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Abstract: Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly ground-
water levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead
groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface
Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and
Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic
influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component
regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly time-
scales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring
(April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null
model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and
December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to
evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs
a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of
these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts
based on leave-five-out cross-validation. Results from the research reported in this paper show that using precipitation forecasts in climate
models improves the ability to predict the interannual variability of winter and spring streamflow and groundwater levels over the basin.
However, significant conditional bias exists in all the three modeling schemes, which indicates the need to consider improved modeling
schemes as well as the availability of longer time-series of observed hydroclimatic information over the basin. DOI: 10.1061/(ASCE)HE
.1943-5584.0000776. © 2014 American Society of Civil Engineers.
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Introduction

It is well-known that climatic variability can affect both water
quantity (Ropelewski and Halpert 1987; Hanson and Dettinger
2005; Sankarasubramanian et al. 2008) and quality (Oh and
Sankarasubramanian 2012) at regional and continental scales.
Hence, incorporation of climatic information into hydrologic
models could provide useful information to quantify and manage
surface water and groundwater resources over the watershed.
Most of the studies that have linked climate variability to basin
hydrology primarily focused on precipitation (Ropelewski and
Halpert 1987; Devineni and Sankarasubramanian 2010) and
streamflow (Tootle and Piechota 2006; Devineni et al. 2008).

Nevertheless, the effect of climate variability on groundwater
quantity and quality remains poorly understood (Green et al.
2007), particularly in comparison to other components of the
water budget.

Understanding the role of climate in influencing streamflow-
groundwater interactions has significant implications for conjunctive
management of both surface water and groundwater, particularly
during multiyear droughts (Hanson and Dettinger 2005). Recent
studies have also found a significant association between climatic
variability and groundwater resource-variability at regional scales
(Hanson et al. 2009; Almanaseer and Sankarasubramanian 2012).
The impact of climate variability on groundwater is more complex
than for surface water (Holman 2006) since the availability of
groundwater is more difficult to quantify (Alley et al. 2002). The
research reported in this paper is motivated by the importance
of groundwater resources over the southeast United States for
water supply and baseflow to streams, and also based on the rela-
tively good skill in predicting winter precipitation (Devineni and
Sankarasubramanian 2010) that potentially control groundwater
resource-availability (Almanaseer and Sankarasubramanian 2012)
over the region.

The writers’ primary intent is to evaluate the potential in devel-
oping groundwater-level forecasts utilizing the season-ahead pre-
cipitation forecasts from climate models forced with sea-surface
temperature (SST) forecasts (Li and Goddard 2005). Both statisti-
cally based (Maurer and Lettenmaier 2004; Devineni et al. 2008)
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and physically based (Wood et al. 2002; Luo et al. 2007) techniques
are commonly used to develop hydrologic forecasts based on
climate forecasts issued from general circulation models (GCMs).
Developing hydrologic forecasts using physically based watershed
models first require spatial downscaling of climate forecasts
(primarily precipitation and temperature) to subgrid scale (Wood
et al. 2002). Furthermore, the downscaled climate forecasts need
to be disaggregated to a daily time-step using either parametric
(Stedinger and Vogel 1984) or nonparametric (Kumar et al. 2000)

techniques. Apart from the errors that could arise from spatial down-
scaling, effective coupling of surface water and groundwater com-
ponents have always been challenging (Sophocleous et al. 1999).
Consequently, this paper employs two statistical techniques, (1) prin-
cipal component regression (PCR), and (2) canonical correlation
analysis (CCA), to develop seasonal (winter and spring) and monthly
(January–June) groundwater-level prediction models, using precipi-
tation forecasts from the ECHAM 4.5 GCM (Roeckener 1996) along
with observed streamflow and groundwater in October.

The subsequent sections of this paper are as described next.
The writers first provide details on the study area and database used
in the modeling. The next section describes the dependency analy-
sis performed to develop a preliminary understanding of the inter-
relationships among the hydroclimatic variables for identifying
relevant predictors. The next section presents the low-dimensional
models and skill metrics. The next section discusses the skill of
the developed seasonal and monthly groundwater-level forecasts.
The final section summarizes the findings and salient conclusions
arising from the research reported in this paper.

Study Area and Database

The 21,900 km2 Flint River Basin (FRB) in Georgia is part of the
Apalachicola-Chattahoochee-Flint (ACF) River Basin in Georgia,
Alabama and Florida, United States (Fig. 1). It is composed of six
hydrologic units [hydrologic unit code 8 (HUC-8)] and contains
multiple streamflow and groundwater-level data-recording stations
with relatively long periods of record (1980–2010). In addition to
data availability, the FRB exhibits significant interactions between
surface water and groundwater, which are conditioned on climatic
variability (Almanaseer and Sankarasubramanian 2012). In many
streams within the basin, a substantial portion of the baseflow con-
sists of groundwater discharge (USGS 2007). The FRB is located
within two physiographic provinces, as follows: (1) the Piedmont
physiographic province in the upper basin, and (2) the Coastal
Plain physiographic province in the majority of the basin. The
Piedmont physiographic province is underlain by local, crystalline-
rock aquifers. In the Coastal Plain physiographic province, large
regional porous-media aquifers are present in order of descending
stratigraphy and increasing age, i.e., the Floridan Aquifer System,
Claiborne Aquifer, Clayton Aquifer, and Providence Aquifer Sys-
tem (Torak et al. 2010). Generally, the regional groundwater flow-
direction in the Coastal Plain is from north to south, but local flow
directions vary, especially in the vicinity of streams and within
heterogeneous crystalline-rock and carbonate aquifers. In addition,
strong stream-aquifer interaction between the Floridan aquifer sys-
tem and Flint River results in significant groundwater contributions
to baseflow (Table 1). Base flow index (BFI) was computed as part

Fig. 1. Location map for the selected streamgauges and groundwater
wells in Flint River Basin (FRB); Tables 1 and 2 provide index numbers
for streamgauges and groundwater wells

Table 1. List of the Selected Streamgauges in the Flint River Basin

Index
number

USGS streamgauge number,
upstream to downstream

Hydrologic unit,
HUC-8

Altitude [m (ft)
above

NGVD29]
Drainage area
[km2 (mi2)] Baseflow index

1 02344500 03130005 216.8 (711.4) 704.5 (272) 0.58
2 02347500 03130005 102.0 (334.5) 4791.5 (1,850) 0.65
3 02349500 03130006 78.0 (255.8) 7511.0 (2,900) 0.71
4 02349900 03130006 87.2 (286) 116.5 (45) 0.61
5 02350512 03130006 56.7 (185.9) 10049.2 (3,880) 0.67
6 02352500 03130008 45.7 (150.03) 13752.8 (5,310) 0.68
7 02353500 03130009 45.8 (150.30) 1605.8 (620) 0.76
8 02353000 03130008 33.6 (110.2) 14866.5 (5,740) 0.71
9 02357000 03130010 26.1 (85.7) 1364.9 (527) 0.73
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of the research reported in this paper using the automated Web
GIS-based Hydrograph Analysis Tool [WHAT (Lim et al. 2005)].
The relatively high BFIs computed for the nine streamgauges
(Table 1) indicates the significant role of groundwater in controlling
streamflow discharge within the basin.

The selection of the sites was made to ensure natural ground-
water and streamflow records with minimal to no anthropogenic
influences such as upstream storage and groundwater pumping,
thereby representing adequate hydrologic responses. Fig. 1 shows
locations from which hydroclimatic data were used. Tables 1 and 2
list the selected streamgauges and groundwater wells in addition to
relevant information. The index numbers (Tables 1 and 2) are used
in the location map to identify the sites.

Observed Precipitation

Total monthly precipitation from the gridded precipitation data
supported by the Precipitation Regressions on Independent Slope
Model (PRISM; Daly et al. 1994) is considered for the research
reported in this paper. Monthly precipitation during the period
1980–2010 for each HUC was computed from this gridded data
as a spatial average over that HUC using a statistical-zoning func-
tion in ArcGIS 9.1. Time-series monthly precipitation data were
computed and used to represent monthly observed precipitation
over the six HUCs in the FRB (Fig. 1).

Streamflow and Groundwater

Monthly mean time-series of streamflow and groundwater level at
sites with limited to no anthropogenic influences were obtained for
10 groundwater wells and nine streamgauges during the period
1980–2010 (Table 1). The writers selected streamgauges and
groundwater wells primarily from the Hydro-Climatic Data
Network (HCDN; Slack et al. 1993; Sankarasubramanian and
Vogel 2002; Vogel and Sankarasubramanian 2005) and the
Climate Groundwater Response Network (CGRN; USGS 2007),
respectively. All groundwater wells were screened in unconfined
aquifers, with a relatively shallow phreatic water table mainly in
the Floridian Aquifer in the southern FRB and in the surficial aqui-
fer. Two streamflow-gauges (02344500 and 02350512) are not
HCDN sites and three groundwater wells (13M006, 11J012, and
08K001) are not in the CGRN.

Precipitation Forecasts

The retrospective winter [January, February, and March (JFM)] and
spring [April, May, and June (AMJ)] precipitation forecasts from
ECHAM 4.5 is available from the International Research Institute

(IRI) for Climate and Society data library (Li and Goddard 2005).
To force ECHAM 4.5 with SST forecasts, retrospective monthly
SST forecasts were developed from 1957 using the constructed
analogue approach based on the observed SST conditions in
that month. For additional details and documentation on forcing
ECHAM 4.5 using constructed analogue SST forecasts, see Li
and Goddard (2005).

In this paper, the writers utilize the forecasted monthly precipi-
tation, which is obtained by computing the average over 24
ECHAM 4.5 ensembles for JFM and AMJ issued at the beginning
of January. Time series of JFM-observed and AMJ-observed pre-
cipitation for 1980–2010 over the six HUCs are correlated to JFM
and AMJ precipitation-forecasts obtained for 25 ECHAM 4.5 grid
points with spacing of 2.5 × 2.5°. Among the 25 ECHAM 4.5 grid
points over FRB and the nearby regions, nine were used for the
research reported in this paper (Fig. 1, inset) since these grid points
exhibited significant correlation between the observed and pre-
dicted precipitation.

To recapitulate, the hydroclimatic variables considered for
seasonal and monthly groundwater predictions include precipi-
tation forecasts from nine ECHAM 4.5 grid points, observed
monthly total precipitation computed over six HUCs, monthly
mean streamflow observed at nine streamgauges, and monthly
mean groundwater level (depth from land surface) measured at
10 groundwater wells. Understanding the dependency among these
hydroclimatic variables at different time lags could help identify
potential predictors that influence the streamflow and groundwater
potential during the winter and spring seasons.

Dependency Analysis

Spearman rank-correlation is used to quantify the dependency
among precipitation P, streamflow Q, and depth to groundwater
G observed during the period 1980–2010. Correlation analysis
was also performed between the observed hydroclimatic variables
and precipitation forecasts. Both concurrent and lag correlations
were also performed between P,Q, and G. The analysis shows that
for a given groundwater well, the observed G at a given month is
significantly correlated to the observed G during the previous
3 months. Similarly, the observed Q at a given month is signifi-
cantly correlated with Q for the previous 3 months. These findings
are in line with the dependency analyses reported in Almanaseer
and Sankarasubramanian (2012). Furthermore, correlation between
the concurrent G observed at 10 groundwater wells also indicate
significant similarity in groundwater-level patterns over FRB for
the period of record analyzed. In conclusion, October, November,
and December (OND) observations can be used to predict at a
specific site since they provide information on the baseflow as part
of JFM streamflow and also about the potential JFM groundwater-
levels. Spatial correlations between streamflow and groundwater
also indicate that historic information from nearby wells and
gauges can also be used to develop low-dimensional models
(Sankarasubramanian et al. 2009) for predicting streamflow and
groundwater.

Relevant ECHAM 4.5 grid points that influence the hydrocli-
matology of the basin during winter (JFM) and spring (AMJ) are
identified by computing Spearman rank-correlation coefficients be-
tween the hydroclimatic variables (P, Q, and G) and precipitation
forecasts obtained from 25 ECHAM 4.5 grid points covering large
area over the southeast United States during the period 1980–2010.
The analysis identified nine grid points (Fig. 1) that are signifi-
cantly correlated with the observed P, Q, and G over the FRB.
In addition, precipitation forecasts from these nine grid points are

Table 2. List of the Selected Groundwater Wells in the Flint River Basin

Index
number

USGS
well

number

Hydrologic
unit,

HUC-8

Altitude
[m (ft) above
NGVD29] Aquifer

Well
depth
[m (ft)]

1 11AA01 03130005 289.6 (950) Surficial 9.1 (30)
2 12Z001 03130005 259.7 (852) Surficial 9.4 (31)
3 13M006 03130006 72.5 (238) Floridan 37.5 (123)
4 13M007 03130006 72.5 (238) Surficial 7.6 (25)
5 13J004 03130008 59.1 (194) Floridan 63.4 (208)
6 11J012 03130008 50.3 (165) Floridan 68.6 (225)
7 08K001 03130009 70.1 (230) Floridan 38.1 (125)
8 07H002 03130010 50.9 (167) Floridan 22.9 (75)
9 07H003 03130010 50.9 (167) Surficial 12.2 (40)
10 10G-313 03130008 44.2 (145) Floridan 62.8 (206)
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highly correlated among themselves, indicating a strong spatial cor-
relation. Hence, principal component analysis (PCA) on JFM and
AMJ precipitation-forecasts was performed to reduce the dimen-
sionality of the forecasts over the period 1980–2010. Principal
component analysis basically rotates the correlated time-series into
orthogonal principal components, which are basically determined
by the loadings associated with the original time-series. The first
principal component (PC1) of the precipitation forecasts for JFM
explains 92% of the variability among the nine grid points, whereas
PC1 for AMJ explains 86% of the variability. The loadings for PC1
for the nine grid points indicate that all grid points play a nearly
equal role in determining PC1 (data not shown).

Correlation analysis between PC1 and the observed Q and G,
respectively, during JFM and AMJ [Figs. 2(a and b), respectively]
indicates that precipitation forecasts (issued in January) for the win-
ter are significantly correlated (ρ ≥ 0.3) with G at all wells during
JFM (0.35 ≤ ρ ≤ 0.71). Similarly, the correlation (0.33 ≤ ρ ≤ 0.59)
between PC1 for AMJ and the observed G are statistically signifi-
cant at all wells during AMJ. However, the observed Q shows a
significant correlation with PC1 during JFM (0.46 ≤ ρ ≤ 0.68)
and a statistically insignificant correlation with PC1 during AMJ
(0.18 ≤ ρ ≤ 0.33). Thus, the JFM precipitation-forecasts issued
at the beginning of January show better skill in predicting JFM
P, Q, and G, whereas AMJ precipitation-forecasts issued at the be-
ginning of January show relatively lower skill in predicting AMJ P,
Q, and G, which is partly due to potential changes in the climate
over the 6-month period. The correlation coefficients also tend
to increase towards downstream, indicating the role of storage in

increasing the correlation between precipitation and the hydrogeo-
logic attributes.

In summary, the dependency analysis at different lags suggests
that G and Q could be predicted at a given site using records from
previous months. The significant correlation between P, Q, and G
with precipitation forecasts, especially during JFM, suggests that
precipitation forecasts could be used as an additional predictor
in the development of the groundwater-level prediction models.
Moreover, the groundwater levels and streamflow observed over
the basin are also significantly correlated among each other. Hence,
predictions at a given site also could be improved by incorporating
information from adjacent sites for model development.

Development of Low-Dimensional Models

The main purpose of the modeling effort described in this paper
is to evaluate the utility of precipitation forecasts for improving
seasonal and monthly groundwater-level predictions. For this
purpose, the writers consider two low-dimensional models, as
follows: (1) PCR, and (2) CCA (Oh and Sankarasubramanian
2012). Low-dimensional models reduce the correlated predictors
(e.g., precipitation forecasts) and predictands (e.g., groundwater
levels) so that a subspace of uncorrelated predictors and predic-
tands could be used for regression model development (Tippett
et al. 2003; Sankarasubramanian et al. 2008). Furthermore, these
low-dimensional models also recalibrate the GCM forecasts so that
any marginal bias in predicting the observed precipitation could be

Fig. 2. Correlation coefficients between the first principal component (PC1) obtained from nine ECHAM 4.5 grid points and seasonal streamflow and
depth to groundwater: (a) January–March (JFM); (b) April–June (AMJ); the correlation 0.3 is statistically significant at a 95% confidence interval
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adjusted based on the regression model (Landman and Goddard
2003). A brief description of the low-dimensional models is pro-
vided next.

Principal Component Regression

Principal component regression, which is otherwise known as
model-output statistics (MOS; Wilks 1995), eliminates systematic
errors and biases in GCM fields and also recalibrates the principal
components (PCs) of GCM fields to predict the hydroclimatic var-
iable of interest using regression analyses. The predictand could be
streamflowQt or groundwater levelsGt over a watershed. Since the
gridded precipitation forecasts over a given region are spatially cor-
related, employing precipitation forecasts from multiple grid points
as predictors would raise multicollinearity issues in developing the
regression. To avoid this, the writers employ PCR based on Eq. (1)

lnðGtÞ ¼ β̂0 þ
XK
k¼1

β̂j × PCk
t þ ε̂t ð1Þ

where Gt = monthly mean of groundwater levels during a given
month=season in year t; PCk

t denotes the kth PCs from the retained
K PCs of the predictors; and β̂ denotes the regression coefficients,
the estimates of which are obtained by minimizing the sum of
squares of error. The writers employ stepwise regression to select
K PCs out of the selected predictors for developing the PCR model.

Canonical Correlation Analysis

In PCR, the writers develop separate regression models for each
groundwater well or a given streamgauge. Given that the predic-
tands across the FRB (groundwater levels) are also spatially corre-
lated, one could utilize that information to develop a reduced set of
regression models. This could help in utilizing the intersite corre-
lations to develop multiple (multiple low-dimensional components
of predictands with the multiple low-dimensional components of
predictors) regression relationships. Consider the logarithm of the
winter groundwater levels available from m sites represented
by LGT ¼ ½lnðG1Þ; lnðG2Þ; : : : ; lnðGmÞ� (dimensions ¼ n ×m),
where the corresponding p predictors (includes precipitation fore-
casts and OND groundwater-levels, p > m) are represented as
XT ¼ ðX1;X2; : : : ;XpÞ (dimensions ¼ n × p); canonical correla-
tion analysis finds a linear combination of the p predictors Y� ¼
bTY that maximally correlates with the linear combination of m
predictands X� ¼ aTX. Mathematically, the canonical correlation
is obtained by choosing the vectors a and b that maximizes the
relationship ðaT Pxy bÞ=½ðaT

P
xx aÞðbT

P
yy bÞ�1=2 where

P
de-

notes the variance-covariance matrix between the two variables in
the subscript. For a detailed mathematical treatment of CCA, see
Wilks (1995). The number of components from m predictands
and p predictors to be retained for the regression is decided based
on stepwise regression. Squared values of canonical correlation

represent the percentage of variance explained in each predictand
by the predictors under that dimension. Thus, the skill in predicting
the groundwater levels for each site could be obtained based on the
precipitation forecasts by developing a reduced set of models in
the FRB study area.

Model Validation

Both the low-dimensional models are validated using leave-five-out
cross validation (Stone 1974). Leave-K-out cross validation is a
rigorous model-validation procedure that is usually carried out by
leaving out K predictand and predictors (including the groundwater
and principal components for the validating year) from the ob-
served data set (Gt, Xt, t ¼ 1; 2; : : : ; n) and the parameters of
the PCR model are estimated using the remaining n − k observa-
tions, where n is the total length of observed records in a given site.
Using the PCR/CCA developed with n − k observations, the ability
of the model to predict the groundwater levels/streamflow is evalu-
ated using the state of the predictor at the validating year. Thus, if
the writers have n years of data, then a total of n different regression
relationships were developed by leaving out K predictors and pre-
dictands to develop predicted values for each year.

Performance Measures

The performance of both low-dimensional models is evaluated us-
ing Spearman rank-correlation coefficient (ρ) and relative RMSE
(RRMSE). Both these measures are computed based on the ob-
served and predicted values of groundwater level or streamflow
obtained from leave-five-out cross validation. Relative RMSE is
simply the RMSE computed by normalizing the error by the ob-
served values in a given time step based on Eq. (2)

R − RMSE ¼ n−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − Ĝ−tÞ=Gt�2

q
ð2Þ

where Gt and Ĝ−t = observed and predicted groundwater-levels,
respectively, and −t denotes the values being obtained from
leave-five-out cross validation. Because the groundwater levels in
the wells used in the research reported in this paper have different
magnitudes of seasonal and monthly groundwater-level fluctuation,
RRMSE is more appropriate because it allows the writers to com-
pare the performance of the prediction models developed across
the wells.

Low-Dimensional Model Schemes: Overview

Both the low-dimensional models (PCR and CCA) were developed
for 10 groundwater wells (Table 2). The writers also present the
skill, rank correlation, and RRMSE in predicting the observed
streamflow for nine streamgauge sites (Table 1). To develop stream-
flow forecasts, the predictands were simply replaced with observed
monthly=seasonal streamflow. The skill in predicting both stream-
flow and groundwater were evaluated based on leave-five-out cross

Table 3. List of Predictors and Predicands Considered for the Three Modeling Schemes at Monthly and Seasonal Time-Scales

Modeling scheme Method Predictors Predictands, seasonal Predictands, monthly

Q-1/G-1 Regression OND, Q=G JFM, Q=G January–June, Q=G
Q-1/G-1 Regression OND, Q=G AMJ, Q=G January–June, Q=G
Q-2/G-2 PCR OND, Q=G; JFM, P JFM, Q=G January–March, Q=G
Q-2/G-2 PCR OND, Q=G; JFM, P; AMJ, P AMJ, Q=G April–June, Q=G
Q-3/G-3 CCA OND, Q=G; JFM, P JFM, Q=G January–March, Q=G
Q-3/G-3 CCA OND, Q=G; JFM, P; AMJ, P AMJ, Q=G April–June, Q=G

Note: Models predicting groundwater levels or streamflow used the corresponding monthly and seasonal groundwater levels (or streamflow and precipitation
forecasts) for developing forecasts.
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validation. To quantify the role of precipitation forecasts and the
importance of using spatial correlations between the observed hy-
droclimatic variables, the writers consider three low-dimensional
schemes, which are detailed next. Table 3 provides a detailed over-
view of the set of predictors and predictands for each modeling
scheme.

Low-Dimensional Model Schemes: Model 1, Q-1/G-1

Model 1 is the null model that does not include precipitation fore-
casts as predictors, but simply previously recorded groundwater-
levels and streamflow used to predict future groundwater-levels
and streamflow, respectively. The null model is developed using
regression to predict seasonal and monthly streamflow in addition
to groundwater levels independently based on previous monthly
(OND) observations of Q or G for a given site without using
climate information. Seasonal predictions for JFM and AMJ are
based on OND seasonal mean values. Monthly predictions for

January–June are also based on OND mean values. Similarly,
model predictands are groundwater level and discharge for JFM
and AMJ for the seasonal model, and monthly mean values during
January–June are employed as predictands for developing monthly
streamflow and groundwater forecasts.

Low-Dimensional Model Schemes: Model 2, Q-2/G-2

Model 2 is developed using PCR with OND streamflow and
groundwater-level values, but the model uses the precipitation fore-
casts issued in January for nine ECHAM 4.5 grid points as addi-
tional predictors. For seasonal predictions, the model uses OND
seasonal mean observed values and mean JFM precipitation fore-
casts from the nine ECHAM 4.5 grid points as predictors (Table 3,
10 predictors total) to predict seasonal groundwater-level and
streamflow. For AMJ predictions, model 2 uses seasonal mean
OND observed values in addition to JFM and AMJ mean precipi-
tation forecasts as predictors (19 predictors total) to predict AMJ

G-1 G-2 G-3 

JFM 

AMJ 

< 0.3 0.31-0.40 0.41-0.50 0.51-0.60 0.61-0.70 0.71-0.80 0.81-0.90 0.91-1.0 

Fig. 3. Correlation between observed and predicted JFM and AMJ depth to groundwater for 10 groundwater wells under three models (G-1, G-2, and
G-3) during the period 1980–2010; the correlation 0.3 is statistically significant at a 95% confidence interval
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groundwater-level and streamflow. The same set of seasonal pre-
dictors was employed for monthly predictions but the predictands
are replaced with observed monthly mean values of streamflow/
groundwater. For instance, for predicting February monthly mean
groundwater-level, the model uses observed mean groundwater-
levels during OND and JFM precipitation forecasts. Comparisons
between models 1 and 2 help evaluate the role of climate informa-
tion in improving streamflow and groundwater level predictions
with the addition of precipitation forecasts in model 2.

Low-Dimensional Model Schemes: Model-3, Q-3/G-3

Model 3 is developed using CCA with the aim of utilizing the
spatial correlation between the predictands and predictors from
adjacent subbasins (HUC units) to improve the prediction at a
given station. Apart from using precipitation forecasts from the
relevant grid points as predictors, model 3 considers observed
groundwater from nine other wells in the case of groundwater-level
predictions (of the 10 wells selected for the research reported in
this paper) and observed streamflow from eight streamgauges in
the case of streamflow prediction (of the nine streamgages selected
for the research reported in this paper). In the case of seasonal
(monthly) models, observed OND (monthly mean during October–
December) information from nearby sites are added as predictors
and the observed JFM (monthly mean of the respective months dur-
ing January–March) and AMJ (monthly mean of the respective
months during April–June) information from nearby sites are added
as predictands (Table 3). Thus, CCA model develops regression
models for the entire basin by considering the reduced components
of predictors and predictands. Although model 3 uses information
from adjacent sites for predicting streamflow and groundwater lev-
els in a given year, it leaves out five observations over the entire
basin, including the year for which the forecasts were developed.

Thus, for each groundwater well and streamgauge site, the three
low-dimensional schemes are indicated as G-1 (model 1), G-2
(model 2), and G-3 (model 3), whereas streamflow prediction
models are indicated as Q-1 (model 1), Q-2 (model 2), and Q-3
(model 3). All the three schemes have the same period of analysis

)1980–2010 ) and develops forecasts of seasonal (JFM and AMJ)
and monthly (January–June) groundwater levels and streamflow.

Seasonal and Monthly Groundwater-Level
Forecasts: Overview

This section presents the skill in developing seasonal and monthly
groundwater-level forecasts for each well within FRB used for the
research reported in this paper.

Seasonal Groundwater Forecasts

Figs. 3 and 4 show the correlation coefficients ρ and RRMSE be-
tween the observed and predicted JFM and AMJ depth to ground-
water for 10 groundwater wells using models G-1, G-2, and G-3
during the period 1980–2010. For comparison (Table 4), the writers
also present the correlation in predicting the JFM-observed and
AMJ-observed streamflow for nine streamgauges under three mod-
els (Q-1, Q-2, and Q-3) based on leave-five-out cross validation
over the same period. The analysis indicates that G-2 and G-3 show
significant improvements relative to G-1 in predicting groundwater
levels at most of the 10 wells during JFM and AMJ. For instance,
the improvement in correlation during JFM is only modest for mod-
els G-2 and G-3, but the RRMSE showed significant reduction for
at least seven wells out of 10. Three wells (well indices 7, 8, and 9;
Fig. 1) for which the RRMSE of G-1 is lower during the JFM

season are primarily in the subbasins over the two smaller HUCs.
However, models G-2 and G-3 showed significant improvements
in correlation during the spring season, but the RRMSE of G-2
and G-3 did not differ much from the RRMSE of G-1. This is
expected since the groundwater levels between two seasons have
significant temporal correlation, resulting in only limited improve-
ments in correlation from the G-1 model, which uses only OND
mean values (not precipitation forecasts) to predict the groundwater
levels. However, the addition of precipitation forecasts in models
G-2 and G-3 results in improved prediction of groundwater levels
since the forecasts account for the potential recharge during the
JFM season. Since the groundwater levels during the AMJ season
have lesser dependence on the OND season, adding precipitation
forecasts during the JFM and AMJ seasons results in improved
correlation (i.e., variability) under G-2 and G-3 for the AMJ season.
However, the forecasts ability to predict the total precipitation over

0.0

0.3

0.6

0.9

12Z001 10G313 11AA01 07H002 07H003 13M007 13J004 13M006 11J012 08K001
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SE
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0.0
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(b)

G1
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G3

Fig. 4. Relative RMSE between observed and predicted depth to
groundwater at 10 groundwater wells under three models (G-1, G-2,
and G-3) during the period 1980–2010: (a) JFM; (b) AMJ

Table 4. Correlation between Observed and Predicted JFM and AMJ
Streamflow for Nine Streamgauges under Three Models (Q-1, Q-2, and
Q-3) during the Period 1980–2010

Modeling
scheme Season

USGS streamgauge index number

1 2 3 4 5 6 7 8 9

Q1 JFM 0.53 0.53 0.62 0.61 0.61 0.67 0.47 0.68 0.41
AMJ 0.17 0.09 0.11 0.21 0.31 0.14 0.21 0.21 0.08

Q2 JFM 0.62 0.61 0.72 0.82 0.64 0.85 0.81 0.86 0.81
AMJ 0.22 0.21 0.21 0.22 0.41 0.31 0.21 0.32 0.22

Q3 JFM 0.63 0.64 0.74 0.83 0.61 0.85 0.81 0.86 0.82
AMJ 0.23 0.21 0.25 0.22 0.32 0.32 0.26 0.33 0.21

Note: A correlation greater than 0.3 is statistically significant at a 95%
confidence interval.
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the AMJ season is limited, resulting in smaller improvements in
RRMSE under G-2 and G-3.

In contrast, comparing the correlations in Fig. 3 with Table 4,
the writers infer that adding precipitation forecasts results in im-
proved skill under Q-2 and Q-3 during the JFM season, but only
a marginal improvement in correlation during the AMJ season for
models Q-2 and Q-3. Given that streamflow is primarily a response
to precipitation during the winter season and the increased skill of
winter precipitation forecasts, the writers observe increased skill in
predicting winter streamflow under models Q-2 and Q-3. However,
in the spring season, since the runoff is also controlled by evapo-
ration due to increased temperature and also the skill of precipita-
tion forecasts drops appreciably over 6 months, models Q-2 and
Q-3 did not improve the skill in predicting streamflow during
AMJ. In contrast, groundwater-level forecasts show improved cor-
relations during the AMJ season since groundwater being a storage
system responds slowly to potential recharge during the JFM and
AMJ seasons. The writers also infer from Fig. 4 that the perfor-
mance of models G-2 and G-3 are very similar for the seven wells
in which both models perform better than G-1.

Different wells also show different magnitudes of RRMSE
(Fig. 4). The writers also infer that the RRMSE of streamflow de-
creases from a smaller drainage area to a larger area [left to right in
Fig. 4(b)]. However, the differences in RRMSE across the three
modeling schemes are very small for both streamflow and ground-
water. The increased variability in RRMSE for groundwater is

likely due to the spatial variations in the hydrogeological character-
istics. Although 10 wells is not sufficient to draw clear conclusions,
it seems that groundwater wells close to the main course of the Flint
River (Fig. 1) exhibit higher correlation coefficients between the
observed and predicted depth to groundwater levels. This indicates
the role of drainage area in influencing groundwater-streamflow
interactions over the basin.

Monthly Groundwater-Level Forecasts

Given that the month-to-month variations in groundwater levels are
smaller within the season, the writers investigated the ability of sea-
sonal precipitation forecasts in predicting monthly groundwater
levels during the winter and spring seasons. Figs. 5 and 6 show
the correlation and RRMSE between observed and predicted
monthly mean streamflow for 10 wells based on models G-1,
G-2, and G-3. For comparison, the writers also present the corre-
lation (Table 5) between the observed and predicted streamflow
for nine streamgauges based on models Q-1, Q-2, and Q-3. For
developing monthly groundwater-level forecasts (G-2/Q-2 and
G-3/Q-3) under leave-five-out cross validation, the writers em-
ployed seasonal-precipitation forecasts as a predictor along with
the OND groundwater/streamflow information.

From Figs. 5 and 6, adding precipitation forecasts in models G-2
and G-3 result in improved correlation relative to G-1 for at least
five groundwater wells (12Z001, 13M007, 11J012, 10G313, and

Jan Feb Mar Apr May Jun 

G1 

G2 

G3 

0.0-0.3 0.31-0.40 0.41-0.50 0.51-0.60 0.61-0.70 0.71-0.80 0.81-0.90 0.91-1.0 

Fig. 5. Correlation between observed and predicted monthly depth to groundwater level for 10 groundwater wells under three models (G-1, G-2, and
G-3) during the period 1980–2010; the correlation 0.3 is statistically significant at a 95% confidence interval
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Fig. 6. Relative RMSE between observed and predicted monthly depth to groundwater level for 10 groundwater wells under three models (G-1, G-2,
and G-3) during the period 1980–2010

Table 5. Relative RMSE of Seasonal-Streamflow Forecasts for Nine Streamgauge Stations over the Flint River Basin

Model Season 02357000 02349900 02344500 02353500 02347500 02349500 02350512 02352500 02353000

Q-1 JFM 0.54 0.52 0.34 0.38 0.32 0.28 0.30 0.31 0.30
Q-1 AMJ 0.69 0.67 0.59 0.53 0.58 0.54 0.54 0.50 0.47
Q-2 JFM 0.62 0.50 0.32 0.25 0.31 0.26 0.36 0.24 0.23
Q-2 AMJ 0.70 0.67 0.60 0.63 0.57 0.55 0.54 0.48 0.46
Q-3 JFM 0.60 0.43 0.35 0.30 0.30 0.25 0.36 0.23 0.23
Q-3 AMJ 0.68 0.67 0.60 0.52 0.54 0.51 0.55 0.47 0.45
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13J004). However, adding precipitation forecasts in models G-2
and G-3 consistently resulted in improved RRMSE for only a few
groundwater wells (12Z001 and 13M007) over the two seasons.
Two wells (13M006 and 13M007) are very close to each other
yet behave completely differently in terms of RRMSE under the
three considered models. Well 13M007 is a surficial aquifer system
and responds to climatic signals. The G-2 and G-3 models perform
better than G-1. Well 13M006 is Floridan, a deep aquifer confined
system, and does not respond to climatic signals. However, at sea-
sonal time-scales, there seems to be some influence of climatic sig-
nals in improving groundwater predictions (Fig. 4). Considering
the fact that all 10 wells are located within similar climatic condi-
tions, all wells do not exhibit similar skill, which indicates the role
of local hydrogeological characteristics influencing the recharge
and discharge over the basin. Another reason for relatively marginal
improvements in developing monthly groundwater-level forecasts
under models G-2 and G-3 is primarily due to smaller variations in
groundwater levels between months. Thus, adding precipitation
forecasts in models G-2 and G-3 result in improved correlation
only for the spring season (Fig. 5). Furthermore, the improved cor-
relation is exhibited only along the main course of Flint River in
groundwater discharge areas, whereas the wells (numbers 08K001,
07H002, and 07H003) in the subbasins did not result in improved
skill by adding precipitation forecasts (Fig. 5). However, in estimat-
ing the observed monthly groundwater-level, the RRMSE (Fig. 6)
is consistently lower for models G-2 and G-3 only in two wells
(12Z001 and 13M007) for the entire 6 months of the forecasting
period.

Comparing the performance of monthly groundwater level fore-
casts with monthly streamflow forecasts (Table 6), the writers infer
that models Q-2 and Q-3 result in improved correlation relative
to Q-1 in all the streamgauges. Table 6 clearly shows how the
correlation improved for streamgauges downstream during the
winter season. This is primarily due to two reasons, as follows:
(1) increased climatic signals over a larger area due to winter
frontal events, and (2) streamflow being a spatial integrator of
precipitation associates better with the drainage from a larger area.
However, both models Q-2 and Q-3 showed only marginal skill
(correlation 0.31–0.40) for almost all the basins during the spring

season. This is primarily due to the limited skill of precipitation
forecasts in predicting observed precipitation over 6 months of lead
time. However, there is a much higher skill in predicting observed
monthly groundwater levels for wells in the main course of the
Flint River (Fig. 6). This increased skill primarily results from the
ability of the groundwater system to respond slowly to the recharge
occurring during the winter and spring seasons.

Comparing the RRMSE of monthly streamflow and ground-
water forecasts (Fig. 7) show that the RRMSE of monthly stream-
flow forecasts obtained from CCA (Q-3) is much lower than that
of the RRMSE of Q-2. However, such a reduction in RRMSE be-
tween G-2 and G-3 is not clear. One possible reason for improved
performance under Q-3 is due to increased spatial variability in
monthly streamflow across the basin, which is better captured by
the Q-3 model. Given that the monthly groundwater-levels are
strongly correlated across the FRB, resulting in reduced spatial
variability at the basin scale, the CCA approach does not improve
the predictions by gaining information from across the sites.
Employing CCA is attractive since the developed multivariate
regression models consider the low-dimensional components of
both predictors and predictands. Thus, CCA eliminates the need
to develop individual PCR model for each site.

Discussion

The writers identified 10 groundwater wells and nine stream-
gauges within a confined region (the drainage area of the FRB
is 21,900 km2) having little human influence and which (in the
writers’ opinion) adequately represent the interactions among
the various hydroclimatic variables over FRB. The writers under-
stand analyzing the skill in predicting over a large region (e.g., the
southeast United States) will provide a better assessment of re-
searchers’ ability to develop groundwater-level forecasts. Given
the study of Almanaseer and Sankarasubramanian (2012) provided
the potential in predicting groundwater levels using precipitation
forecasts, the writers focused in evaluating the skill in predicting
the groundwater and streamflow within the FRB over periods of
6 months from 1980–2010. The limited spatial variability in cli-
matic conditions within FRB provides researchers an opportunity

Table 6. Correlation between Observed and Predicted Monthly Streamflow for Nine Streamgauges under Three Models (Q-1, Q-2, and Q-3) during the
Period 1980–2010

Modeling scheme Month

USGS streamgauge index number

1 2 3 4 5 6 7 8 9

Q1 January 0.53 0.61 0.71 0.51 0.75 0.74 0.53 0.73 0.52
February 0.32 0.32 0.41 0.31 0.57 0.52 0.31 0.57 0.15
March 0.43 0.32 0.39 0.33 0.35 0.38 0.14 0.41 0.11
April 0.09 0.17 0.21 0.08 0.26 0.22 0.21 0.27 0.08
May 0.20 0.15 0.20 0.30 0.26 0.22 0.26 0.21 0.08
June 0.07 0.09 0.07 0.08 0.21 0.08 0.11 0.11 0.08

Q2 January 0.41 0.63 0.71 0.56 0.74 0.75 0.57 0.75 0.63
February 0.33 0.31 0.32 0.69 0.61 0.61 0.47 0.71 0.57
March 0.31 0.37 0.46 0.41 0.49 0.45 0.65 0.65 0.48
April 0.21 0.11 0.22 0.24 0.42 0.38 0.22 0.54 0.11
May 0.09 0.21 0.36 0.27 0.36 0.43 0.33 0.36 0.08
June 0.09 0.02 0.18 0.21 0.32 0.13 0.11 0.17 0.08

Q3 January 0.44 0.64 0.73 0.71 0.78 0.77 0.71 0.81 0.69
February 0.41 0.51 0.56 0.57 0.61 0.71 0.61 0.72 0.58
March 0.50 0.49 0.56 0.57 0.48 0.67 0.61 0.68 0.51
April 0.43 0.23 0.22 0.37 0.43 0.31 0.31 0.45 0.07
May 0.11 0.18 0.34 0.32 0.35 0.31 0.37 0.32 0.08
June 0.08 0.14 0.31 0.08 0.42 0.31 0.08 0.21 0.08

Note: A correlation greater than 0.3 is statistically significant at a 95% confidence interval.
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to understand the role of aquifer types (e.g., shallow unconfined
surficial versus deeper confined Floridan aquifers) and basin char-
acteristics (e.g., drainage area) in influencing the skill in forecasting
groundwater-levels. To ensure the nonlinear relationship between
the predictors (i.e., precipitation forecasts and OND ground-
water levels) and the forecasting period’s groundwater-level,
low-dimensional models were developed with the logarithm of
the groundwater levels [Eq. (1)]. One could also consider other
transformation, such as power transformation and Box-Cox trans-
formation (Box and Cox 1964), for reducing the skewness of the
predictand to be closer to zero. Skillful groundwater-level forecasts
could be developed at monthly and seasonal time-scales by using
both the previous season’s groundwater level and the forecasting
period’s ECHAM 4.5 precipitation forecasts.

The developed seasonal and monthly groundwater-forecasts
show a significant correlation in predicting the observed ground-
water levels within FRB. However, the RRMSE of models G-2
and G-3 did not reduce much from G-1, indicating the presence
of similar forecast errors (i.e., conditional bias) in predicting
groundwater levels. One could also improve the RRMSE of
monthly and seasonal groundwater level forecasts by utilizing
the monthly updated climate forecasts. Studies have shown that
utilizing monthly updated precipitation forecasts reduces the intra-
seasonal variability in streamflow forecasts (Sankarasubramanian
et al. 2008). This is left as a future study in this paper. Similarly,
relatively short periods of groundwater records (1980–2010) forced
the writers to adopt a leave-five-out cross validation technique.
Although this approach, in this case, is rigorous and produces stat-
istically significant streamflow and groundwater-level predictions
over FRB, longer data periods would have helped the writers to
evaluate the models under split-sample validation.

To apply the approach reported in this paper for basins with
significant anthropogenic influences, it would be vital to identify
the sources/causes of these influences in terms of their spatial
and temporal scales, and to adjust the observed information by ac-
counting influences such as groundwater abstraction or streamflow
regulations. For example, periods of records prior to any significant
anthropogenic influences might be used in conjunction with
changes in groundwater storage to obtain naturalized streamflow.
Another approach is to calibrate a coupled groundwater-surface
water model (e.g., Sophocleous et al. 1999) and estimate natural-
ized flows and groundwater levels for a longer period of time,

so that the naturalized groundwater levels could be utilized for
forecast development. This remains an area of potentially fruitful
research, as there are few areas that are not subjected to anthropo-
genic influences.

Summary and Conclusions

This paper documents the utility of precipitation forecasts in im-
proving seasonal and monthly groundwater-level predictions over
selected groundwater wells for the Flint River Basin study area
in the state of Georgia. Hydroclimatic data was obtained from
streamgauges and groundwater wells with minimal anthropogenic
influences to better represent the climatic response for ground-
water levels and streamflow. Principal component regression and
canonical correlation analysis with a leave-five-out cross validation
approach was used to develop three prediction models for each
of the nine selected streamgauges and for each of the 10 selected
wells. These two techniques were employed for developing
monthly and seasonal streamflow and groundwater forecasts over
the basin using 6-month-ahead precipitation forecasts from the
ECHAM 4.5 GCM. The performance of these two models was
compared against a null model that estimated groundwater/
streamflow purely based on the previous monthly=seasonal values
without using precipitation forecasts. To summarize, incorporating
seasonal precipitation forecasts resulted in improved skill over
at least seven wells that lie primarily along the main course of
the Flint River. The following are the main conclusions of
this paper:
• Dependency analysis shows significant interaction between

streamflow and groundwater, and indicates the role of climate
variability in influencing the interaction over the study area at
both seasonal and monthly time-scales. The analysis also indi-
cates significant correlation between precipitation forecasts and
streamflow, groundwater level, and observed precipitation over
the FRB, especially during winter months. The relatively high
BFIs computed for the nine streamgauges (Table 1) indicates the
significant role of groundwater in controlling the hydroclimatic
covariability within the basin.

• The research reported in this paper demonstrates that using pre-
cipitation forecasts could result in improved groundwater-
predictions at seasonal (Figs. 3 and 4) and monthly (Figs. 5
and 6) time-scales. Comparing the skill in predicting ground-
water (Figs. 3 and 5) with the skill in predicting streamflow
(Tables 4 and 5), the writers infer clearly that the groundwater
forecasts developed using precipitation forecasts exhibit higher
prediction skill relative to the skill of streamflow forecasts. This
is primarily due to the lower variability of the groundwater
levels arising from the storage aquifers. Further, integrating in-
formation from nearby sites based on CCA results (G-3) show
almost similar skill as that of PCR model (G-2) at both monthly
and seasonal time-scales.

• The skill in predicting streamflow is primarily good only up to
3 months but the skill in predicting groundwater level is statis-
tically significant up to 6 months since the recharge during the
JFM season also influences the skill in predicting groundwater
levels during the AMJ season.

• Incorporating precipitation forecasts results in improved corre-
lation coefficients, but it did not result in substantial improve-
ments in reducing the RRMSE in predicting both streamflow
and groundwater. In other words, precipitation forecasts are
helpful in capturing the interannual variability but it is not
very useful in reducing the forecast errors or conditional bias
in prediction.

R² = 0.65
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Fig. 7. Comparison between RRMSE obtained by modeling schemes
[model 2 (G-2 and Q-2) and model 3 (Q-3 and G-3)] for monthly
streamflow (January–June for nine streamgauges, 54 data points)
and monthly groundwater (January–June for 10 groundwater wells,
60 data points)
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