likely attributable to an error in the original model.

Figure 9-16 presents a conditional sensitivity plot for the mean growth versus the storage
time at stage 3. When other inputs are held at their mean values, there is no growth unless the
storage time is greater than approximately 64 hrs. In this case, when the ground beef servings are
stored more than 64 hrs, there is a nonlinear response to the increase of the storage time. The
approximate value of 64 hrs can be considered as a threshold in the model response to the
variation of the storage time at home, when other inputs are conditioned at their mean values.
The threshold for the growth in the ground beef servings due to the storage time at stage 3 when

other inputs are conditioned at their minimum values is higher with an approximate value of 88
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Figure 9-16. Conditional Sensitivity Analysis of the Storage Time at Home.

hrs. The difference in thresholds indicates that there is an interaction between the storage time
and other inputs. If other inputs are held at their maximum values the threshold is approximately
5.1 hrs. When other inputs are conditioned at their maximum values the saturation point for the
growth of E. coli organisms is reached after approximately 29 hrs. In contrast, when other inputs
are held at their minimum or mean values the saturation point is not achieved even with storing
the ground beef servings for a long time.

9.3.2 Application of the Conditional Sensitivity Analysis to the Serving

Contamination Part

The serving contamination part in the preparation module is explained in Section 3.2.3
and inputs to this part are given in Table 3-12. The output of interest is the mean serving
contamination. There is a one-dimensional variability simulation in this part as discussed in
Section 3.3.3. Conditional sensitivity graphs are prepared for the grinder contamination and the
serving size in this part.

For purpose of developing conditional sensitivity plots, the mean serving contamination
was plotted versus the grinder contamination or the serving size considering other inputs
conditioned at their minimum, mean, or maximum values. Most of the inputs in the serving
contamination part, such as the ground beef consumption type, the eating location, and the

consumer age are qualitative. Hence, for these inputs it is not possible to define nominal values.
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Table 9-5. Nominal Values for the Grinder Contamination and the Serving Size in the Serving
Contamination Part

Variable Min Mean Max | Unit
Grinder Contamination from Combo Bins -7 -4 -1 Log
Grinder Contamination from Trim Boxes -7 -6 -2 Log
Serving Size for Hamburger Patties at Home 5.1 105 448 g
Serving Size for Hamburger Patties Away 15 90 500 g

Note: The nominal values for the serving size are derived from the table presented in the E. coli model and in
“CUNSUMPTION” worksheet. The source of the data is CFSII 1994-1996, 1998.

Therefore, for these inputs specific levels were selected based on the results from other
sensitivity analysis methods. For example, Section 5.4.3 presented results of different contrasts
in the serving contamination part. Based on the contrasts results summarized in Table 5-26,
servings consumed by people between 25 and 64 years old have higher risk of contamination.
Hence, this age group is considered for the consumer age level. Moreover, Figure 3-16 indicates
that the hamburger patties have the highest amount of consumption in the United States. Thus,
hamburger is selected for the ground beef consumption type level. FSIS (2001) indicates that the
high prevalence season has higher risk of contamination in ground beef servings. Therefore,
summer is selected for the conditional sensitivity analysis. For quantitative inputs, nominal
values are given in Table 9-5.

In Table 9-5 the nominal values for the grinder contamination and the serving size are
summarized. The nominal values for the serving size are specific for hamburger patties. In order
to apply the conditional sensitivity analysis to each input, a simulation with 5,000 variability
iterations was performed. In each case, the selected input was varied based on its distribution,
while other inputs were conditioned at minimum, mean or maximum.

Figures 9-16 and 9-17 present conditional sensitivity plots for serving contamination
versus the grinder contamination at home and away from home, respectively. These figures
indicate that there are nonlinear responses to the variation of the grinder contamination when
other inputs are conditioned at their nominal values. When serving size is conditioned at its mean
value, contamination in hamburger patties is negligible when grinder loads have contamination
less than approximately -2.5 logs. Therefore, this value can be considered as a threshold in the
model response to the variation of the grinder. A comparison of Figures 9-16 and 9-17 provide
insights regarding whether contamination can be greater at home or away. For example, when all

other inputs are conditioned at their mean values, the serving contamination at home is larger
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Figure 9-17. Conditional Sensitivity Analysis of the Grinder Contamination Effect at Home.
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Figure 9-18. Conditional Sensitivity Analysis of the Grinder Contamination Effect Away from
Home.

than that away from home for a given grinder contamination. This pattern was also identified
using contrasts in ANOVA in Section 5.4.3.

Figures 9-18 and 9-19 present conditional sensitivity plots for serving contamination
versus the serving size for hamburger patties consumed at home and away from home,

respectively. These figures indicate that there are linear responses to the variation of the serving
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Figure 9-19. Conditional Sensitivity Analysis of the Serving Size Effect at Home.
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Figure 9-20. Conditional Sensitivity Analysis of the Serving Size Effect Away from Home.

size when other inputs are conditioned at their maximum values. Hence, with increase in the
serving size higher contamination in hamburger patties is expected. In Figure 9-18 two lines are
depicted for the case when other inputs are conditioned at their maximum values. This occurs
because for the servings consumed at home, the grinder load has two different sources of meat
trims. These include meat trims coming from combo bins and meat trims coming from trim
boxes. Grinder loads filled with meat trims from trim boxes have lower contamination (FSIS,

2001). The line with the lower slope is for meat trims coming from trim boxes. However, when
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other inputs are at their mean or minimum values, the serving contamination level is relatively
insensitive to the serving size. These results imply that serving size is important only if other
inputs are at sufficiently high values. Thus, there is an interaction between the serving size and
other inputs.

9.4 Evaluation of Conditional Sensitivity Analysis Based on Applications to the E. coli
Model

In Sections 9-1 to 9-3 conditional sensitivity analysis was applied to different modules
and parts of the E. coli model. Conditional sensitivity analysis was implemented in order to
clarify special relationship between the output and inputs such as non-linearity in the model
response, thresholds, and interactions. Conditional sensitivity plots cannot be used to explicitly
rank the inputs. However, the possibility of clarifying special relationships such as those
mentioned above is as an advantage of this method.

Non-linearity in the model response to specific inputs can be identified using conditional
sensitivity analysis. For example, in Section 9.3.2 there is a non-linear response of the model to
the variation of the grinder contamination. This trend cannot easily be identified by some
sensitivity analysis method such as linear regression analysis, which assumes a specific
functional relationship between the output and each input.

Thresholds in the model response to a specific input can be identified using conditional
sensitivity analysis. For example, in Section 9.3.2 a threshold in the model response to the
grinder contamination was identified. The capability to identify thresholds with conditional
sensitivity analysis is useful in comparison to other methods, such as CART and ANOVA. This
point was also discussed for scatter plots in Section 8.4.

Conditional sensitivity analysis can be used in order to clarify interaction effects between
inputs. For example, in Section 9.3.1 a conditional sensitivity plot identified that there is an
interaction between the storage time and other inputs.

Conditional sensitivity analysis method can also be used in order to verify the model
structure. For example, Figures 9-13 and 9-15 depict the conditional sensitivity plots for the
mean growth in ground beef servings versus the storage temperature at retail and home. In these
figures there are gaps in graphs indicating that the growth estimation model cannot generate the
storage temperatures between 14°C and 21°C, and between 16°C and 18°C for retail and home,

respectively. This is likely attributable to an error in the original model.
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The examples presented in this chapter were conditioned on minimum, mean, and
maximum values of all other inputs. Of course, the likelihood that all other inputs would
simultaneously take on their minimum values is rare. Similarly, it is rare that all of the inputs
would simultaneously take on their mean or maximum values. Thus, it is not possible to directly
infer the relative importance of different types of model responses conditioned on the arbitrary
assumptions made regarding the other model inputs. However, the key qualitative insight that
this method affords is regarding whether nonlinearities, thresholds, and interactions exist and
their characteristics if they do. This information is valuable in choosing other sensitivity analysis
methods and in targeting additional analysis to further clarify and explore the significance of

such relationships.
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10 SENSITIVITY IN EXPOSURE ASSESSMENT IN GROUND BEEF SERVINGS

The objective of this chapter is to identify the priority order of key modules and parts of
the E. coli model explained in Chapter 3 in order to attain a general insight about the relative
importance of different parts of the model.

As explained in Section 3.2.4, one of the most important goals of sensitivity analysis, as
described at the NCSU/USDA Workshop on Sensitivity Analysis, is to perform global sensitivity
analysis on output variables of direct relevance to a decision. Global sensitivity analysis in food
safety risk assessment models facilitates exploring effective approaches for mitigation of
morbidity and mortality risk of the food-born pathogen. However, as explained in Section
3.2.4.1, because the E. coli model is divided into modules global sensitivity analysis cannot be
performed. Figure 10-1 depicts the connection between the final output of the model in the
exposure part and each module and part of the model.

Figure 10-1 depicts that outputs of one module serve as inputs to the next. In
combination with the fact that many of the intermediate values of inputs are binned, the
implication of both modularity and binning of variables is that there is a lack of one-for-one
correspondence between the values of a desirable risk assessment model output, such as
exposure to E. coli organisms in ground beef servings, and the values of inputs to the various
modules that influence the output. This modeling structure forced the application of local
sensitivity analyses in individual modules and parts of the model, as presented in Chapters 4 to 9.
Although it is not practical to have a global sensitivity analysis, a question was raised about
exploring a way that different modules and parts of the E. coli model could be prioritized based
on their importance on the exposure to E. coli organisms. In order to answer to this question
some background information for the final model output in the exposure part is presented in the
following.

The amount of E. coli O157:H7 to which a consumer might be exposed in a single
serving of ground beef is a function of the original number of E. coli O157:H7 organisms and the
subsequent effects of storage, handling, and cooking on the growth or decline in the number of
E. coli organisms in ground beef (FSIS, 2001). The original number of E. coli organisms is
estimated based on information from production, slaughter, and preparation modules, while the
effect of growth and decline in the number of organisms are estimated in the preparation module.

The final dose distribution to which the population is exposed (DOSE,,) is expressed as the
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Figure 10-1. Schematic Diagram of the Connection Between the Exposure and Different
Modules and Parts of the E. coli Model.

initial serving distribution plus the growth distribution minus the distribution describing the

effect of cooking:

DOSE pop = BACT pop + Gipop — LRpop (10-1)

In above equation, BACT),,, is the distribution for the initial number of E. coli organisms
in servings, while G0, and LR, are the effect of growth and cooking on the ground beef
servings, respectively. In Section 10.1 a case study for evaluation the relative ranking of these
three distributions is presented.

10.1 Case Study for Ranking the Factors Affecting the Final Exposure to E. coli O157:H7
in Ground Beef Servings

A case study was prepared to prioritize the effect of different modules of the E. coli food
model on the final exposure in ground beef serving. Equation 10-1 implies that for estimation of
the final exposure distribution, three distributions for the initial concentration, the growth effect,
and the cooking effect should be available. For estimation of these distributions, the E. coli
model was set to run a random simulation of 5,000 variability and 50 uncertainty iterations. The
initial concentration of the E. coli organisms in ground beef servings is available based on the
output from the preparation module in the serving contamination part. The initial number of E.
coli organisms is a function of the outputs estimated in the production part and the slaughter

module such as the infection prevalence and combo bins contamination. Related distributions for
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Table 10-1. Different Cases in Sensitivity Analysis of the Exposure Estimation Part

the growth and the cooking effect are also available from the intermediate outputs of the
preparation modules in growth estimation and cooking effect parts.

In Figures 10-2 to 10-4 distributions for the E. coli initial concentration, the growth effect
and the cooking effect are depicted, respectively. The case study focused on the high prevalence
season for the analysis because of the higher risk of exposure to high levels of contamination in
ground beef servings during summer. The initial contamination distribution in Figure 10-2 is the
average of the 50 distributions estimated for each uncertainty iteration. Figures 10-3 and 10-4
depict the average growth and cooking effect for 50 uncertainty iterations, respectively.

In order to estimate the exposure based on Equation 10-1, a Monte Carlo simulation was
used. Detailed information about this simulation is presented in Section 10-2. For evaluation of
the priority rank of the distributions with respect to variability in exposure, four cases were
examined. These cases are summarized in Table 10-1. Case Zero represents the scenario in
which all three variables (i.e., initial concentration, growth effect, and cooking effect) vary based
on their distributions. Case One is the situation in which the cooking effect varies based on its
distribution, while the other two variables are conditioned at their mean values. Case Two is
based upon variability in growth effect while the other two inputs are held at their mean values.
Case Three is similar except that the initial concentration varies while the other two inputs are
constant at their mean values.

10.2  Analysis of Significant Parts in the Exposure Assessment

Section 10-1 explained that for analysis of the significant parts in the exposure
assessment, Monte Carlo simulations were used for the exposure distribution estimation based on
Equation 10-1 considering four cases in Table 10-1. Figures 10-2 and 10-3 implied that the
probability of positive logs of E. coli organisms was small. Therefore, in order to have randomly
generated values in the right tail of these distributions large number of iterations was used. Thus,

600,000 Monte Carlo iterations were performed using @Risk. In Figure 10-5 the results of the
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Figure 10-2. Probability Distribution Function for the Initial Number of E. coli Organisms in
Ground Beef Servings in High Prevalence Season.
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Storage of Ground Beef Servings.
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Figure 10-4. Probability Distribution Function for the Log Reduction in the Number of E. coli
Organisms in Ground Beef Servings Due to Cooking.
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analysis in the form of different variability distributions for the exposure to E. coli organisms in
ground beef servings in summer are provided for cases One, Two, and Three.

Figure 10-5 indicates that Case One, representing the variation of only the cooking effect,
leads to the widest range of variation in exposure. Cases Two and Three results in the second and
third widest ranges. Therefore, the variability in exposure is more sensitive to the cooking effect
than to growth effect or the initial concentration.

Risk managers might be interested in knowing which of the four cases have the largest
maximum contamination or the highest probability of exceeding contamination levels that would
be considered to be high. In order to address this interest, the maximum level of contamination
generated in each of the four cases studies is summarized in Table 10-2. For Cases Zero, Two,
and Three, the probabilities that the contamination levels reach the respective maximum values
range from approximately 2x10 to 8<10°. For Case One, four percent of the outcomes are at
the maximum contamination value. Based upon the estimate of 1.823x10'® annual ground beef
servings in the U.S. (FSIS, 2001), the estimated number of servings that contain the respective
maximum contamination levels are shown for the four cases. The value of the maximum
contamination level differs in each of the four cases. The highest contamination level is
associated with Case Zero, in which all three of the input distributions vary. Of the three cases in
which only one distribution varies at a time, it is clear that Case Two has the largest value of the
maximum contamination compared to the other two. Thus, it appears that the growth effect
portion of the model contributes the most to the possibility of high estimated maximum
concentration values.

Based on the presented analyses, the cooking effect part caused a maximum range of
variation in the exposure to E. coli organisms and growth effect eventuated in the highest number
of consumers exposed to positive dose of E. coli organisms in ground beef servings.

The cooking effect and the growth estimation parts were individually analyzed with
several sensitivity analysis methods in Chapters 4 to 9 and important inputs to these parts were
identified. For the cooking effect part, cooking temperature was selected as the most important
input, while for the growth estimation time the storage time and the storage temperature at retail

and home were identified as high ranked inputs. Hence, management strategies should be
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Figure 10-5. Exposure Assessment for the Ground Beef Servings in High Prevalence Season.

Table 10-2. Maximum Ground Beef Servings Contamination

focused on these two parts in order to mitigate the risk of exposure to E. coli organisms in

ground beef servings consumed in the United States.
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11 CONCLUSIONS BASED ON THE ANALYSES IN THE E. COLI MODEL

In this chapter the results of sensitivity analyses with different methods applied to each of
the modules and parts of the E. coli model are summarized in order to have a better evaluation
and comparison of methods. Moreover, the questions raised in the case scenarios in Sections
3.3.1 to 3.3.3 are addressed based on the results of the analyses in Chapters 4 to 10.

This chapter contains two sections. Section 11.1 presents estimated ranks of inputs to the
production, slaughter and preparation modules. Section 11.2 addresses questions raised in the
case scenario defined for each module.

11.1 Relative Rankings of Inputs to the E. coli Model Based on Different Sensitivity
Analysis Methods

In Chapters 4 through 9, the following methods for sensitivity analysis were applied to
different modules and parts of the E. coli model:

Chapter 4: Nominal range sensitivity analysis

Chapter 5: ANOVA

Chapter 6: Regression analysis, Pearson (sample) and Spearman (rank) correlation

coefficients, and rank regression

Chapter 7: Classification and regression tree

Chapter 8: Scatter plots

Chapter 9: Conditional sensitivity analysis

In Chapter 4, a case study was provided to justify that nominal range sensitivity analysis
method was not applicable to the E. coli model. Of the other sensitivity analysis methods, six
methods produced a numerical ranking of the key inputs either directly or based upon clearly
explainable interpretations of results. These methods include ANOVA, standardized linear
regression analysis, Pearson and Spearman correlation coefficients, rank regression, and CART.
The other two methods, scatter plots and conditional sensitivity analysis, do not provide a clear
basis for numerically ranking the key inputs. However, these methods provide insight regarding
non-linearities in the model response, thresholds, and interactions based upon which the results
from the first three methods can either be verified or refuted. In this section rankings based on
the analysis methods providing numerical rankings are compared in order to see how different
methods of analysis affect the rank of each input. This comparison enables the evaluation of

sensitivity analysis methods and gives insight regarding the unambiguity of rank for each input.
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Moreover, because each sensitivity analysis method has specific assumptions regarding
functional relationships between the output and inputs, an objective of this section is to ascertain
how those assumptions can affect the rank of inputs.

The following three subsections present the comparison of rankings based on different

sensitivity analysis methods in the production, slaughter, and preparation modules, respectively.

11.1.1 Comparison of Rankings for Inputs to the Production Module

Five sensitivity analysis methods were applied to the production module. These methods
include ANOVA, regression analysis, CART, scatter plots, and conditional sensitivity analysis.
The production module includes four parts: (1) feedlot prevalence; (2) within feedlot
prevalence; (3) breeding herd prevalence; and (4) within breeding herd prevalence. Of the five
sensitivity analysis methods, ANOVA, standardized linear regression analysis, and CART
produced a numerical ranking of the key inputs either directly or based upon clearly explainable
interpretations of results. Scatter plots and conditional sensitivity analysis did not provide a clear
basis for numerically ranking the key inputs. However, these methods provided insight
regarding non-linearities in the model response, thresholds, and interactions based upon which
the results from the first three methods can either be verified or refuted. A comparison of results
from different methods is discussed for each of the four parts of the production module. Based
upon these comparisons, conclusions are made regarding the appropriateness of each of the
sensitivity analysis methods.

A comparison of rankings for sensitive inputs based upon ANOVA, standardized linear
regression analysis, and CART is given in Table 11-1 for the feedlot prevalence part. For
standardized linear regression analysis, two sets of results are shown. For one set, F values were
used to develop the rankings for both qualitative and quantitative inputs, while for the other set,
standardized regression coefficients were the basis of the rankings for quantitative inputs. The
results from the three sensitivity analysis methods are comparable with respect to identification
of the most important input. The fact that three methods with different theoretical underpinnings
led to selection of the same input as the top-ranked one suggests that the top ranking is
unambiguous and that all three methods responded in a similar and appropriate manner to the

importance of the input.
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Table 11-1. Comparison of Rankings for Inputs Based on ANOVA, Regression Analysis and
CART in the Feedlot Prevalence Part

. Regression ®
Variable ANOVA | B ——— CART
Study 1 1 NA © 1
Apparent Prevalence 3 3 2 NS©
Herd Sensitivity 2 2 1 2

(a) Ranking based on the F Values and the coefficient estimates.
(b) No rank is estimated in regression analysis for qualitative inputs using coefficient estimates.
(c) Not significant based on the analysis.

There is some disagreement regarding the assignment of the second and third ranks to the
apparent prevalence and the herd sensitivity. ANOVA and standardized linear regression
analysis interpreted based upon F values, and CART all implied the same ranking of these two
inputs. The results for standardized linear regression analysis interpreted based upon
standardized regression coefficients implied that herd sensitivity was more important than
apparent prevalence, which is consistent with the results from ANOVA and regression analysis
based upon interpretation of F values. Because the regression coefficient approach could not
address the study input, it is expected that the herd sensitivity, if truly of second importance,
would be ranked first by this approach. CART did not select apparent prevalence as an input;
therefore, this could imply that the output is not sensitive to this input and regression analysis
based upon interpretation of F values. Because the regression coefficient approach could not
address the study input, it is expected that the herd sensitivity, if truly of second importance,
would be ranked first by this approach. CART did not select apparent prevalence as input;
therefore, it could imply that the output is not sensitive to this input

The scatter plots presented in Section 8.1.1 illustrated that the model response is
nonlinear. Of the three methods compared in Table 11-1, only ANOVA and CART did not
impose any assumption regarding model form. The standardized linear regression analysis was
based upon a linear assumption. Therefore, of these three methods, the linear regression analysis
is expected to have the greatest potential for mis-specification of ranks. However, the ranks
from regression were consistent with that of the other two methods, suggesting that the results of
regression analysis are unambiguous to departures from linearity in this case.

The comparison of rankings of key inputs for the within feedlot prevalence part is given

in Table 11-2. The results from standardized linear regression analysis and CART consistently
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Table 11-2. Comparison of Rankings for Inputs Based on ANOVA, Regression Analysis and
CART in the Within Feedlot Prevalence Part

Variable ANOVA | Regression ® | CART
Study 1 3 | NA® | NS©
Season 3 4 NA® | NS©
Apparent within feedlot
2 1 1 1
prevalence
Test Sensitivity 4 2 2 NS ©

(a) Ranking based on the F Values and the coefficient estimates.
(b) No rank is estimated in regression analysis for qualitative inputs using coefficient estimates.
(c) Not significant based on the analysis.

implied that the apparent within feedlot prevalence was the most important input. The results
from CART implied that this input was substantially more important than any other input, since
no other input was included in the regression tree. Moreover, standardized linear regression
analysis also indicated that the apparent within feedlot prevalence was substantially more
important than other inputs. For example, the regression coefficient of this input differed from
the regression coefficient of the test sensitivity by a ratio of approximately seven. The results
from ANOVA were qualitatively different than those of the other two methods in that the study
was identified as the most important input and the apparent within feedlot prevalence was ranked
second. These two ranks were substantially different from each other. The F value for the study
differed by a ratio of approximately 12 from the F value of the apparent within feedlot
prevalence. In contrast, inputs ranked other than one had comparable importance, because their
F values differed by ratios between 1.07 and 1.25.

A comparison of rankings for sensitivity inputs based upon ANOVA, standardized linear
regression analysis, and CART is given in Table 11-3 for the breeding herd prevalence part. For
standardized linear regression analysis, rankings based upon both F values and regression
coefficients are presented. The results from the three sensitivity analysis methods are comparable
with respect to identification of the most important input. The top ranking is unambiguous,
because all three methods with different theoretical assumptions selected the study as the most
important input.

The study was substantially more important than other inputs based upon ANOVA and
standardized linear regression analysis when using F values for ranking. The F value for the
study differed by ratios of 9 and 4.3 from the F value of the second ranked input when using
ANOVA and regression analysis, respectively.
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Table 11-3. Comparison of Rankings for Inputs Based on ANOVA, Regression Analysis and
CART in the Breeding Herd Prevalence Part

Variable ANOVA | Regression ® | CART
Study 1 1 [ NA® 1
Apparent Prevalence 3 NS© | NS© 3
Herd Sensitivity 2 2 1 2

(a) Ranking based on the F Values and the coefficient estimates.
(b) No rank is estimated in regression analysis for qualitative inputs using coefficient estimates.
(c) Not significant based on the analysis.

Table 11-4. Comparison of Rankings for Inputs Based on ANOVA, Regression Analysis and
CART in the Within Breeding Herd Prevalence Part

Variable ANOVA | Regression ® | CART
Study 1 2 | NA® 2
Season 4 NS©@ | NA® 4
Apparent within breeding
2 1 1 3
herd prevalence
Test Sensitivity 3 3 2 1
(a) Ranking based on the F Values and the coefficient estimates.
(b) No rank is estimated in regression analysis for qualitative inputs using coefficient
estimates.
() Not significant based on the analysis.

Of the three methods compared in Table 11-3, only ANOVA and CART did not impose
any assumption regarding model form. The standardized linear regression analysis was based
upon a linear assumption. Moreover, R? for the regression analysis was 0.90 indicating that the
linear assumption for the model explained 90 percent of the output variability. Therefore, the
linear regression analysis results are expected to be reasonably unambiguous.

The comparison of rankings of key inputs for the within breeding herd prevalence part is
given in Table 11-4. There is some disagreement regarding assignment of the first ranked input.
CART presented substantially a different ranking for inputs, while ANOVA and regression
analysis provided approximately comparable rankings. The order of ranks for the top two inputs
reversed for the ANOVA and regression analysis. The magnitude of the F values for the linear
regression coefficient indicated that the top three inputs were of comparable importance. In
contrast, the F values in ANOVA implied that the ranks for the top three inputs were
unambiguous, because the F values for those inputs differed substantially. For regression
analysis, the R? of 0.84 implied that the linear relationship assumption between the output and

inputs was reasonable.
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In the production module ANOVA seemed to present more unambiguous rankings. The
results based on ANOV A mostly were supported by other two methods. In addition, high values
of R? implied that rankings based upon regression analysis could be reliable. Graphical methods
of sensitivity analysis did not contribute substantially to clarification of the results gained with

other sensitivity analysis methods.

11.1.2 Comparison of Rankings for Inputs in the Slaughter Module

Three different types of probabilistic analysis were performed for the slaughter module,
as described in Section 3.3.2: (1) one-dimensional simulation of variability based upon mean
values of uncertain inputs; (2) two-dimensional simulation of variability for each realization of
uncertainty; and (3) one-dimensional simulation of both variability and uncertainty co-mingled.

Table 11-5 summarizes ranks of different inputs based on ANOVA, standardized linear
regression analysis, and CART for the first probabilistic approach. For regression analysis two
sets of ranking are given. The first set presents ranking of inputs based on the magnitude of F
values, while the second set gives the rank based on the magnitude of the standardized regression
coefficients.

Comparison of rankings in Table 11-5 indicates that the key similarity among the three
sensitivity analysis methods is with respect to the identification of the chilling effect as the most
important input. ANOVA and regression analysis approximately identified the same inputs in the
group of secondary importance inputs, ranked between two and four. In regression analysis
although the rank for the most important input was unambiguous, other inputs in the group of
secondary importance inputs presented comparable importance. In ANOVA the rank for the
chilling effect was ambiguous, as the F value for this input did not differ substantially from the F
value of the next important input. A group of secondary importance inputs did not present
unambiguous ranking based on the magnitude of their F values.

CART only selected two inputs in the regression tree. These inputs were also selected in
the group of top four inputs based upon ANOVA and regression analysis. Regarding statistically
insignificant inputs, all three methods identified approximately the same inputs. There was one
exception in the ANOVA results, since in this case the number of positive cases at evisceration
was grouped with inputs of minor importance.

The R? for the standardized linear regression analysis was small, indicating that the linear

relationship between the output and the inputs was not valid. Therefore, of these three methods,
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Table 11-5. Comparison of Rankings for Inputs, Based on ANOVA, Regression Analysis and
CART in the Slaughter Module for Variability only Analysis

. Regression ®
Variable ANOVA | — vm% Cocticienr | CART
Total Number of Combo Bin for Each NS ® NS ® NS ® NS ®
Carcass
Total Number of Infected Animals NS ® NS ® NS ® NS ®
Total Number of Contaminated Animals 9 7 4 NS ®

Probability of Positive Cages at l?oth NS ® NS ® NS ® NS ®
Steps of Dehiding and Evisceration

Number of Positive Cases at both Steps of NS ®

Dehiding and Evisceration > 6 6

Number of Positive Cases at Evisceration 8 NS ® NS © NS ®
Chilling Effect 1 1 1 1
Number of Organisms 3 3 4 2
Trim Vacuum Washing Efficiency 2 5 5 NS ®
Evisceration Organisms Added 6 8 7 NS ®
Washing Effect 4 2 3 Ns ®
Contaminated cm” 7 4 2 N

(a) Ranking based on the F Values and the coefficient estimates.
(b) Not significant based on the analysis.

the linear regression analysis is expected to have the greatest potential for mis-specification of
ranks. The fact that three methods with different theoretical underpinnings lead to selection of
the same input as the top-ranked one suggests that the top ranking is unambiguous and that all
three methods responded in a similar and appropriate manner to the importance of the input.
Moreover, results in Table 11-5 indicate that rankings based on the standardized linear regression
analysis are substantially comparable to that of the other methods with respect to the selection of
key inputs. Thus, even though the R? value in this case is low, the ranking of the inputs is similar
to that obtained with other methods.

ANOVA identified that there were interaction effects between specific inputs.
Conditional sensitivity analysis supported the general idea that there were interactions between
inputs, but this method did not specifically identify those inputs that have interactions. CART
also identified an interaction between the chilling effect and the number of organisms. This
interaction was not addressed with ANOVA.

Because they can be automated, ANOVA and standardized linear regression analysis
were the only methods considered for the two-dimensional probabilistic approach. Mean ranks

based on these two methods in 100 uncertainty realizations are presented in Table 11.6. The key
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Table 11-6. Comparison of Rankings for Inputs Based on ANOVA and Regression Analysis in
the Slaughter Module for Variability Analysis at Different Uncertainty Realizations

Variable ANOVA @ | Regression ®

Total Number of Combo Bin for Each Carcass 9.6 10.6
Total Number of Infected Animals 9.4 8.3
Total Number of Contaminated Animals 5.8 4.5
Probability of Positive Cases at both Steps of 9.1 9.7
Dehiding and Evisceration ) )
Number of Positive Cases at both Steps of 75 2.1
Dehiding and Evisceration ) )
Number of Positive Cases at Evisceration 7.4 6.8
Chilling Effect 1.7 2.2
Number of Organisms 4.4 4.4
Trim Vacuum Washing Efficiency 4.2 6.3
Evisceration Organisms Added 8.0 6.5
Washing Effect 4.4 6.2
Contaminated cm” 5.8 4.3

(a) Mean ranks in 100 uncertainty realizations.

similarities between ANOVA and regression are with respect to the identification of the most
important input, and the group of least importance inputs ranked between 8 and 11. There are
some exceptions in inputs identified in the group of secondary importance inputs. Moreover, the
frequency of specifying each input as statistically significant in both methods was approximately
similar.

Table 11-7 presents ranking based on ANOVA, regression analysis, and CART analysis
for the third probabilistic approach. Two inputs were directly ranked by CART analysis (i.e.
chilling effect and number of organisms). For ranking other inputs based on CART, regression
analysis was used as a complementary sensitivity analysis method.

In ANOVA, ranking for the first important input was unambiguous with substantially
different F value from the next important input. The F values for inputs ranked between second
and fourth did not differ substantially, indicating that these inputs presented comparable
importance. For regression analysis, ranks for the top four inputs were unambiguous with no
overlap in the confidence intervals for the regression coefficients.

The R* for regression analysis was small, indicating that the linear relationship between
the output and the inputs was not valid. Therefore, of these three methods, the linear regression
analysis is expected to have the greatest potential for mis-specification of ranks. The fact that

three methods with different theoretical underpinnings lead to selection of

292



Table 11-7. Comparison of Rankings for Inputs, Based on ANOVA, Regression Analysis and
CART in the Slaughter Module for One-Dimensional Variability and Uncertainty Analysis

. Regression ®

Variable ANOVA | B —— CART
Total Number of Combo Bin for Each NS ® NS ® NS ® 11©
Carcass
Total Number of Infected Animals NS ® NS ® NS ® 7©
Total Number of Contaminated Animals 6 6 4 9©
Probability of Positive Cases at both NS ® 3 6 g©
Steps of Dehiding and Evisceration
Number of Positive Cases at both Steps b b c
of Dehiding and Evisceration 8 NS NS 10
Number of Positive Cases at Evisceration 7 NS ® NS ©® NA ©
Chilling Effect 1 1 1 1
Number of Organisms 2 2 2 2
Trim Vacuum Washing Efficiency 3 5 5 3©
Evisceration Organisms Added 5 4 4 5©
Washing Effect 4 3 3 4©
Contaminated cm” 8 7 6 6©

(a) Ranking based on the F Values and the coefficient estimates.
(b) NS = Not significant based on the analysis.
(¢) Ranked based on a complement sensitivity analysis.

the same input as the top-ranked one suggests that the top ranking is unambiguous and that all
three methods responded in a similar and appropriate manner to the importance of the input.

In the slaughter module ANOVA seemed to present more unambiguous rankings. The
results based on ANOV A mostly were supported by other two methods. ANOVA also addressed
the interactions between inputs. In addition, low values of R* implied that rankings based upon
standardized linear regression analysis might be unreliable, although the similarity between
different methods in selecting group of inputs with high importance indicated that the top
rankings was robust to the functional assumption of the model. Graphical methods of sensitivity

analysis helped in order to identify the interaction effect between inputs.

11.1.3 Comparison of Rankings for Inputs to the Preparation Module
In the preparation module sensitivity analysis methods were applied to three parts
including growth estimation, cooking effect, and serving contamination parts. This section

contains three subsections corresponding to each of these three parts, respectively.
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Table 11-8. Comparison of Rankings for Inputs Based on ANOVA, Regression Analysis and
CART in the Growth Estimation Part for Variability Analysis at Mean Uncertainty

ANOVA ® Regression ® CART ©
Variable Point Mean F Coefficient Visual | Deviance

Estimate | Rank | Value Index Index
Storage Temperature, Stage 1 3 4.0 4 3 30 5
Storage Temperature, Stage 2 10 10.9 NS ® NS ® NS®H© Ns®
Storage Temperature, Stage 3 2 1.0 1 1 1 1
Storage Time, Stage 1 4 2.9 3 4 4© 3
Storage Time, Stage 2 Ns ® 12.3 NS ® NS @ NS®+e) Ns®
Storage Time, Stage 3 1 2.1 2 2 2 2
Maximum Density 9 8.1 7 7 9¢ 8
Lag Period, Stage 1 5 5.9 8 7 8 4
Lag Period, Stage 2 11 106 | NS® NS ® NS®H© NS®
Lag Period, Stage 3 6 5.1 Ns ® NS @ 79 6
Generation Time, Stage 1 8 7.2 6 6 50 NS®
Generation Time, Stage 2 Ns ® 9.9 NS ® NS @ NS®+e) Ns®
Generation Time, Stage 3 7 6.8 5 5 6 7

(a) Ranking based on the F Values and the coefficient estimates.
(b) NS = Not significant based on the analysis.
(¢) Ranked based on a complementary sensitivity analysis.
(d) NA = Rank cannot be evaluated in the complementary analysis
(e) For CART two sensitivity indices are used
(f) For ANOVA two sets of ranking are presented: (1) ranking based on the point estimates of F values; and (2)

mean rankings based on the 200 bootstrap simulations

11.1.3.1

Comparison of Rankings for Inputs to the Growth Estimation Part

Three different types of probabilistic analysis were performed for the growth estimation

part: (1) one-dimensional simulation of variability based upon mean values of uncertain inputs;

(2) two-dimensional simulation of variability for each realization of uncertainty; and (3) one-

dimensional simulation of both variability and uncertainty co-mingled.

Table 11-8 summarizes ranks of different inputs based on ANOVA, standardized

regression analysis, and CART for the first probabilistic approach. For standardized linear

regression analysis, two sets of results are shown. For one set, F values were used to develop the

rankings, while for the other set, standardized regression coefficients were the basis of the

rankings. For CART, results are presented based on two sensitivity indices, including

visualization of the regression tree accompanied by results from complementary analyses and

ranking the inputs based on their contribution to the reduction in the total deviance. For

ANOVA, a case study was provided to quantify the uncertainty in the F values using bootstrap
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technique. Hence, two sets of rankings are presented in Table 11-8 for ANOVA: (1) rankings
based upon the relative magnitudes of the point estimates for the F values; and (2) mean rankings
based upon 200 bootstrap simulations of the dataset.

A comparison of rankings in Table 11-8 indicates that the key similarity among the three
sensitivity analysis methods is with respect to the identification of the four most important
inputs. Regarding the group of secondary important inputs, these methods approximately
considered the same inputs in this group. Moreover, inputs related to stage 2 were identified to
have no statistically significant effect or were placed in the group of least important inputs by all
three methods. Two sensitivity indices used in CART for ranking inputs provided approximately
the same ranking with respect to the identification of the insignificant inputs and the most
important inputs. Two sets of rankings presented for ANOVA are comparable in many ways. In
particular, both analyses produced similar rank ordering for groups of factors. Although the
numerical values of the ranks from the variability only simulation often do not agree with the
average ranks from the bootstrap simulation, the differences can be attributed to random
sampling error and the resulting ambiguity in ranks within groups of factors.

Based on the results presented in Section 5.4.2 for quantifying the uncertainty in F
values, for a Monte Carlo simulation sample size of 65,000 for the variability only analysis of the
growth estimation part, the range of uncertainty in statistically significant F values that were
substantially large was found to be approximately plus or minus 30 percent or less. This implies
that the F values should differ by 30 percent or more in order to represent rankings that are
clearly different.

For the regression analysis, considering the estimated confidence interval for each
regression coefficient as a measure of the ambiguity in rankings, inputs ranked between 1 and 4
had unambiguous rankings with no overlap in their confidence intervals for the regression
coefficients.

ANOVA identified that there are statistically significant interactions especially between
storage time and temperature at stage 1 and 3. This inference was supported by conditional
sensitivity analysis. The conditional sensitivity method illustrated that that there is a nonlinear
response to the variation of the storage temperature and time before the saturation points.

For the second probabilistic approach, five sensitivity analysis methods were applied to

the dataset. These methods include ANOVA, standardized linear regression, Pearson (sample)
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Table 11-9. Comparison of Mean Rankings for Inputs Based on ANOVA, Standardized Linear
Regression, Pearson Correlation, Spearman Correlation, and Rank Regression Methods in the
Growth Estimation Part for Variability Analysis Under 100 Uncertainty Realizations

Rank
Variable ANOVA | Regression | Pearson | Spearman | Regression

Storage Temperature, Stage 1 4.0 3.1 4.3 6.6 9.3
Storage Temperature, Stage 2 9.6 8.5 10.9 10.8 8.1
Storage Temperature, Stage 3 2.5 1.4 1.6 5.1 8.0
Storage Time, Stage 1 2.7 3.5 4.7 1.9 1.5
Storage Time, Stage 2 12.1 10.8 10.9 11.1 10.4
Storage Time, Stage 3 1.3 2.7 3.9 1.7 1.6
Maximum Density 9.7 10.1 10.6 11.1 11.2
Lag Period, Stage 1 6.4 8.9 7.0 4.9 3.6
Lag Period, Stage 2 9.2 9.7 10.8 10.7 9.0
Lag Period, Stage 3 6 9.7 4.8 33 34
Generation Time, Stage 1 9.3 7.2 7.1 7.2 9.0
Generation Time, Stage 2 9.3 9.0 10.7 10.9 8.6
Generation Time, Stage 3 8.8 6.4 3.8 5.4 7.0

correlation coefficients, Spearman (rank) correlation coefficients, and rank regression.
According to the results provided in Table 11.9, ANOVA and the two sample-based
methods of standardized linear regression analysis and Pearson correlation coefficients produced
approximately similar rankings. The key similarity between these methods is with respect to the
identification of the top four inputs that have highest mean ranks. There is also similarity in
rankings between the two ranked-based methods of rank regression and Spearman correlation
coefficients. Generally, results according to the rank-based techniques for sensitivity analysis are
different from those of the methods based on the sample data. This difference is more apparent
with respect to the inputs to which the model has higher sensitivity. For example, while storage
temperature at stage 3 was identified as the most important input using standardized regression
analysis and sample (Pearson) correlation coefficients, and as the second important input using
ANOVA, this input was attributed low mean ranks of 5.1 and 8.0 using rank (Spearman)
correlation coefficients and rank regression methods, respectively. All methods approximately
identified the same inputs that have low or no importance. Inputs associated with stage 2 and

maximum density were attributed low mean ranks between 8.1 and 12.1.
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Table 11-10. Comparison of Rankings for Inputs, Based on ANOVA, Regression Analysis and
CART in the Growth Estimation Part for One-Dimensional Variability and Uncertainty Analysis

Regression CART ©
Variable ANOVA F Value | Coefficient Visual | Deviance

Index Index
Storage Temperature, 4 4 3 3 6
Stage 1
Storage Temperature, NS ® ] NS ® NSO NS®
Stage 2
Storage Temperature, 3 ) | 1 )
Stage 3
Storage Time, Stage 1 2 3 4 4© 3
Storage Time, Stage 2 NS ® NS ® NS ® NS®H©) NS®
Storage Time, Stage 3 1 1 2 2 1
Maximum Density 9 7 7 NA© 9
Lag Period, Stage 1 5 8 7 NA® 8
Lag Period, Stage 2 10 NS ® NS ® NS®© NS®
Lag Period, Stage 3 6 NS ® NS ® NA® 7
Generation Time, Stage 1 7 6 6 6 5
Generation Time, Stage 2 NS ® NS ® NS ® NS®H©) NS®
Generation Time, Stage 3 8 5 5 5© 4

(a) Ranking based on the F Values and the coefficient estimates.
(b) NS = Not significant based on the analysis.

(c) Ranked based on a complementary sensitivity analysis.

(d) NA = Rank cannot be evaluated in the complementary analysis
(e) For CART two sensitivity indices are used

Table 11-10 presents rankings based on ANOVA, regression analysis, and CART for the
one-dimensional analysis of co-mingled variability and uncertainty. For CART, two alternative
sensitivity indices were implemented for ranking the inputs. In the first approach, two inputs
were ranked by CART analysis based on visualization of the regression tree (i.e., storage
temperature and storage time at stage 3). To rank other inputs based on CART, regression
analysis was used as a complementary sensitivity analysis method. In the second approach, the
amount of contribution of each input to the reduction of the total deviance was used. The key
similarity between these methods of analysis is with respect to the identification of the top four
inputs that have the highest ranks. Moreover, all inputs related to stage 2 were identified as
statistically insignificant by all three sensitivity analysis methods except for the lag period at
stage 2. In the latter case, a low rank of 10 was attributed to this input based upon ANOVA.

The rank for the most important input based on ANOVA was unambiguous, because the

F value related to this input was substantially different from the F values of other inputs.
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However, inputs with ranks second and third had comparable importance, because their F values
did not differ substantially. In contrast, for regression analysis, inputs ranked between 1 and 4
had unambiguous rankings with no overlap in their confidence intervals for the regression
coefficients.

ANOVA identified the saturation points in the growth of E. coli organisms, considering
the interaction between the storage time and temperature. Moreover, conditional sensitivity
analysis identified the threshold in the growth of E. coli organisms based upon the variation of
the storage time and temperature at stages 1 and 3.

In the growth estimation part, ANOVA produced unambiguous rankings. The results
based on ANOVA were mostly supported by the other two methods. ANOVA also addressed the
interactions between inputs. In addition, moderate values of R* around 0.50 implied that rankings
based upon regression analysis might be unreliable, although the comparison of the results based
upon several sensitivity analysis methods indicated that the top ranking was unambiguous to the
specific functional assumption of the model, such as linearity. Graphical methods of sensitivity
analysis helped to identify the interaction effect between inputs and also identification of
thresholds.

11.1.3.2 Comparison of Rankings for Inputs to the Cooking Effect Part

In Table 11-11 rankings based on ANOVA and CART are summarized for the cooking
effect part. As explained in Section 6.3.2, regression analysis was not applied to the cooking
effect part. Comparison of the rankings indicates that ANOVA and CART analyses identified the
same rankings.

Ranking based upon ANOVA was ambiguous, because the F values for the first and
second inputs did not differ substantially. This indicates that the cooking temperature and the
precooking treatment have comparable importance. In addition, ANOVA identified that there is
an interaction between the cooking temperature and the precooking treatment. This interaction
was also identified using scatter plots. CART also demonstrated that there is an interaction
between these two inputs.

Results from CART implied that there should be a threshold in the model response to the
variation of the cooking temperature. CART selected the value of 58 °C for the threshold. A
review of scatter plots in Section 8.3.2 suggests the presence of a threshold. For example, below

temperature of approximately 50 °C there is typically no log reduction in the number of E. coli
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Table 11-11. Comparison of Ranking for Inputs Based on ANOVA, Regression Analysis and
CART in the Cooking Effect Part

Variable

Precooking Treatment &\\\\\\\\\\\\\\\j&\\\\\\\\\\\\\\\j
Cooking Place &\\\\\\\\\\\\\\\\\\\\\\\\:&\\\\\\\\\\\\\\T
Cooking Temperature s

(a) The regression analysis was not applied in this part.
(b) NS = Not significant based on the analysis.

organisms due to cooking. At temperatures of approximately 50 °C to 58 °C there is little log
reduction due to cooking depending on the precooking treatment. Above 58 °C, there is more
sensitivity of the log reduction in the E. coli organisms due to cooking for all the precooking
treatments. Therefore, the split point chosen by the CART algorithm corresponds,
approximately, to a threshold in the model.

11.1.3.3  Comparison of Rankings for Inputs to the Serving Contamination Part

Five sensitivity analysis methods were applied to the serving contamination part. These
methods include ANOVA, regression analysis, CART, scatter plots, and conditional sensitivity
analysis. The serving contamination part includes two seasons: (1) summer; and (2) winter.

In Tables 11-12 rankings based on ANOVA, regression analysis, and CART are
summarized for the summer session. The key similarity between these methods is with respect to
the identification of the statistically insignificant inputs to the serving contamination. ANOVA
and regression analysis rankings were unambiguous. In ANOVA, F values for the top two inputs
differed substantially, and in regression analysis confidence intervals did not overlap, indicating
that there was significant difference between inputs based upon these methods. Moreover, all
methods identified that there was no statistically significant influence for inputs such as eating
location and consumer age.

ANOVA identified that there are interaction effects between inputs. Graphical methods
for sensitivity analysis identified that there is a nonlinear response to the variation of the grinder
contamination. CART selected specific values for the grinder contamination as a basis for
splitting the dataset. Graphical methods supported that the selected value was a threshold.

In Table 11-13 rankings based on ANOVA, regression analysis, and CART are

summarized for the winter session. The key similarity between these methods is with respect to
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Table 11-12. Comparison of Ranking for Inputs Based on ANOVA, Regression Analysis and
CART in the Serving Contamination Part in Summer

. Regression
Variable ANOVA B ——| CART
Ground Beef Consumption 3 NS© NA® NS©
Type

Eating Location 4 NS© NA® NS©

Consumer Age NS© NS© NA® NS©
Serving Size 1 2 2 2
Grinder Contamination 2 1 1 1

(a) Ranking based on the F Values and the coefficient estimates.

(b) No rank is estimated in regression analysis for qualitative inputs using coefficient estimates.
(¢) NS = Not significant based on the analysis.

Table 11-13. Comparison of Ranking for Inputs Based on ANOVA, Regression Analysis and
CART in the Serving Contamination Part in Winter

. Regression
Variable ANOVA |8 | CART
Ground Beef Consumption 3 3 NA® NS©
Type

Eating Location NS© NS© NA® NS©

Consumer Age NS© NS© NA® NS©
Serving Size 1 2 2 2
Grinder Contamination 2 1 1 1

(a) Ranking based on the F Values and the coefficient estimates.
(b) No rank is estimated in regression analysis for qualitative inputs using coefficient estimates.
(¢c) NS = Not significant based on the analysis.

the identification of the statistically insignificant inputs to the serving contamination. All
methods identified that there was no statistically significant influence for inputs such as eating
location and consumer age.

ANOVA and regression analysis presented unambiguous ranking for inputs. In ANOVA,
F values for the top two inputs differed substantially, and in regression analysis confidence
intervals did not overlap, indicating that there was significant difference between inputs based
upon these methods.

11.2  Evaluation of the Proposed Case Scenarios Based on the Results of the Sensitivity
Analyses

In Section 3.3 case scenarios were defined for each module and part of the E. coli model.
Moreover, a few questions were raised in order to have meaningful outcomes from the sensitivity

analysis of the E. coli model. This section contains three parts. Sections 11.2.1 to 11.2.3 address
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the questions raised in Sections 3.3.1 to 3.3.3 for case scenarios in production, slaughter, and

preparation modules, respectively.

11.2.1 Evaluation of the Case Scenario in the Production Module

In Section 3.3.1 the case scenario for the production module was explained. Three
questions were raised based on the case scenario. Those questions are addressed here considering
the results of the sensitivity analyses in Chapters 4 to 9.

Question 1: What is the ranking of inputs regarding their influence on the output of

interest?

The production module has four parts, including feedlot prevalence, within feedlot
prevalence, breeding herd prevalence, and within breeding herd prevalence parts. Based on the
sensitivity analyses in the feedlot prevalence part, the study effect is considered as the most
important input. The herd sensitivity and the apparent prevalence were ranked as second and
third important inputs. In the within feedlot prevalence part, most of the sensitivity analysis
methods indicated that the apparent within feedlot prevalence is the most important input. Test
sensitivity and the study were ranked as second and third inputs, respectively, while the
seasonality effect is placed in the last position. For the breeding herd prevalence, the study effect
is identified as the most important input, while herd sensitivity and apparent prevalence were
identified as second and third important input. Finally, in the within breeding herd prevalence,
the study effect was considered as the most important input and the apparent breeding herd
prevalence and the test sensitivity were ranked second and third, respectively. The seasonality
effect was ranked as the least important input.

The study effect sensitivity indicates that the differing states of knowledge inferred from
different studies are important to the assessment. An implication, therefore, is that it may be
worthwhile to devote resources to resolve apparent differences among the studies or to collect
more representative data in a future studies.

Question 2: Is there any study effect in estimation of the response?

The study effect was selected as the most important input. This indicates that the
response in each part was affected by the choice of study. Each study has specific parameters
such as number of samples, number of positive samples, and the testing method. The importance

of the study implies that it is better to use studies that are more representative of the real feedlot
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or herd infection prevalence in the United States. These studies should have enough samples and
accurate testing methods.
Question 3: Is there any seasonality effect for estimation of average within feedlot or
breeding herd prevalence?
Seasonality was considered in the within feedlot and within breeding herd prevalence
parts. In both parts, the seasonality was ranked as the least important input. Although the
seasonality was identified as the least important input, it still presented a statistically significant

effect. Thus, seasonality has an effect but it is less important than other inputs.

11.2.2 Evaluation of the Case Scenario in the Slaughter Module

In Section 3.3.2 the case scenario for the slaughter module was explained. Four questions
were raised based on the case scenario. Those questions are addressed here considering the
results of the sensitivity analyses in Chapters 4 to 9.

Question 1: What is the ranking of inputs regarding their influence on the output of

interest?

The sensitivity analysis methods applied to the slaughter module in Chapters 4 to 9
identified the chilling effect, number of organisms, washing effect, and Trim/Vacuum/Wash
efficiency as the top most important inputs. All of the sensitivity analysis methods had
agreement on the first important input identified as the chilling effect. Selection of the chilling
effect as the most important input by all the sensitivity analysis methods gives insight to the risk
managers that careful control of the chilling process is perhaps the most fruitful approach to
reduce exposure and/or risk.

Question 2: How unambiguous is the identification of key inputs for situations in which

variability and uncertainty can be distinguished?

The slaughter module has a two-dimensional variability and uncertainty simulation.
Three different types of probabilistic analysis were performed for this module. The key similarity
among the three probabilistic simulations was with respect to the identification of the most
important input. When regression analysis was used, the results for the variability only and two-
dimensional simulations were approximately similar, but both of these differed from the results
of the one-dimensional simulation of co-mingled variability and uncertainty. For ANOVA, all
three approaches of analysis yielded similar rankings with respect to the most important input, a

group of inputs of secondary importance, a group of inputs with minor importance, and a group
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of inputs as unimportant. Thus, comparison of the analysis results from these three approaches
indicated that since the results were similar, especially in identifying groups of inputs with
similar importance, perhaps its is acceptable to use the simplest analysis which is a one-
dimensional analysis co-mingling variability and uncertainty in each input.

Question 3: Which step in the slaughter module could end up with high contamination in

the combo bins?

Based on the sensitivity analyses in the slaughter module, the chilling effect was
identified as the most important input. Chilling the carcasses in slaughter plants can lead to an
increase in the number of E. coli organisms if the storage time and the temperature are not
satisfactorily controlled (FSIS, 2001). Chilling effect was identified as the most important input
based upon all sensitivity analysis methods. Hence, inadequate chilling carcasses in slaughter
plants could cause a high amount of contamination in combo bins. A risk management
implication, therefore, is to carefully control the chilling process of the carcasses in the slaughter
plants.

Question 4: How can the decontamination steps mitigate the number of E. coli
organisms in combo bins?

Analyses performed in Section 5.3.3 indicated that there was a statistically significant
interaction between the chilling effect and the Trim/Vacuum/Wash efficiency. The results of the
analyses in Table 5-15 implied that changing the efficiency of the decontamination step from low
to high can only affect the contamination in combo bins when there is more than 2 logs increase
in the number of E. coli organisms during the chilling process. Otherwise, if the amount of E.
coli organisms on carcasses does not increase more than a 2 logs during the chilling process,
there is no statistically significant difference in the final combo bin contamination when applying
different efficiencies in the decontamination step (i.e., Trim/Vacuum/Wash step). Thus, a risk
management implication is that if in a slaughter plant there is insufficient control regarding the
storage time and the storage temperature during the chilling process, more attention should be
paid to the decontamination step. With high efficiency during the decontamination process it is

possible to decrease in the contamination of the combo bins by approximately 2.6 logs.

303



11.2.3 Evaluation of the Case Scenario in the Preparation Module

In Section 3.3.3 the case scenario for the preparation module was explained. Six
questions were raised based on the case scenario. Those questions are addressed considering the
results of the sensitivity analyses in Chapters 4 to 9.

Question 1: What is the ranking of the input variables regarding their influence on the

output of interest in different parts of the module?

The preparation module includes the growth estimation, the cooking effect, and the
serving contamination parts. In the growth estimation part, the storage temperature at home, the
storage time at home, the storage temperature at retail and the storage time at retail were
identified as the top four inputs. Sensitivity analyses indicated that the transportation stage does
not have a significant effect on the growth of the E. coli organisms. Importance of the storage
conditions at home with respect to time and temperature implies that risk managers could
consider providing recommendations regarding the storage conditions to consumers as an
effective strategy to control the exposure to E. coli organisms.

In the cooking effect part, the cooking temperature was ranked as the most important
input, while the precooking treatment was identified as the second important input. This finding
implies that providing recommendations to the public indicating the minimum cooking
temperature can contribute to the reduction of the risk of illness due to exposure to the E. coli
organisms.

In the serving contamination part for both the high and low prevalence seasons, the
grinder contamination and the serving size were identified as the top two important inputs. This
finding implies that controls should be focused on the previous steps of the process of bringing
foods from farm-to-table before the consumption step, such as in the slaughter plants, as it is
perhaps impractical to present recommendations to the public regarding their serving sizes.

Question 2: How unambiguous is the identification of key inputs for situations in which

variability and uncertainty can be distinguished?

The growth estimation part has a two-dimensional variability and uncertainty simulation.
Three different types of probabilistic analysis were performed for this part. The key similarity
among the three probabilistic simulations was with respect to the identification of the most
important input. When regression analysis and ANOVA were used, the results for all three

approaches of analysis yielded approximately similar rankings with respect to the most important
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input, a group of inputs of secondary importance, a group of inputs with minor importance, and a
group of inputs as unimportant. Thus, comparison of the analysis results from these three
approaches indicated that since the results were similar, especially in identifying groups of inputs
with similar importance, perhaps it is acceptable to use the simplest analysis approach which is
one-dimensional analysis co-mingling variability and uncertainty in each input. However, the
comparison of results among probabilistic simulation methods is likely to be case-specific.
Moreover, the use of the simplest approach might be useful to identify priorities for data input to
the model, but a two-dimensional approach may be required depending on the policy objectives
of the analyses to be performed.

Question 3: What is the effect of precooking treatments on the log reduction due to

cooking?

In the cooking effect part nine precooking treatments were considered. The precooking
treatment was identified to have a statistically significant effect. However, based upon the results
of the CART analysis, it appears that the first one to three of the precooking treatments produce
different results than the others. For these precooking treatments the log reduction in the number
of E. coli organisms due to cooking is lower than that for the other treatments. The analyses
indicated that when the ground beef servings are stored at 15°C for nine hours and then 30°C for
four hours (i.e. the precooking treatment / in Table 3-8), the maximum possible log reduction in
the number of organisms would occur due to cooking.

Question 4: How does the contamination level differ for different age groups?

Results of the analyses in Section 5.4.3 indicated that the consumer age was not a
statistically significant input, but it had a significant interaction with other inputs such as the
serving size. Hence, based on the analyses, servings consumed by the people between 25 to 64
years old were expected to have higher contamination because of the larger serving sizes for
people in this age group.

Question 5: What is the effect of eating location on the possible contamination of a

ground beef serving?

Analysis in Section 5.4.3 indicated that during high and low prevalence seasons, ground
beef servings away from home are more contaminated than the servings consumed at home.

Using trim boxes with lower contamination as a part of the meat trim sources for filling the
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grinder loads at home leads to lower contamination level of the ground beef servings consumed
at home.
Question 6: Does the eating place affect the contamination in different ground beef
consumption types?
The analysis in Section 5.4.3 indicated that for hamburger patties, ground beef servings
are more contaminated away from home during both high and low prevalence seasons, while for
meatballs, servings consumed at home are more contaminated in comparison with servings

consumed away from home.
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12 LISTERIA MONOCYTOGENES FOOD SAFETY RISK ASSESSMENT MODEL

This chapter describes the model used to estimate the occurrence of the Listeria
monocytogenes in ready-to-eat foods (RTE). Section 12.1 gives the background on Listeria
monocyotgenes. Section 12.2 gives a brief overview of the risk assessment of Listeria
monocytogenes. Section 12.3 explains the structure of the model. The exposure assessment,
hazard characterization, dose response and risk characterization of the Listeria monocytogenes
model are covered in Sections 12.4 and 12.5. The steps in modeling of exposure and dose
response are described in Section 12.6. The case scenarios considered for sensitivity analysis are
covered in Section 12.7. The model limitations in performing sensitivity analysis and the
modifications made to the model are covered in Section 12.8. Finally, Section 12.9 describes the
steps in data generation for the application of sensitivity analysis on Listeria monocytogenes

model.

12.1 Background on Listeria monocytogenes

Listeria monocytogenes is a bacterium often found in soil and water that can cause
serious illness. Illness from eating foods with Listeria monocytogenes is called “Listeriosis”.
Specific groups of people are considered to be susceptible to Listeriosis. However, pregnant
women, newborns, older adults, and people with weakened immune systems caused by cancer
treatments, AIDS, diabetes, kidney disease, or other illness, are at risk for becoming seriously ill
from eating foods that contain Listeria monocytogenes. According to the Centers for Disease
Control and Prevention (CDC), foods contaminated with Listeria monocytogenes cause
approximately 2500 cases of illness, including approximately 500 fatalities in the US each year
(CDC, 1999b).

Animals can carry Listeria monocytogenes in their intestines without becoming sick. As a
result, the bacteria may be spread to meat and dairy products. Listeria monocytogenes is killed
by cooking or by other heating methods, such as pasteurization, used to produce RTE foods.
However, RTE foods can become contaminated after processing within the processing plant or
along the route from the plant to the plate. Outbreaks of Listeriosis are associated with RTE
foods such as hot dogs, luncheon meats, cold cuts, fermented or dry sausage, and other deli-style
meat and poultry. In the home, Listeria monocytogenes is destroyed if RTE foods are reheated to

steaming hot.
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Figure 12-1. Listeria monocytogenes in ready-to-eat Food Risk Assessment Model.

12.2  Overview of the Listeria monocytogenes Model

The U.S. Department of Health and Human Services, Food and Drug Administration’s
Center for Food Safety and Applied Nutrition (DHHS/FDA/CFSAN) conducted a Listeria
monocytogenes risk assessment in collaboration with the U.S. Department of Agriculture’s Food
Safety and Inspection Service (USDA/FSIS) and in consultation with CDC. A food safety
process risk model was developed as part of that effort and is referred to here as the “Listeria
monocytogenes.” The Listeria monocytogenes model was used to evaluate the current scientific
data and information on Listeriosis (CFSAN, 2001). The model estimated the relationship
between exposure to Listeria monocytogenes and human susceptibility to illness or death. It
followed a framework that separated the assessment activities into four components: hazard
identification, exposure assessment, dose-response assessment (hazard characterization), and risk
characterization. This framework allowed organization of a highly complex array of varied data,
characterization of the predicted consequences, definition of uncertainties, and identification of

data gaps. Each component is briefly described and illustrated in Figure 12-1:
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Hazard identification. This part involved the identification of known or potential health

effects associated with Listeria monocytogenes by establishing the general relationship
between the pathogen, its presence in foods, and the adverse outcome (illness or death)
associated with consumption of contaminated foods.

Exposure assessment. This part dealt with the estimation of the likely frequency and

level of intake of the pathogen in contaminated foods. It involved evaluation of the
probability that the pathogen would be present, the frequency of various levels of
contamination, and the impact of food handling, processing, and storage conditions on
the overall potential exposure.

Hazard Characterization. This step dealt with estimation of the relationship between the

exposure level (dose) and frequency of illness or other adverse effect (response). The
severity of the health effects was also evaluated, often by considering multiple biological
endpoints (e.g., infection, morbidity, fatalities).

Risk characterization. This part consisted of the estimation of the likelihood of an

adverse outcome from exposure to the pathogen. The exposure assessment and hazard
characterization were combined to mathematically express the probability of adverse
effects on given population groups as well as to provide a qualitative or quantitative
estimate of the uncertainty associated with the predicted risk values. An important part
of this step was determining the degree of uncertainty in relation to the results and

distinguishing that from the variation that was inherent in any biological system.

The purposes of the Listeria monocytogenes study as summarized by FDA are as follows

(CFSAN, 2001):

To systematically examine the available scientific data and information in order to
estimate the relative risks of serious illness and death that may be associated with
consumption of different types of RTE foods contaminated with Listeria monocytogenes.
To estimate the potential level of exposure of three age-based population groups of
United States consumers to Listeria monocytogenes contaminated foods in 20 food
categories.

To relate exposure to public health consequences and estimate the likelihood of human

morbidity and mortality.
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e To provide a tool for analyzing how to most effectively mitigate the risk of illness from
Listeria monocytogenes in RTE foods.

e To identify future food-safety research needs.

The next section gives a brief overview of the structure of the Listeria monocytogenes model.

12.3 Structure of the Listeria monocytogenes Model

The Listeria monocytogenes model was an extensive study that made a clear distinction
between uncertainty and variability dimensions in the exposure assessment. The model was not
intensive such as the E. coli model in that it did not get into detailed study for each food
category. Instead, the objective was to analyze a large number of food categories using a
common framework. The simulation model consisted of exposure and dose response module.
The variability and uncertainty in the inputs of the exposure module were propagated to the
output by applying two-dimensional Monte Carlo simulations. The dose response module
considered only the uncertainty dimension and was modeled using one-dimensional Monte Carlo
simulation. The Listeria monocytogenes model did not consider seasonality effects in the
consumption behavior of the exposed population. Also, the pre-retail food processing steps were
not modeled in the Listeria monocytogenes model. However, the initial contamination of food in
the pre-retail stages was considered as a direct input to the model.

The risk assessment of Listeria monocytogenes focused only on severe public health
consequences. In general, there were insufficient data to model individual foods. Therefore, 20
food categories as given in Table 12-1 were created in the original study based on: primary
origin (seafood, produce, dairy and meat); composition and processing (raw, cooked, pH and salt
content); available data on the prevalence of Listeria monocytogenes in the foods; and
epidemiological information. Consumption data from survey were used for 18 of the 20 food
categories (CSFII, 1996). For the other two food categories, data from the NHANNES III study
were used (DHHS, 1998). In cases where data was limited or missing, data from similar foods
were used (CSFII, 1996 and DHHS, 1998). The latest model considers three additional food
categories that are not documented in the Listeria monocytogenes draft report. For each food
category three sub-populations, including neonatal, intermediate-age and elderly, were separately

considered.
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Table 12-1. Food Groups Included in the Listeria monocytogenes Risk Assessment

SEAFOOD

Smoked Seafood (finfish and mollusks)

Raw Seafood (finfish and mollusks)

Preserved Fish (dried, pickled, and marinated finfish)

Cooked Ready-to-Eat Crustaceans (shrimp and crab)

PRODUCE

Vegetables (raw, dried, and vegetable salads)

Fruits (raw, dried, fruit salads, and nuts)

DAIRY

Soft Mold-Ripened and Blue-Veined Cheese

Goat, Sheep, and Feta Cheese

Fresh Soft Cheese * (e.g., queso fresco)

Heat-Treated Natural Cheese and Process Cheese (mozzarella, cottage, cream cheese,
and cheese spreads)

Aged Cheese (hard, semi-hard, and semi-soft cheese)

Pasteurized Fluid Milk

Unpasteurized Fluid Milk

Ice Cream and Frozen Dairy Products

Miscellaneous Dairy Products (butter, yogurt, cream)

MEAT

Frankfurters

Dry/Semi-Dry Fermented Sausages

Deli Meats (cooked, ready-to-eat)

Paté and Meat Spreads

COMBINATION FOODS

Deli Salads (cooked seafood, meat, poultry, egg, and cheese and/or pasta as primary
salad ingredients.)

12.4 Exposure Assessment of Listeria monocytogenes

An exposure aasessment for foodborn Listeria monocytogenes must consider the most
significant pathways for exposure and quantitative factors influencing the amount of exposure
for any given pathway. The latter addresses the likely consumption levels of the contaminated
food. The Listeria monocytogenes risk assessment did not consider the contamination pathway

or the effects of preventive interventions and controls on the likely consumption levels.
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However, the growths during refrigeration and thermal destruction during home cooking or
reheating were modeled. Thus, it is possible to gain insight into the importance of consumer
controllable actions with respect to exposure.

Exposure is a function of the amount of a food consumed and the level of contamination
in that food. Hence, the quantity of contaminated foods likely to be consumed in the U. S. and
the levels of Listeria monocytogenes in them were estimated in the Listeria monocytogenes risk
assessment study. Using distributions of contamination and consumption data, estimates of
exposure to Listeria monocytogenes in the various foods were derived (CSFII, 1996 and DHHS,
1998). Sample weights for weighting the data were used so that they more closely reflect the
consumption by the noninstitutionalized U. S. population. The following data were extracted
from the food contamination and consumption data:

e The weighted data such as mean amount eaten in grams, median amount eaten in grams
and number of servings that characterize all eating occasions in two nonconsecutive days

of eating (one day for NHANES III).

¢ Distributions of the amount of food in grams eaten in all servings over two days for
CSFII and one day for NHANES III.
¢ Distributions of the amount of food in grams eaten in all servings and expressed as
weighted percentiles.
e The weighted data values to describe the amount of the food in grams eaten per person
per day, as well as the number of eaters.
e The per capita estimates of food eaten.
The data collection for initial food contamination and serving size distribution and annual
number of servings are discussed in Section 12.4.1 and 12.4.2, respectively. The growth model to
estimate growth between retail and consumption is discussed in Section 12.4.3. The distributions
to estimate post retail storage time and maximum growth level for each food category are

discussed in Section 12.4.4 and 12.4.5, respectively.

12.4.1 Initial Food Contamination and Serving Size Distributions
Contamination data used in the risk assessment were reported from the U.S. and other
countries on six continents. Two types of data describing the levels of Listeria monocytogenes

contamination in food were included in the model:
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e Qualitative data for presence/absence such as the number of positive samples relative to
the total sample collection.

¢ Quantitative data such as the number of colony forming units (cfu) that were measured
and recorded from the sample. It was conventionally assumed that one cfu is equivalent
to one organism.

Qualitative data were converted to an assumed level of 0.04 cfu/g when Listeria
monocytogenes is present. Thus both qualitative and quantitative data were used in the
construction of cumulative distribution curves of Listeria monocytogenes levels in food.

Contamination levels at consumption were modeled with the assumption that
contamination distributions for a given food in the U.S. do not vary significantly from those in
other countries, especially Western Europe where Listeria monocytogenes outbreaks had
occurred in the past. Similarly, it was assumed that all foods within a category have a similar
pattern of contamination. Further more, all Listeria monocytogenes food isolates were accepted
as having the potential to cause human illness. No differences in ability to grow or other
characteristics between food and clinical isolates were assumed. The impact of this assumption
should be considered in the uncertainty associated with relative risk determinations.

Three limitations affecting the modeling of the distributions of levels of Listeria
monocytogenes in foods are discussed here (CFSAN, 2001). First, the occurrence of detectable
levels of L. monocytogenes in foods is rare. There are relatively few data points above the limit
of detection (0.04 cfu/g). Second, although it was assumed that there is no difference between
contamination distributions for foods in the U.S and other countries, the data may not have been
representative of food and food processing procedures in the US. Third, there was a wide degree
of variation between studies in the occurrence of high levels of Listeria monocytogenes. The
length of time a food was held at retail before it was obtained for microbial sampling was not
recorded in the survey studies. Hence the study assumed that foods were samples without bias
and would represent the entire range of post-production and pre-sale conditions for that food.

The frequency distributions of Listeria monocytogenes levels at retail in appropriate
concentration categories were calculated on one-half logarithmic unit ranges in the original
Listeria monocytogenes study. The cumulative frequency of occurrence versus the log(cfu/g) was
plotted. The resulting data points were fit with parametric models such as Lognormal, Weibull-

Gamma, and Beta-Poisson distributions. Because most of the data points were less than 0.04
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(cfu/g), the models were fit to the upper tail. The parameter values of the Lognormal, Weibull-
Gamma and Beta-Poisson models were optimized using a weighted least squares goodness of fit
criterion. The weight accorded to a particular study was proportional to the number of samples in
the study. There was no representation of sampling error included in the uncertainty analysis for
the distribution of Listeria monocytogenes.

The serving size distribution in the Listeria monocytogenes model was handled as an
empirical distribution to describe the serving sizes in terms of grams of food eaten per servings
in the 20 food categories. These distributions were expressed as percentiles of the amount of
food eaten per serving, weighted to reflect the consumption survey demographics. Empirical
distributions were used for serving sizes. There were no uncertainties assigned for these food
categories. The Listeria monocytogenes draft lists three reasons as to why uncertainty was not
considered related to the serving sizes (USDA/ARS, 1998a, 1998b):

e [Even the smallest data sets used to characterize the serving size distributions were large
relative to other inputs to the model.

e Although the data was not completely representative of the current population of the U.S,
the data came from a survey explicitly designed for that purpose.

e The variability in intake covered a smaller range than many other parts of the model.

Most of the contamination data used in the Listeria monocytogenes model was from
samples taken during retail or storage prior to retail. For better estimation of the number of
Listeria monocytogenes organisms consumed for each food category, the possibility of pathogen
growth was considered. The next section covers how the calculation of growth between retail

and consumption was done in the Listeria monocytogenes study.

12.4.2 Annual Number of Servings of Foods

In order to estimate the number of servings of food in each food category, two key
assumptions were made. First, the numbers of servings in a specific food category were
extrapolated from short-term surveys to an annual basis. Second, the numbers of eaters of a food
per day were extrapolated to an annual basis from short-term surveys. Some foods are unlikely to
be eaten with the same frequency during a long term basis compared to what may be observed in
a short term one or two day survey. Furthermore, some foods are not available year round, or
people may not purchase more costly items for regular consumption. For example, paté and

smoked seafood are often higher priced delicacy items.
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12.4.3 Growth Between Retail and Consumption

The Listeria monocytogenes study incorporated a growth model in exposure assessment
to consider growth between retail and consumption. The growth model included a specific
function for the growth rate of this pathogen as given in Equation 12-1 and several inputs, such
as initial contamination level for Listeria monocytogenes in the food at retail where the food was
purchased, the storage temperature in the home refrigerator, the storage time in the house, and
the maximum growth. Higher values for refrigeration temperature were assumed typically to lead
to faster growth in time, but the storage time and the refrigeration temperature are not
independent. Long storage time and high refrigeration temperature were considered improbable
to happen simultaneously as this combination would lead to noticeable spoilage of the food, in
which case the food would not be consumed. The output from the growth model was a frequency
distribution, indicating the contamination level per gram of each food category at the time of
consumption.

A square root model for exponential growth rate (EGR) was incorporated into the model
as given in Equation 12-1 because of its simplicity and frequent use in the microbiology

literature (Ratkowsky et al., 1982).

NEGR =a(T-T,) (12-1)
where,
EGR = exponential growth rate (log;o cfu/day)
T = growth temperature (°C)
T = extrapolated minimum notational growth temperature (°C)
a = slope parameter for Listeria monocytogenes in the specific
food

Ty values were estimated from four sources (Alavi et al., 1999; Duh and Schaftner, 1993;
USDA, 1997; Wijtzes et al., 1993) and the average of these values (-1.18°C) was used in the
model.

The Listeria monocytogenes study used different storage temperatures from the published
literature that reported growth of Listeria monocytogenes in various foods. As the growth data

were at different temperatures they were converted to equivalent EGRs (logo cfu/day) at 5 °C as
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given in Equation 12-2. The equation for the ratio of EGR at 5 °C to EGR at the reported study

temperature is:

2 2
EGR, T +1.18 .
_ a(T, +1.18) _ 6.18 (12-2)
EGR: | a(T, +1.18) (T, +1.18
where,

EGRs = converted growth rate at 5 °C (log;, cfu/day)
EGRy; = growth rate from the inoculated pack study (log;, cfu/day)
Ts = set to 5 °C to standardize the EGRs (°C)
Tt = temperature used in the literature (OC)

The modeling process used a cumulative distribution of EGR from the data points in the
published literatures. If a food category had five or more data points, different statistical
distributions were fitted to the cumulative frequency distribution of EGR with the residual sums
of squares for each frequency distribution used to weight the distributions. The probability of
each growth model dictated the frequency of selection of each distribution for use in uncertainty
iterations during a Monte Carlo simulation (Cassin, et al., 1998; Vose, 1998). For food
categories with less than five data points, a triangular distribution defined by the minimum,
mode, and the maximum values of EGR was used. For the food categories that had two data
points, a uniform distribution was used. The list of parameters for models fit to EGR is listed in
Appendix 5 of the Listeria monocytogenes draft (CFSAN, 2001).

The data for home refrigerator temperatures were obtained from a 1999 survey conducted
by Audits International. The total number of samples was 939 refrigerators, and 26% of the
refrigerators exceeded 5 °C. The refrigeration temperatures were modeled with an empirical
distribution where values were interpolated from the table of frequency for refrigeration
temperature ranges provided by Audits International. For the estimation of the amount of Listeria
monocytogenes growth occurring between retail purchase and the food consumption, storage

time and the EGR were multiplied.

12.4.4 Post-Retail Storage Time for Food Categories
Some foods are consumed on the day of purchase whereas others remain in the home

refrigerator for lengthy periods of time. This was a major source of variability in storage time
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considered in the Listeria monocytogenes study. However, except for frankfurters and deli meats,
no data were found on the storage of foods in the home. Therefore the Listeria monocytogenes
study used expert judgments of individuals familiar with the production and use of the various
foods to estimate storage time, including variation and uncertainty. The variation in storage time
was described using a BetaPert distribution. The Listeria monocytogenes model assumed a
negative correlation between storage temperature and time. Thus, the uncertainties in the most
likely and the maximum storage time were negatively correlated to the temperature.

The uncertainty in storage time was described using a —20% to +20% uniform
distribution for the most frequent value, and a —50% to 50% uniform distribution for the
maximum value, assuming 100% correlation between these two distributions. The Listeria
monocytogenes food risk assessment model estimated consumer food practices, not necessarily

the recommended storage times.

12.4.5 Maximum Growth Level

The estimated growth during storage was added to the contamination level at retail for
every iteration step of the Monte Carlo sampling. However, the Listeria monocytogenes study
did not consider a lag phase in growth; hence it was assumed that the Listeria monocytogenes
cells were already in the food and adjusted to the food’s environment during the period before
retail purchase. The only change made from retail to storage was to a new refrigerator
temperature.

For each food category, a maximum growth level for Listeria monocytogenes was
considered based upon published literature (Appendix 8, CFSAN, 2001). Thus, the value for
Listeria monocytogenes concentration estimated by the model was compared with maximum
growth possible for the food category and the smaller of the two was selected. The maximum
growth levels (cfu/g) used were applied across all food categories with 10°, 10 and 10® used as
maximums for temperatures of <5, 5 to 7 and >7°C, respectively. For milk, sufficient data was
available to estimate growth levels of 107, 107 and 10® at the three storage temperatures,

respectively.

12.5 Hazard Characterization, Dose Response, and Risk Characterization
The exposure assessment of Listeria monocytogenes food safety risk assessment was

covered in Section 12.4. This section covers the next three stages of food risk assessment
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framework. Hazard characterization is described in Section 12.5.1, dose response in Section

12.5.2 and risk characterization in Section 12.5.3.

12.5.1 Hazard Characterization

Hazard characterization describes the adverse effects of a particular substance, organism,
or other entity. In the case of Listeria monocytogenes, the overall incidence of illness, its
severity, and the differential risk to immunocompromised subpopulations were well
characterized. In contrast, the relationship between the amounts of Listeria monocytogenes
consumed and the likelihood and severity of illness resulting from that dose were not well
understood. The Listeria monocytogenes risk assessment focused on characterization of the
dose-response relationship.

The study used surveillance data to describe the magnitude and the incidence of severe
disease. The dose-response relationship for the intermediate-age subpopulation used human data
from surveillance studies and data from surrogate studies using animals. An adjustment factor
was applied to the elderly and perinatal subpopulations to account for increased host
susceptibility. This adjustment factor used animal data to establish a susceptibility range, and
human epidemiological surveillance data to adjust for increased susceptibility of these
subpopulations.

The Listeria monocytogenes draft risk assessment considered neonatal deaths result from
food borne infection of a pregnant woman, which then is transmitted, to the fetus before or
during birth. The neonatal death rates were adjusted to include prenatal infections that resulted
in very early termination of pregnancy (i.e., miscarriages). Distinct disease surveillance data on
prenatal deaths were not consistently reported available and was estimated based on the reporting
of Listeriosis infections for the mother. An adjustment is made in the risk characterization

section to include all perinatal deaths that consider both prenatal and neonatal deaths.

12.5.2 Dose Response

The dose response modeling of Listeria monocytogenes included sources of uncertainty
such as food matrix, virulence and human susceptibility. An adjustment factor was used to
account for sources that were not considered. Susceptibility and virulence data were combined
with the mouse studies to generate a dose-response model to predict the percentage of the three

age-based subpopulations that would become ill after being exposed to a particular dose. The
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dose-response model can thus predict the number of deaths for any level of exposure, but a
single exposure level can also be used to compare the three age-based groups.

The dose-response is a function of the number of Listeria monocytogenes consumed and
their virulence. The Listeria monocytogenes draft listed three factors that affect the dose-
response relationship:

e Food matrix: The composition of a food, referred to as the food matrix, affects the ability
of pathogens to survive inside the body and cause virulence.

e Virulence: Different strains of Listeria monocytogenes vary in their ability to cause
illness. This variability influences the number of organisms required to produce illness
and possibly the severity or symptoms of illness.

e Human susceptibility: Immunological and physiological factors in humans play a role in
determining the distribution of susceptibility that may be found throughout a population.

The probability of death was described for the three different age-based groups of people.

Because of variability in host susceptibility and food matrix effects, there is no single
infectious dose for Listeria monocytogenes, or any other pathogen, that can be used for all
individuals. The study used surrogate data from animals or artificial environments to derive dose
response curves since Listeria monocytogenes can be fatal for humans participating in the
experiment. The dose response curves for animals were modified for strain variation, host
susceptibility, and differences between mice in a controlled lab environment and humans in an
uncontrolled natural environment. The dose response curve in the study predicted the morbidity
or number of deaths corresponding to a given dose. The variability in host susceptibility and food
matrix was taken into account by adjustment factors, as there was not enough information
available to model the variability in the process.

A dose-response adjustment factor was applied to the dose-response model to align the
range of predicted numbers of deaths with the current epidemiological information. Without the
adjustment, when the mouse dose-response model is coupled with the human exposure
assessment model, the model can overestimate the incidence of lethal infections in humans from
Listeria monocytogenes by a factor of over one million. The study attributed this large

overestimation to the lower susceptibility of humans compared to laboratory mice. The
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adjustment factor accounted for all of the possible known factors, as well as unknown factors,

that may influence virulence. The magnitude of the adjustment factor would change if any of the

Table 12-2. Parameters for Variability Distributions for Host Susceptibility for Listeriosis

Distribution Minimum Most Frequent Maximum
Low Variability -1t0 0 0 0Oto1.5
Medium Variability -1to 0 0 1to3
High Variability -1t0 0 0 2.5t04.5

currently accounted factors are revised or enhanced. Also if new factors were accounted
for in future, the adjustment factor magnitude would change.

The variation in host susceptibility was represented with triangular distributions. In order
to represent populations with low, medium and high ranges of susceptibility, three alternative
triangular distributions were applied to generate three different effective dose estimates. The
distributions had a minimum value of -1 and a mode value of 0, so that the net effect of the host
susceptibility adjustment was to broaden the distribution of effective doses without greatly
altering the midpoint. The maximum values for the three distributions were 1, 2.5, and 3.5 logo
cfu for the low, medium, and high variability populations, respectively as shown in Table 12-2.
In addition, the tails of the frequency distributions of host susceptibility were assigned
uncertainty ranges using uniform distributions, so that there was overlap in the uncertainty
ranges of the three frequency distributions.

The Listeria monocytogenes study used high variability host susceptibility distributions
for the intermediate age and elderly sub-populations since the members of these sub-populations
were most probable to exceed the range of physiological states characterized by the animal
research. Since the susceptibility of the elderly or immuno-compromised individual could vary,
wider ranges are assigned to these groups. The prenatal dose-response functions were based on
the medium variability distributions since the basis of categorization of population was not based
on degree of immunity or susceptibility. The three host susceptibility distributions encompassed
the range of susceptibility that was observed in animal studies. In conjunction with a population-
specific dose response adjustment factor, these distributions were used to create a unique dose

response function for a particular subpopulation.
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The neonatal, intermediate and elderly dose-response curves are shown in Figure 12-2 to
12-4, respectively. The figures show the dose required to produce death from a series of servings.
The factors that were responsible for uncertainty in curves are: (1) the variability in the virulence

of different strains and the uncertainty in the animal data used to characterize those strains;
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Figure 12-2. Listeria monocytogenes Dose-Response Curve with Variable Strain Virulence for
the Neonatal Sub-Population (CFSAN, 2001).
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Figure 12-3. Listeria monocytogenes Dose-Response Curve with Variable Strain Virulence for
the Elderly Sub-Population (CFSAN, 2001).
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Figure 12-4. Listeria monocytogenes Dose-Response Curve with Variable Strain Virulence for
the Intermediate-Age Subpopulation (CFSAN, 2001).

(2) the variability in animal susceptibility and the uncertainty in the animal data; (3) the
variability and uncertainty in the primary mouse model curve; and (4) the uncertainty in the

dose-response adjustment factor. For example, in Figure 12-3 at a dose of 1 x 10" cfu/serving,
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the dose-response model predicts a median death rate of 1 in 27,000 servings for the elderly sub-
population. However, the uncertainty introduced by the variability in virulence and in host
susceptibility provides a lower bound prediction of 1 death in 2 million servings and an upper
bound prediction of 1 death in approximately 4,300 servings.

The combined prenatal and neonatal deaths were 2.5 times the neonatal deaths
(Buchholz, 2000). The final risk characterization described the perinatal deaths as both prenatal

and neonatal.

12.5.3 Risk Characterization

In risk characterization, the adverse effects likely to happen in the population are
estimated. The probability of contracting Listeria monocytogenes from consumption of a single
serving of food in one of the 20 food categories was estimated. Risk per annum was estimated
based on the annual number of servings.

The Listeria monocytogenes study did not consider a dose-response relation for infection
or serious illness in risk characterization part. The number of serious illnesses was estimated to
be five times the number of deaths based upon 1997 FoodNet data (CDC, 1998a). This factor of
five was used in the Listeria monocytogenes study to estimate the number of serious illnesses,
including deaths, in the risk characterization, as it more accurately reflected the total number of

food borne Listeriosis cases.

12.6 Modeling of Exposure and Dose Response

This section explains the modeling algorithm used in the Listeria monocytogenes food
risk assessment model. The steps in modeling are explained first and then the simulation details
of the Monte Carlo technique are presented.

Figures 12-5 and 12-6 depict the risk assessment process. The exposure assessment steps
are given in Figure 12-5. In Figure 12-6, the hazard characterization steps are in medium gray
boxes, and the risk characterization steps are in dark gray boxes. The numbers in the circles

indicate the sequence of calculations in the model. The steps shown in the figures are listed

below:
Step 1. Distributions for contamination at retail for each food category are assigned.
Step 2. Distributions for the reference growth rate at 5°C for each food category are

assigned.
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Step 3.
Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

A distribution of home refrigerator temperatures in the United States is assumed
and is the same for all food categories.

Distributions for post-retail storage time for each food category are assigned.

A growth model is used for all food categories. This section calculates the
exponential growth rate for the specified refrigeration temperature and multiplies
by the storage time.

The maximum allowable Listeria monocytogenes concentration for each food
category is checked here. Post growth Listeria monocytogenes concentrations are
truncated at this level. The maximum growth is temperature dependent with more
growth allowed at higher refrigeration temperatures.

A model representing the effect of reheating frankfurters on Listeria
monocytogenes concentration, used for frankfurters only, is considered.
Calculates the net contamination at time of consumption using inputs from steps
1,6,and 7.

The distributions of serving size for each food category are assigned at this step.
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Figure 12-5. Flow Chart of Listeria monocytogenes Risk Assessment Model for Individual

Step 10.

Exposure Components (CFSAN, 2001).

The distributions of dose at consumption for each food category is the final output
of the two dimensional simulation. After collapsing the variability dimension to
half-log dose bins, the output for each food category is conveyed to the one

dimensional dose response simulation for each population group.
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Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

Step 18.

Step 19.

Step 20.

Step 21.

Step 22.

A distribution for variability of Listeria monocytogenes strain virulences in mice
is assigned, with the implicit assumption that a similar range will be observed in
humans.

A distribution adjusting for variability in host susceptibility among humans is
assigned, with three (High, Medium, Low) separate adjustments applied to
represent different possible ranges. The adjustment increased the range of
effective doses.

The sum of the strain variability (Step 11) and host susceptibility distributions
(Step 12) obtained by two-dimensional Monte-Carlo, with 100,000 variability
iterations and 300 uncertainty iterations. The variability dimensions were
collapsed to half log dose bins.

Summation of the exposure assessment (Step 10) and adjustment factor (Step 13)
for each food category is done at this step.

The annual number of meals consumed for each food category is calculated.

The dose-response adjustment factor is applied in order to make the predictions
consistent with CDC estimates of the annual death rate attributable to the
population group (i.e., the median value in Step 22).

The number of annual servings falling in each dose bin for each food category is
calculated here. This is obtained by multiplying the number of servings (Step 15)
by the fraction falling in each effective dose bin (Step 14).

The death rate per serving for each dose bin (from step 14) is calculated, using the
dose-response function derived from mouse data.

The intermediate number of annual deaths for each of the dose bin and the food
categories is calculated. This was obtained by multiplying the death rate per
serving (Step 18) by the number of servings for the dose bin (Step 17).

The death rate per serving for each food category was calculated by summing
across dose bins. This is obtained by summing the product of the death rate (Step
18) and serving fraction (Step 14) across all bins.

The annual number of deaths for each food category was calculated by summing
across dose bins (Step 19).

The total number of deaths was calculated by summing across food categories.
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Figure 12-6. Flowchart of Listeria monocytogenes Risk Assessment Calculation of Population Estimates (CFSAN, 2001).
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To model the rare occurrence of Listeriosis direct application of Monte Carlo modeling
did not provide adequate characterization of the tails of the distributions in the model. Therefore,
the study divided the model into two major components: (1) the exposure assessment; and (2)
the dose response adjustment factors. Each of these components of the model covered 10 to 15
logio ranges. The simulations in the original study were as follows (CFSAN, 2001):

e A two dimensional Monte Carlo simulation was used in the exposure models for each of
the food groups, with 30,000 variability iterations and 300 uncertainty iterations. A
common set of random numbers was used to represent variability and uncertainty for all
of the twenty-food categories.

e A two dimensional Monte Carlo simulation was used to estimate the variability and
uncertainty of the strain virulence and host susceptibility functions, with 100,000
variability iterations and 300 uncertainty iterations.

e The variability dimension for the above two simulation was condensed to 42 half-log)
bins, which ranged from -5 to +10 logs for each of the 300 uncertainty iterations.

¢ During the one-dimensional uncertainty-only dose-response simulation, dose bins from
the exposure assessment for each food group were combined with the strain virulence and

host susceptibility dose bins.

The exposure assessment modeled the effect of various factors such as frequency and
extent of contamination at retail, consumption patterns, the growth potential of Listeria
monocytogenes in foods, length of refrigerated storage, and refrigeration temperatures. The dose
values that considered both initial Listeria monocytogenes concentration at retail and growth
between retail and consumption were combined with the three dose-response models for the
susceptible subpopulations to yield predictions of the relative role of each of the 20 food
categories in Listeriosis in the United States, on a per serving and a per annum basis. The risk
characterization was anchored such that the overall predicted incidence of Listeriosis was
consistant with the actual incidence of Listeriosis. An implicit assumption was that the foods
encompassed by the 20-food categories account for all cases of foodborne Listeriosis. This part
of the modeling was done using the Excel “goal seek” function. Changing the adjustment factor
for doses attained the target of actual number of known deaths and hence the mortality for

changed dose. Thus the goal seek function was used to calculate the adjustment factor. The
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relative rank of the medians of the 4,000 uncertainty iterations for each food category and each
subpopulation for the per annum predictions are reported in the Listeria monocytogenes draft risk

assessment.

12.7 Case Scenarios

A detailed sensitivity analysis on the Listeria monocytogenes model calls for extensive
computational resources both in terms of time and space. Case scenarios were defined so as to
narrow the scope of analysis. For example, it was deemed more important to focus on selected
food categories, based on expert recommendation. Different subpopulations vary in susceptibility
and therefore the analysis was concentrated on a specific subpopulation. The methodology of
sensitivity analysis is not dependent on these factors that reduce the scope of the problem. The
factors simply change the domain of application of the methods. Thus, to demonstrate the
methodological aspects of the sensitivity analysis methods a smaller domain was considered.

In consultation with Dr. Peter Cowen and Dr. LeeAnn Jaykus of North Carolina State
University and Dr. Clark Clarington of FDA, patés and meat spreads, milk, smoked seafood,
fresh soft cheese and deli salad food categories were identified as priorities for the analysis. Patés
and meat spreads were considered in the same food category. Patés include hotdogs that are
accepted as the most important source of Listeriosis based on survey data (CSFII, 1996 and
DHHS, 1998). Although the prevalence of Listeria monocytogenes in milk is low, its
consumption rate is high and it is estimated to account for a large portion of Listeriosis deaths
(CFSAN, 2001). The prevalence rate of smoked seafood is high. The largest outbreak of
Listeriosis in US was attributed to fresh soft cheese (CFSAN, 2001). Deli salad was chosen as it
has a high potential for contamination due to extensive handling preparation. Neonatal and
elderly sub populations have high susceptibility and incidence rate. However only the neonatal
sub-population was selected in order to narrow the scope of the study.

The Listeria monocytogenes model separates variability from uncertainty. Sensitivity
analysis was performed specifically considering only variability and both variability and
uncertainty together. Comparisons between these different case scenarios help in understanding
the effect of an assumption on ranking of the importance of the input variables. Variability
analysis on the exposure module was also performed for different uncertainty realizations. In
principle, uncertainty analysis on the exposure module under different variability realizations is

possible to perform.
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Com paritive Parametric Model Plots for Growth at 5 "C for
Srnckied Seafood
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Figure 12-7. Plot of the Three Parametric Distributions Used to Model the Growth Potential at 5
OC for Smoked Seafood.

The methodology of application of sensitivity analysis remains exactly the same as the
variability under uncertainty realizations case but the dataset used represents uncertainty
distributions under various variability conditions. The uncertainty in two of the three uncertain
inputs for exposure module of Listeria monocytogenes was in the form of a choice among the
alternative parametric distributions used to the fit to the data. The variation due to uncertainty in
such cases was very small compared to the variation due to variability. Figure 12-7 shows a plot
for three parametric probability distribution models fit the data for growth potential at 5 °C for
smoked seafood. These three distributions are nearly indistinguishable from each other in the
central tendency and have only minor differences in the tail relative to the overall range of
variability. Thus, the results of a two-dimensional sensitivity analysis in this case are not
expected to vary much with regard to different variability iterations. Hence, a two-dimensional
analysis aimed at key sources of uncertainty was not conducted for the exposure module. The
dose response module has only an uncertainty dimension. Hence only uncertainty analysis was
performed on the dose response module.

The inputs are similar among the food categories in the Listeria monocytogenes model.
The relative importance of inputs is different from one category to other. This is because the
parameters of the distributions vary for the same inputs among the food categories. The inputs

and outputs of concern were identified in both the exposure and dose response modules. The
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Table 12-3. List of Input Variables in Exposure Module

Name Unit Distribution Distribution Comments
Variability Uncertainty
Serving Size grams Empirical None
.. Weighted parametric Selection of Choose a parametric
Initial LM . .
. Log models (e.g., Beta, alternative model randomly in
Concentration s - ! .
. cfu/g Weibull, Triangular, parametric proportion of the
(at retail) .
Lognormal) model weights
Storage °Cc Empirical None
Temperature
Uniform (- 1 5500 correlation
20% for most .
frequent value between uncertainty
Storage Time day Beta Pert distribution for most
and +-50% for
. frequent and
maximum :
maximum value
value)
Weighted parametric Selection of Choose a parametric
Growth at 5 °C Log cfu/ model (e.g., altematn{e model rapdomly in
day Lognormal, Gamma, parametric proportion of the
triangular, Beta) model weights

exposure module has two types of inputs. Some inputs have only variability associated with
them, whereas others have both variability and uncertainty. All variables in the dose response
module were only uncertain.

Five inputs of interest for each food group were identified in the exposure module. The
inputs of interest included serving size in grams, initial LM concentration in log cfu/g, storage
temperature in °C, storage time in days, and growth potential at 5 °C in log cfu/day. The output
of interest is the dose value corresponding to each meal serving size simulated. The variables
along with their distributions are listed in Table 12-3. Serving size has a distribution based on the
amounts and frequency of consumption of the food. Initial Listeria monocytogenes concentration
is at retail and before growth. It has a distribution based on frequency and levels of Listeria
monocytogenes in ready-to-eat foods. The only other variable in the exposure module is an
intermediate variable for maximum log growth that is dependent on the temperature.

Table 12-4 shows the inputs considered in dose response module. The inputs and outputs
of interest in dose response considered different sources of uncertainty. Servings per annum and
pregnancy rates vary from one food to another but remain constant within a food category. The

variables of concern identified are uncertainty in exposure period; uncertainty in virulence which
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Table 12-4. List of Input Variables in Dose Response Module

Name Unit DIStrlbu.t ton Source
Uncertainty

Dose Adjustment Factor Log cfu/serving Empirical Goal Seek

) . Chosen
Exposure Period days Triangular distribution

. ot . . Virulence

Virulence Susceptibility Log cfu/serving Empirical simulation

) .. Mouse
Mouse Lethality Deaths Empirical Experiments
Fraction of Population Exposed NA Empirical Exposure module

considering adjustments for strain and susceptibility virulence; uncertainty in mouse lethality
rate because uncertainty in response to a given dose; exposure uncertainty which is due to
varying fractions in a dose bin from different uncertainty runs of exposure module; and
uncertainty in the adjustment factor as generated by goal seek in each uncertainty iteration.
Although the dose adjustment factor is calculated during the simulation, for purpose of gaining
insight into whether this parameter is highly sensitive to total risk, it is treated as if it were an
input when performing sensitivity analysis. Thus, the adjustment factor is treated as an input just
as it would be in case when the dose response model is used for mortality prediction rather than

calibration to actual data. The output of interest here is the mortality.

12.8 Model Limitations and Modifications
In the process of applying sensitivity analysis to the Listeria monocytogenes model
several limitations were faced and accordingly modifications were done. This section describes

the limitations of the model and the modifications that were done to enable sensitivity analysis.

12.8.1 Limitations

A global sensitivity analysis is preferred over local sensitivity so that the analysis can be
directly related to the output of decision importance. For food safety risk assessment, the output
of decision importance is typically morbidity or mortality. Sensitivity analysis methods typically
require a one-to-one mapping of each input to the output. The Listeria monocytogenes model is
not suitably structured for this type of global sensitivity analysis. Thus only local sensitivity
analysis within modules of the model is possible. Understanding code embedded in the Excel

spreadsheet is difficult and time consuming. The sequence of operations cannot be easily inferred
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by inspection of the sheet. This is a major hindrance in understanding a complex model such as
this. The limitations of the Listeria monocytogenes model with respect to the application of
sensitivity analysis can be characterized in two groups:

e Modularity and Binning

e Coding Limitations

Modularity is a way of organizing a model into sub-divisions. For any sensitivity analysis
it is important to distinguish among the parameters that are regarded as inputs, intermediate
variable and outputs. The mathematical or stochastic structure of a model is independent of the
numerical value of the input assumptions. The inputs and outputs to the model should be in
separate modules from the mathematical model. This is not done in Listeria monocytogenes
model code; the inputs/outputs and growth model are in the same module. In cases where
modules have many-to-one mapping between inputs and outputs, the one-to-one correspondence
between an input and output is lost. The exposure module of the Listeria monocytogenes model
allows mapping of several individual meal servings to the same dose bin. After binning, the meal
serving that resulted in a particular dose cannot be identified. This causes loss of information.
Although this kind of many-to-one mapping is necessary in some cases, the binning can be done
while also applying additional methods on an unbinned output in parallel. This will preserve the
information as well as allow the binning to be done, although it may be at the cost of additional
computational time.

Part of the coding of Listeria monocytogenes model was done in MS Excel. This made
the understanding of the complex model a tedious job, given the difficulty of inspecting code
embedded in a spreadsheet. Therefore, modification of the model and addition of new modules
was difficult. For a complex model, implementation of the complete model using a programming
language such as Visual Basic would allow for easier understanding, modification and addition
of features. The model was recoded by the FDA into Visual Basic during the time of this work,

which facilitated application of sensitivity analysis methods.

12.8.2 Modifications to Enable Sensitivity Analysis

The Excel-based Listeria monocytogenes model was not originally implemented with an
objective of supporting sensitivity analysis as extensive as those conducted in this work.
Therefore, it was necessary to make modifications to the model in order to facilitate the

application of a wide variety of sensitivity analysis methods. During the course of this work,
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FDA reimplemented the Listeria monocytogenes model using Visual Basic macros. The
reimplemented code greatly facilitated the application of sensitivity analysis methods because it
was easier to inspect the code, identify model inputs and outputs, and collect data for these
variables for use in sensitivity analysis. The latter involved creation of additional worksheets for
the purpose of storing data values for inputs and outputs during the course of a probabilistic
simulation. In addition, it was necessary to modify the code in order to extract values for
intermediate variables of interest. For example, in the dose response module goals seek was
performed to get the corrected dose and mortality. The inputs used to get these doses were not
stored. Thus to get the inputs, code was inserted in the model.

To apply mathematical sensitivity analysis methods, a module for each of NRSA and
differential sensitivity analysis was inserted in the exposure and dose response parts. The
insertion of the NRSA and differential sensitivity analysis module did not change the underlying
structure of the model. For conditional sensitivity analysis, uncertain input variables were fixed
at point estimate values. This was achieved in two ways: (a) when the uncertainty was in form
of a distribution, a probability value of 0.5 was used to get the median as the desired point
estimate; (b) when uncertainty was in terms of selection of a distribution, then a weighted
average of all distribution was taken to give the point estimate.

In the original Listeria monocytogenes model, the dose response module stored the
number of deaths at each uncertain step but did not store the corresponding input values. Since
mortality calculations are done inside the Excel spread sheet, code was added to create a dataset.
For each uncertain run, an adjustment factor was generated by running “goal seek” to match the
predicted and actual number of deaths from all food categories in a given sub-population. The
dataset contains the inputs and mortality predicted for each food category after dose adjustment

using the adjustment factor.

12.9 Generation of Datasets for Sensitivity Analysis

The sensitivity analysis methods use datasets specific to food categories and based on the
input assumptions for variability and uncertainty. For example, mathematical methods need point
estimate values for each input. The statistical methods need the input and output values with one-
to-one correspondence for each iteration in a Monte Carlo simulation. This section discusses the

assumptions and number of iterations used in generation of data.
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Table 12-5. Minimum, Median and Maximum Values of Input variables for the Five Food
Categories

Point Smoked Fresh Soft Deli
Input® Estimates Patés Sea Food Cheese Milk Salad
Serving Size in Mip 0.0 0.0 0.0 0.0 0.0
grams Median 57.0 57.0 62.0 244 115
Max 454 142 246 3900 1410
Initial LM Min -3.0 -2.5 2.7 -3.9 34
Concentration Median -04 0.2 -1.0 -1.7 -1.6
in log cfu/g Max 9.0 9.0 9.0 8.9 5.2
Storage Min 0.0 0.0 0.0 0.0 0.0
temperature in Median 4.5 4.5 4.5 4.5 4.5
°C Max 21 21 21 21 21
Storage time in Mip 0.8 0.6 0.5 0.6 0.6
days Median 8.4 5.0 4.0 4.2 3.7
Max 45 30 30 17 14
0 Min -0.3 0.0 -0.4 0.0 -0.5
Slrfov;ﬂ;fit/ jayc Median 0.3 0.1 0.1 0.3 0.1
Max 0.7 0.4 0.5 0.8 0.2

(a) For each input the minimum, median and maximum values are shown.

To get a one-to-one correspondence between inputs and the output, the output was
recorded before binning in the exposure module. Separate simulations were made for variability
only and both variability and uncertainty cases. To enable application of ANOVA, discrete levels
were created from the dataset generated from simulation. To calcu